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Electroencephalography (EEG) can further out our understanding of autistic spectrum

disorders (ASD) neurophysiology. Epilepsy and ASD comorbidity range between 5 and

46%, but its temporal relationship, causal mechanisms and interplay with intellectual

disability are still unknown. Epileptiform discharges with or without seizures go as high

as 60%, and associate with epileptic encephalopathies, conceptual term suggesting

that epileptic activity can lead to cognitive and behavioral impairment beyond the

underlying pathology. Seizures and ASD may be the result of similar mechanisms,

such as abnormalities in GABAergic fibers or GABA receptor function. Epilepsy

and ASD are caused by a number of genetic disorders and variations that induce

such dysregulation. Similarly, initial epilepsy may influence synaptic plasticity and

cortical connection, predisposing a growing brain to cognitive delays and behavioral

abnormalities. The quantitative EEG techniques could be a useful tool in detecting and

possibly measuring dysfunctions in specific brain regions and neuronal regulation in

ASD. Power spectra analysis reveals a U-shaped pattern of power abnormalities, with

excess power in the low and high frequency bands. These might be the consequence

of a complicated network of neurochemical changes affecting the inhibitory GABAergic

interneurons and their regulation of excitatory activity in pyramidal cells. EEG coherence

studies of functional connectivity found general local over-connectivity and long-range

under-connectivity between different brain areas. GABAergic interneuron growth and

connections are presumably impaired in the prefrontal and temporal cortices in ASD,

which is important for excitatory/inhibitory balance. Recent advances in quantitative EEG

data analysis and well-known epilepsy ASD co-morbidity consistently indicate a role of

aberrant GABAergic transmission that has consequences on neuronal organization and

connectivity especially in the frontal cortex.

Keywords: autistic spectrum disorder, electroencephalography, epilepsy, epileptiform discharges,

excitation/inhibition imbalance

INTRODUCTION

Autism spectrum disorders (ASD) are manifested by persistent impairments in social
communication and interaction, in addition with restricted, repetitive patterns of behavior,
interests, and activities (1). The co-morbidity of ASD and epilepsy is nowwell-documented (2). The
prevalence of epilepsy in patients with ASD is substantially greater than in the general population
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(1.8-60%; 0.5-0.7%, respectively) (3, 4). Furthermore, in patients
with autism, the incidence of epileptiform activity (EA) on
electroencephalography (EEG) ranges from 23.6 to 60.8% (5–8).

EEG has been the primary method used to record and
describe epileptiform paroxysmal activity, which occur
more often in ASD. EEG recordings may also be used to
examine functional connectivity across various brain areas
over time through EEG coherence, which is a quantitative
assessment of the connection between two EEG signals’
frequency spectra (9). This useful feature can help us better
understand impaired interconnections across brain areas that
have been revealed by functional MRI studies in patients with
ASD (10–16).

The aim of this review was to provide the summary of recent
literature on the EEG findings in ASD that contribute to the
understanding the neurophysiology of ASD. First, we present
available data on the neurobiological mechanisms underlying
ASD based on epilepsy and EA comorbidity, and then based on
quantitative EEG assessments.

BIDIRECTIONAL RELATION BETWEEN
ASD AND EPILEPSY/EPILEPTIFORM
ABNORMALITIES

According to a meta-analysis of 23 studies, the prevalence
of epilepsy in patients with ASD and intellectual impairment
is 21.5% (2,150/10,000) and 8% (800/10,000) in patients with
ASD without intellectual disability (17). This is especially
important due to the fact that 31% of children with ASD
have an intellectual impairment [intelligence quotient (IQ)
< 70], and 25% have IQ scores in the borderline range
(IQ 71–85) (18). In a sample of 5,185 children with ASD,
Viscidi et al. (19) demonstrated a significant connection
between seizures and cognitive impairment. They demonstrated
an inverse connection between IQ and epilepsy, i.e., for
every 1 standard deviation increase in IQ, the probability of
developing epilepsy reduced by 47% in children over the age
of 10.

ASD patients have high rate of interictal epileptic discharges
(IEDs) even in the absence of definite clinical seizures—
subclinical epileptic discharges (SEDs). In our previous study
of patients with severe ASD of unexplained cause (n = 112),
prevalence of epilepsy was 15.2%. IEDs in awake EEG recordings
were found in 20.4%, and in sleep EEG recordings in 41.3%
of cases (20). SEDs and the diagnosis of epilepsy occurred
more frequently in the group of non-verbal ASD patients
(15.8%; 21.0%, respectively) compared to verbal ones (7.5%;
11.3%, respectively), but the difference was not statistically
significant. Patients with ASD without epilepsy and/or SEDs
showed slight tendency to have better motor skills scores on
Vineland adaptive behavior scale II, compared to the group with
epilepsy and/or SEDs. Other symptoms of ASD didn’t differ
significantly between the groups. Similarly, according to Turk
et al., children with ASD and epilepsy were more likely to have
intellectual impairment, motor problems, developmental delays,
and demanding behaviors than children with only ASD (21).

TABLE 1 | Types of epileptic encephalopathies.

Epileptic encephalopathies

Early-onset epileptic encephalopathy

Early infantile epileptic encephalopathy (Otahara syndrome)

Early myoclonic encephalopathy

Epilepsy of infancy with migrating focal seizures

Infantile spasms (IS),

Myoclonic infantile epilepsy (Dravet syndrome) (DS)

Epilepsy with myoclonic-astatic seizures (Doose syndrome)

Lennox-Gastatut syndrome (LGS)

Epilepsy aphasia spectrum:

Landau-Kleffner syndrome (LKS)

Continuous spike-wave discharges in slow wave sleep syndrome (CSWSS)

Specifically, this comorbidity is reciprocal; according to review
of 19 studies, the median overall period prevalence of ASD in
individuals with epilepsy was 9.0% (4).

ASD associated with seizures, language regression, or motor
impairments might represent clinical subtypes, and could aid
genetic research into the etiology of ASD (22). A number of the
genes linked to ASD have also been linked to epilepsy. Synaptic
transmission and DNA methylation/chromatin remodeling are
the major functions of these genes (23).

Both early-onset epilepsy and ASD symptomatology
characterize genetic disorders such as Fragile X (FXS), tuberous
sclerosis, Rett syndrome, maternal duplications on chromosome
15q11.2-q13.1 (Dup15q), and Phelan-McDermid syndromes
(24). Comorbidity with intellectual impairment is also a feature
of these hereditary disorders (25). Dup15q syndrome is caused
by overexpression of several genes, including ubiquitin ligase
E3A (UBE3A) and a cluster of GABAA receptor subunits (26).
Single-nucleotide polymorphisms in GABA receptor subunit
genes have been linked to ASD and epilepsy in association
studies (27, 28).

Additionally, number of existing evidence point to
the complex association between ASD and epileptic
encephalopathies (EE). EE are a group of neurological disorders
that occur in early life and present with characteristic symptoms:
different types of seizures and/or EA in EEG, as well as severe
cognitive, behavioral, and neurological deficits (Table 1).
According to ILAE definition: “EE is a conceptual term
suggesting that EA, seizures, or IEDs can lead to cognitive and
behavioral impairment, including ASD, above and beyond what
might be expected from the underlying pathology” (29). This
definition is based on the finding of various mechanisms through
which EA affects brain development, such as disruption of
anatomical and functional characteristics of the brain at various
stages of development (30). Very important question that comes
from EE is whether the seizures and IEDs independently worsen
the development of ASD, especially if they emerged at the first 2
years, during the period of rapid brain growth and maturation
(31, 32).

Core ASD features in monogenic EE are repetitive
behaviors with a lower order cognitive component (e.g., motor
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stereotypies) and behaviors with higher cognitive implications
(e.g., perseverations and obsessions) (33).

The genetic overlap between ASD and EE might potentially
be seen as a connection between the two disorders. According
to McTague et al., 62 genes could be connected with the
development of EE (34). Out of these, 34 genes are proven
to be the significant risk factors for development of ASD.
Also, certain types of EE occur more frequently with ASD
symptoms compared to others. Especially, EEs associated with
mutations in CDKL5 (encoding cyclin-dependent kinase-like 5),
SCN1A (encoding sodium voltage-gated channel alpha subunit
1), and SLC6A1 (encoding GABA transporter 1) have a high
co-occurrence of ASD features (35–37).

Tuberous sclerosis complex (TSC) is a disorder of mTOR
signaling caused bymutations in TSC1 and TSC2, associated with
epilepsy (up to 80%), especially infantile spasms (IS) (38–40) and
high prevalence rates of ASD (up to 50%) (41, 42). Not all patients
with IS develop ASD, and not all individuals with ASD had prior
IS, implying that ASD and IS may be two distinct end-results of a
shared CNS abnormality in the TSC population (43).

Dravet syndrome (DS) is another example of a condition in
which cognitive outcomes do not always correspond to seizure
intensity. Syndrome is characterized by myoclonic seizures in
infancy, often associated with fever, which progresses to other
seizure types (44). DS is frequently caused by mutations in the
SCN1A (45), that have been linked to autism, also (46).

In epilepsy-aphasia spectrum, amount of EA are responsible
for developmental regression (47). Landau-Kleffner syndrome
(LKS) is characterized by language regression and temporal lobe
epileptiform discharges (47). It has been linked to mutations in
the GRIN2A gene (48), which codes for the GluN2A protein
present in speech and language cortical areas. Autistic symptoms
may be present in a clinical picture of LKS, in addition to
cognitive delay and EE (49).

But there are important differences between developmental
regression in LKS and ASD. In LKS, after relatively typical early
development, regression primarily affects language between 3
and 9 years of age, but behavioral problems are considerably
less common and may be caused by speech impairment or
cognitive decline (49). In ASD, language and social skills loss
typically begins before the age of three, and the regression might
be clinically mild (e.g., loss of single words, reduced gesturing)
(50). The epileptic discharges associated with developmental
regression in ASD includes focal spikes that can be infrequent
(51) (Figure 1). Language loss in LKS is severe, with loss of
completely developed language, and EEG is characterized by
frequent temporoparietal spikes, which are notably activated by
slow wave sleep (SWS), or with the EEG pattern of continuous
spike-wave in sleep (CSWS) (Figure 2). CSWS is defined as
almost continuous 1.5-2Hz spike-waves, that takes up >85%
of SWS (29). However, even a spike-wave index in sleep
(SWI) of more than 50% affect child’s development, including
the development of autistic symptoms as well as cognitive,
behavioral, and/or motor regression (52).

The clinical assessment of patients with developmental
regression, epilepsy and ASD has to be comprehensive and needs
to include multiple variables. Some of the important variables

include the type of regression (language vs. autistic), the age of
onset of seizures or IEDs, the detailed location and description,
as well as assessing the amount and persistence of EA. These
variables can significantly influence further clinical management
and treatment plan (25). There is still no existing evidence
that strongly supports treatment with antiepileptic drugs in
ASD, if the EEG demonstrates infrequent spikes, in absence
of seizures. However, there’s still an ongoing debate among
experts concerning the use of pharmacotherapy in these patients.
It is important to note that there are several clinical studies
which demonstrated improvement in ASD symptomatology
when treated with anticonvulsants (53, 54), but further studies
are needed to confirm these findings.

Children with EE are more prone to develop ASD; hence,
in addition to urgent pharmacological treatment with protocols
for EE, early behavioral, communication, and educational
interventions should be addressed as part of their comprehensive
management (25).

QUANTITATIVE EEG FINDINGS IN ASD

The quantitative EEG techniques could be a useful tool in
detecting and possibly measuring dysfunctions in specific brain
regions and neuronal regulation in ASD. Scientific interest in
identifying EEG biomarkers of ASD, with a focus on spectral
power, coherence, and hemisphere asymmetry, recently raised.

Wang and colleagues, in their review of resting-state EEG
studies in ASD, reported a potential “U-shaped" profile of EEG
power spectra in ASD as compared to typically developing
controls, with excess power in theta and gamma frequency
bands and decreased power in alpha frequency band (55).
Other research has found alpha band asymmetry (56) between
hemispheres in infants at risk for ASD.

EEG coherence, a key approach of EEG functional
connectivity research, has been used to investigate how
brain regions communicate in real time. When two signals of the
same frequency are active and have a constant phase relationship
across time, they are termed coherent, meaning there is a high
degree of coordinated activity between the brain areas creating
them (57–59).

Two EEG coherence investigations in ASD patients found
under and over-connectivity in distinct frequency bands (60, 61).
Increased local coherence has been found across the frontal
area in delta band (62), as well as over the left frontal and
temporal regions in the theta band (61). In contrast, reduced
intrahemispheric and interhemispheric local coherence in all
brain regions has been reported in delta and theta bands (63),
and, also, reduced local coherence over the frontal region in
delta (62) and alpha bands (63). Machado et al. discovered that
ASD children had considerably higher intrahemispheric long-
range coherence in the left hemisphere, confirming the notion
of over functional connectivity in ASD (64). Carson et al., on
the other hand, found that children with ASD had reduced
long-distance coherence at the alpha frequency in resting state
(65). Children with ASD have decreased interhemispherical and
intrahemispherical coherence in the delta and theta frequency
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FIGURE 1 | EEG findings in ASD patients. (A) Patient PR, male, 6 years. EEG during wakefulness (Bipolar longitudinal montage, Sensitivity 100 µV/cm, High pass

filter 1.6Hz, Low pass filter 70Hz): Left centroparietal spikes (P3, C3). (B) Patient JL, male, 5 years old. EEG during N2 stage Sleep (Bipolar longitudinal montage,

Sensitivity 100 µV/cm, High pass filter 0.5Hz, Low pass filter 70Hz): Right temporal spikes (T4, T6).
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FIGURE 2 | EEG finding in patient with Landau-Kleffner Syndrome. Patient LM, female 6 years. EEG during N2 Stage Sleep (Bipolar Longitudinal montage, Sensitivity

300 µV/cm, High pass filter 1Hz, Low pass filter 70Hz): High amplitude generalized spike–waves with variable frequency, mostly <3Hz. There is repeated

fragmentation of these discharges, which still occupy more than 80% of the epoch. For the whole sleep period, the spike–waves occupied more than 85% of slow

waves sleep, constituting continuous spike-waves during slow sleep (CSWS).

bands, according to Coben et al. (63). Wang et al. showed higher
coherence of short and long-distance connections in children
with ASD compared to controls, which was related to clinical
severity scale scores (66).

According to the theory of nerve pruning, throughout

normal brain development, neurons matures by the myelination,

and is further pruned and modified (67, 68). Pruning and

synaptogenesis allow continuous changes in both short- and

long-range neuronal circuitry in the normal brain growth,

leading to a weakening of the functional connections between the

neighboring areas of the brain, and simultaneously strengthening

connections between distant brain regions (69). This mechanism
may be disrupted in developmental diseases such as autism,
resulting in aberrant brain connections. There is evidence that
synaptic disruption occurs in ASD at both the local level of single
axons and the broader level of brain networks (70, 71). Using EEG
coherence to examine electrical connection patterns, researchers
may be able to analyze the resulting differences in brain function
between persons with and without ASD (72, 73).

NEUROBIOLOGICAL MECHANISMS
UNDERLYING ASD BASED ON EEG
FINDINGS: EXCITATION/INHIBITION
IMBALANCE

The co-morbidity of ASD and epilepsy could be currently
explained by the most widely accepted theory of brain
hyperexcitability. Various structural and functional defects
of genetic, metabolic, immune or environmental etiologies,
could permanently compromise balance in excitation (E) and
inhibition (I) circuits (74).

The interaction of ASD, epilepsy, and intellectual disability
led to the hypothesis that ASD and epilepsy are outcomes
of similar processes, such as dysregulation of E/I balance,
caused by defects in GABAergic fibers, particularly GABAergic
interneurons maturation, or GABA receptor function (75).
Several genes involved in the function of ion channels that play
key functions in the brain, such as SCN1A or GABAA receptors,
have been implicated in ASD and EEs (25). The increased activity

Frontiers in Psychiatry | www.frontiersin.org 5 September 2021 | Volume 12 | Article 686021

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Milovanovic and Grujicic EEG in ASD Assessment

of glutamate receptor signaling can also lead to hyperexcitability
(76). Primary epilepsy, on the other hand, may affect synaptic
plasticity and cortical connection, predisposing a developing
brain to cognitive delays and behavioral abnormalities (25, 77,
78).

Based on quantitative EEG findings, U-shaped power spectra
profile may be attributed to abnormal functioning of GABAergic
tone in inhibitory circuitry, which influences the functional
and developmental plasticity of the brain and decrease power
of high-frequency and low-frequency bands while increasing
the power of middle-range frequencies (79). This profile
could be caused by affected GABAergic interneurons that
has modulating role on excitatory pyramidal cells (55). The
gamma band activity has been related to dendritic GABAergic
inhibitory dysfunction (80). GABAergic interneurons synapsis
with Nmethyl-D-aspartate receptors (NMDAR) on glutamatergic
neurons causes thalamocortical delta oscillations, which are
regulated by dopaminergic neurons in the thalamus (81).

Functional connectivity studies using EEG coherence
revealed overall local over-connectivity and long-range under-
connectivity, as well as increased power of delta frequency in the
frontal brain region in individuals with ASD (66, 82, 83). Those
findings consistently point to a role of aberrant GABAergic
transmission on neuronal organization and connectivity
especially in the frontal cortex.

There is evidence that GABAergic interneuron growth and
connections in the prefrontal and temporal cortices are altered
in ASD (84), which could lead to E/I imbalance (85). In
post-mortem brain samples of ASD cases, it was found that
neocortical minicolumns, elemental modular microcircuits made
up of excitatory pyramidal neurons surrounded by GABAergic
inhibitory neurons, were reduced, which could results in
inhibitory circuits disruption (84, 86).

GABAergic disorders can affect early development, because
prenatally GABA has the role of excitatory trophic factor, leading
to the growth and binding of dendrites (87). In the mature brain,
GABA acts as an inhibitory transmitter. Defects in GABAergic
signaling, especially shifting the E/I balance toward excitatory
transmission, may thereby explain some of the characteristics of
ASD (88).

DISCUSSION

Although there is a number of etiological hypotheses, one of the
most researched etiological mechanisms in the development of
ASD in the last decade is the E/I imbalance in key cortical and
subcortical neuronal circuits (75, 89, 90). This hypothesis was
first proposed in the seminal work of Rubenstein and Merzenich
in 2003 (74). To date, there is an abundance of evidence that

support this model both from preclinical (90) and in clinical
(89) perspectives.

When processed and analyzed with the most advanced
techniques, the EEG might be a valuable approach in clinical
and scientific studies of ASD neurophysiological substrates.
Nevertheless, the quantitative EEG techniques could be a
useful tool in detecting and possibly measuring dysfunctions
in specific brain regions and neuronal regulation in ASD.
Advances in quantitative EEG analysis in recent years and
well-known epilepsy ASD co-morbidity consistently indicate a
role of aberrant GABAergic transmission that has consequences
on neuronal organization and connectivity especially in the
frontal cortex.

Bosl and colleagues in 2011 provided initial data that
highlighted the role of brain connectivity in early development
(91). The authors investigated EEG complexity in newborns at
risk for ASD compared to normal controls, finding that the
infants-at-risk has less brain complexity. This study shows that
decreased connectivity during early development is linked to the
likelihood of ASD, although no definitive diagnostic outcome
for infants was obtained in this investigation. As a result, it is
uncertain if connectivity has any predictive value for autism risk.

Although, at this point, EEG research in ASD shows
promising results in early detection and prediction of atypical
brain development (92), EEG is still not a reliable clinical
diagnostic tool for ASD due to its low sensitivity or specificity.
However, the data presented in this review strongly suggest
that EEG should be a complementary technique to the existing
methods in diagnostic process.

Also, the available data on this matter indicate that further
research is needed to provide better understanding of different
electrophysiological features of high importance which could fill
in major gaps in understanding pathophysiology and assessment
of ASD. Due to the fact that ASD is a neurodevelopmental
disorder, primary research focus should be on longitudinal
studies which could potentially strengthen the available findings
and also define the developmental stages of ASD. We strongly
believe that combining the new approaches in EEG methodology
with already established ones, could potentially open a new
perspective on ASD assessment and eventually lead to new early
diagnosis, early intervention and prevention strategies.
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