
MINI REVIEW
published: 01 October 2021

doi: 10.3389/fpsyt.2021.687062

Frontiers in Psychiatry | www.frontiersin.org 1 October 2021 | Volume 12 | Article 687062

Edited by:

Roseli Gedanke Shavitt,

University of São Paulo, Brazil

Reviewed by:

Ygor Arzeno Ferrão,

Federal University of Health Sciences

of Porto Alegre, Brazil

Guaraci Requena,

Universidade Federal de Viçosa, Brazil

*Correspondence:

Krisztina Szalisznyó

krisztina.szalisznyo@neuro.uu.se

Specialty section:

This article was submitted to

Mood and Anxiety Disorders,

a section of the journal

Frontiers in Psychiatry

Received: 28 March 2021

Accepted: 01 June 2021

Published: 01 October 2021

Citation:

Szalisznyó K and Silverstein DN (2021)

Computational Predictions for OCD

Pathophysiology and Treatment: A

Review. Front. Psychiatry 12:687062.

doi: 10.3389/fpsyt.2021.687062

Computational Predictions for OCD
Pathophysiology and Treatment: A
Review
Krisztina Szalisznyó 1,2* and David N. Silverstein 3

1Department of Neuroscience and Psychiatry, Uppsala University Hospital, Uppsala, Sweden, 2 Theoretical Neuroscience

Group, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary, 3 Agora for Biosystems,

Sigtuna Foundation, Sigtuna, Sweden

Obsessive compulsive disorder (OCD) can manifest as a debilitating disease with

high degrees of co-morbidity as well as clinical and etiological heterogenity. However,

the underlying pathophysiology is not clearly understood. Computational psychiatry

is an emerging field in which behavior and its neural correlates are quantitatively

analyzed and computational models are developed to improve understanding of

disorders by comparing model predictions to observations. The aim is to more precisely

understand psychiatric illnesses. Such computational and theoretical approaches may

also enable more personalized treatments. Yet, these methodological approaches

are not self-evident for clinicians with a traditional medical background. In this

mini-review, we summarize a selection of computational OCDmodels and computational

analysis frameworks, while also considering the model predictions from a perspective

of possible personalized treatment. The reviewed computational approaches used

dynamical systems frameworks or machine learning methods for modeling, analyzing

and classifying patient data. Bayesian interpretations of probability for model selection

were also included. The computational dissection of the underlying pathology is

expected to narrow the explanatory gap between the phenomenological nosology and

the neuropathophysiological background of this heterogeneous disorder. It may also

contribute to develop biologically grounded and more informed dimensional taxonomies

of psychopathology.

Keywords: OCD, computational modeling, trans-diagnostic perspective, computational psychiatry, personalized

treatment

1. INTRODUCTION

In this review, we assessed the evolution of the computational modeling efforts that aim to study
some aspects of obsessive compulsive disorder (OCD) pathophysiology. The computational and
theoretical investigations support the move from the currently used nosological classification
toward trans-dimensional approaches (1). This trend is motivated by a necessity to gain a deeper
and more biologically grounded understanding of the disease in order to develop personalized
interventions. A more precisely defined micro-behavioral analysis is often able to leverage
specific and more objective biomarkers than the currently used phenomenological observations
in diagnostic procedures. We reviewed computational models which utilize non-linear differential
equation systems, where some aspects of the pathological neural network dynamics can be
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represented by perturbation of the dynamical systems (2–7).
Some supervised and unsupervised machine learning (ML)
methods were integrated in the review, which are utilized for
classification (8–13). A plethora of reinforcement learning (RL)
articles and several diverse computational analysis studies are
also reviewed (14–18). Both model-based and model-free RL
are utilized to examine pathological aspects of goal-directed and
habitual systems in OCD. Under certain circumstances, one
approach may have more explanatory power than the other.
However, the gap of this dichotomic separation between model-
free and model-based learning approaches is perhaps narrower
than suggested in earlier studies. Some recent investigations
point toward more integrated forms of RL, which can exploit
richer representations and can be utilized to better explain
certain aspects of OCD pathology. In this review, we selected
and integrated articles that utilized data-driven approaches, for
example, to predict clinical outcomes or responses to treatment,
as well as theory-driven attempts where the altered information
processing is modeled as the cause of psychiatric symptoms
at the behavioral and neuronal level (19). Table 1 summarizes
the reviewed modeling/computational articles. Figure 1 is a
schematic representation of some of the brain regions, which
were included in the current review.

2. DYNAMICAL SYSTEMS APPROACH

Several computational approaches utilizing dynamical systems
have been developed, which can provide mechanistic insights
about pathological neural dynamics in OCD. In these modeling
frameworks, coupled non-linear differential equation systems
were manipulated and perturbed. The solutions of these non-
linear dynamical systems can exhibit a steep attractor state (e.g.,
fixed-point attractor), which can mimic states of perseveration,
obsessions, and compulsions (2, 3, 46). Rumination or recurring
chains of thought and stereotypical movement patterns were
also modeled with non-linear differential equations where the
solution of the dynamical system results in heteroclinic chains
of meta-stable clusters and possible sequential chains of attractor
basins (20, 21). Maia et al. (54) gave a comprehensive review
on the neuropathological correlates and etiology of childhood
and adult OCD. Verduzco-Flores and colleagues described their
differential equation system as a model of working memory
with increased stability of states or sequences, implicated to be
associated with OCD (4). As a reflection on Verduzco-Flores’
work, Maia pointed out that reduced inhibition does not map
well to any known disturbance in OCD. However, what perhaps
matters in the model is the balance between excitation and
inhibition. Thus, the same pathological dynamics should occur
with increased excitation and that would be consistent with
evidence of glutamatergic hyperactivity (47, 55).

Other computational studies found that changes in the
excitatory and inhibitory balance pushes a cortico-striatal-
thalamo-cortical (CSTC) pathway to states of generalized hyper-
activity. Certain changes in global E/I and specifically in the
local inhibition may trigger network oscillations and generate
hyper-activity throughout the entire CSTC pathway in OCD

(5, 6). This framework was further developed and analyzed
by taking into account the functional and structural network
changes of the CSTC circuit in the schizo-obsessive population
(7). The study predicted the importance of pathological activity
propagation between the ventral and dorsal striatum, and
highlighted other disruptive mechanisms in the CSTC pathway
which could result in pathological repetitive behavior in this
heterogeneous population.

3. SUPERVISED AND UNSUPERVISED ML
APPROACHES

Several computational studies utilizing ML techniques
investigated certain aspects of neuropathophysiology and
symptom phenomenology by analyzing and classifying OCD
patient data. We review some of them.

A study using Random Forest decision trees found that
clinically useful predictions of remission may not require an
extensive battery of measures. A small set of assessments
may efficiently distinguish between higher and lower risk
OCD patients to inform clinical decision-making (9). Relevant
predictors of suicide attempts by OCD patients were examined
with Elastic net regression, a linear combination of Lasso and
Ridge methods. Previous suicide planning, previous suicide
thoughts, lifetime depressive episodes, and intermittent explosive
disorder symptoms were found to be relevant predictors (10).
Applying Support Vector Regression (SVR) identified gray
matter volumes in the cortical-subcortical loops to predict OCD
symptom severity. The left medial orbitofrontal cortex (OFC)
and the left putamen gray matter volume were identified as
neurobiological markers. The same study demonstrated that the
best predictors of the “sexual/religious” OCD dimensions were
the left medial OFC, right lateral OFC, and left anterior cingulate
cortex (ACC) (25). Four different ML algorithms performed well
as compared to multivariate logistic regression, in the prediction
of treatment response to Internet-delivered cognitive behavior
therapy (ICBT) for pediatric OCD treatment. The methods used
were a linear model with best subset predictor selection, Elastic
net (Lasso only), Random Forest, and Support Vector Machine
(SVM) (23). In another integrative study, SVM and naïve Bayes
methods identified predictors of diagnostic outcomes in patients
with early onset OCD (12).

To identify brain regions relevant for OCD diagnosis, bagged
linear SVMs were applied to structural MRI (sMRI) data for
discrimination across 86 OCD patients and 86 control subjects.
39 brain regions were identified showing the largest differences
between OCD patients and healthy controls and 36 of those
were located in the frontal, temporal, and parietal cortices or
in subcortical structures (11). A multivariate SVM method was
also applied to fractional anisotropy of white matter using
diffusion tensor imaging (DTI) on 28 OCD patients and 28
healthy controls. Successful discrimination was based on bilateral
prefrontal and temporal regions, the inferior fronto-occipital and
superior fronto-parietal fasciculi, splenium of corpus callosum,
and the left middle cingulum bundle (24).
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TABLE 1 | Computational modeling studies on obsessive compulsive disorder (OCD) patient groups.

Computational predictions for OCD Modeling methods Reference

Over-stability from glutamatergic over-activity

depth of basins of attraction↑

Coupled differential equations

attractor networks

(2, 3)

Connection abnormality subtypes, periodic orbits Coupled differential equations (5–7)

Sequence stability ↑ network inhibition ↓ Coupled differential equations

complex attractor sequences

(4)

Intermittent dynamical instability, heteroclinic cycles Coupled differential equations (20, 21)

Optimal STN-DBS in treatment-refractory OCD Stochastic differential equations (22)

Identified 4 predictors for suicide attempt Elastic net on clinical and socio-demographic variables (10)

Identified 24 most predictive items for remission Random Forest on clinical data, interviews, questionnaires (9)

Pediatric OCD treatment (ICBT) outcome LR, Elastic net, Random Forest, SVM, linear model (23)

Identified brain regions and discriminating sMRI patterns Bagged SVMs for multivariate feature selection (11)

Patients with/without sensory phenomena LR, KNN, Random Forest, SVM on clinical data (8)

White matter abnormalities Multivariate SVM on DTI data (24)

Identified 9 predictive variables for severity SVM, naïve Bayes on genetic, neurophysiological data (12)

Severity from mOFC, left putamen gray matter volumes SVR on sMRI volumes (25)

Identified 4 trans-diagnostic data-driven groups SNF, Random Forest on behavioral, neuroimaging data (13)

Pathological activation in orbito-striato-thalamo-orbital network ANN with backpropagation (26)

↑ θ power in qEEG→ effect of right frontal rTMS↑ ANN classifier with PSO for EEG analysis (27)

Identified 4 compulsive/impulsive subgroups indicating severity PCA, K-means clustering on self-report questionnaires (28)

CSTC connections ↑ posterior cerebellar connections ↓ Riemann Kernel PCA on rsfMRI FC matrix, XGBoost (29)

Exaggerated cingulate error signals, learning rates ↓ Q-learning fitted to fMRI prediction error responses (30)

Sensitivity to outcome devaluation ↑ LR, RL hybrid of model-free←→ model-based (15)

Goal-directed deficits associated with compulsivity, intrusive thought Using online test, questionnaire data, factor analysis,

LR Elastic net, RL hybrid of model-free←→ model-based

(16)

Model-free habit formation ↑ model-based control ↓

mOFC, caudate gray matter volumes ↓

Model-free SARSA(λ) TD algorithm (habit)

model-based RL algorithm (goal-directed)

(17)

With higher presynaptic dopamine in ventral striatum:

→ model-based coding in lateral PFC ↑

→ model-free coding in ventral striatum ↓

RL hybrid of model-free←→ model-based

habitual←→ goal-directed

(32)

Stimulus-bound preservation ↓ punishment-driven learning ↑

D2/3 agonists & antagonists→ punishment-driven learning ↑

7 RL models using probabilistic reversal learning data

Hierarchical Bayesian model selection

(33)

Treatment strategy when risk of adverse drug effects Meta-analysis, Bayesian hierarchical model (34)

Error control ↑ fronto-cingulate cortex ↑

dACC→ left-DLPFC effective connectivity ↑

DCM, Bayesian model selection

on fMRI data from congruent/incongruent Stroop task

(35)

State transition uncertainty ↑

over-exploratory, over-flexibility

Optimal Bayesian change-point model

Bayesian selective attention model

(36, 37)

Information gathering ↑ decision threshold ↑

delayed urgency signal

Set of Bayesian generative models

on sequential information gathering task (juvenile)

(38)

Dissociation between confidence and action, abandonment of historical

information, reliance on prediction errors ↑

Quasi-optimal Bayesian learning model

on modified predictive-inference task

(39)

4 symptom dimensions in OCD:

Incompleteness, taboo thoughts, responsibility, contamination

2-level confirmatory factor analysis

Bayesian structural equation models

(40)

Impaired transfer across repeated decision episodes

Driven by implicit memory

Bayesian multilevel drift-diffusion model

on dot-motion computer tasks

(41)

On verbal recognition memory, discriminability ↓ between old and new stimuli Bayesian multilevel drift-diffusion model

on verbal computer tasks and questionnaires

(42)

Decision threshold ↑ response times ↑ Hierarchical drift-diffusion model on RDMT (43)

Modulation of right anterior middle frontal gyrus is effective

Stimulation of specific fiber pathways at lower amplitude may be superior

Tractography-activation models

Electric field models of DTI-guided ALIC-NA DBS

(44)

SWN properties: β band ↓ θ band with poor insight ↓ SWN graph theoretical analysis of resting-state EEG (45)

(Continued)
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TABLE 1 | Continued

Computational predictions for OCD Modeling methods Reference

Overly steep attractor basins Review (46)

Excitatory/inhibitory imbalance, inhibition not decreased Review (47)

Heterogeneity, local stim. of networks, factors for rTMS in OCD Review (48)

Brain networks in flexibility deficits Review (49)

↑ habit formation←→ goal-directed control ↓

Compulsion→ Obsession (COD)

Review (50, 51)

Intermediate systems between model-free←→ model-based Review (18)

Inability to switch between goal directed←→ habitual systems Review (52)

Habit formation and goal-directed deficits Review (1)

Disruptions of complex reasoning systems Review of juvenile OCD (53)

References highlighted in various colors represent method classes: dynamical systems; supervised and unsupervised ML algorithms; reinforcement learning approaches;

Bayesian, drift-diffusion and other methods; review articles, respectively. STN-DBS denotes sub-thalamic nucleus (STN) and deep brain stimulation (DBS), ALIC-NA denotes

anterior limb of the internal capsule (ALIC) and the nucleus accumbens (NA). ICBT, Internet-delivered cognitive behavior therapy; LR, logistic regression; SVM, support vector machine;

KNN, K-nearest neighbor; DTI, diffusion tensor imaging; mOFC, medial orbitofrontal cortex; SVR, support vector regression; sMRI, structural MRI; SNF, similarity network fusion; qEEG,

quantitative EEG; ANN, artificial neural network; PSO, particle swarm optimization; PCA, principal component analysis; CSTC, cortico-striatal-thalamo-cortical; rfsMRI, resting-state fMRI;

FC, functional connectivity; RL, reinforcement learning; TD, temporal difference learning; dACC, dorsal anterior cingulate cortex; DCM, dynamic causal modeling; RDMT, random-dot

motion task; SWN, small world network.

FIGURE 1 | Summary diagram of brain regions which were included in obsessive compulsive disorder (OCD) computational studies. The included studies are cited in

a box next to the brain region. ACC, anterior cingulate cortex; PFC, prefrontal cortex; mOFC, medial orbitofrontal cortex; DLPFC, dorsolateral prefrontal cortex; CSTC,

cortico-striatal-thalamic-cortical; VTA, ventral tegmental area.

OCD is a heterogeneous disorder with varied symptom
presentations, each of which may relate to distinct
neuropsychological features. Traditionally, this heterogeneity
was approached by using a symptom-based evaluation, but
an alternative can involve focusing on underlying symptom
motivations (8). Note that 60–70% of OCD patients also can
experience sensory phenomena, consisting of uncomfortable
sensations or perceptions that may drive compulsions.
Supervised ML methods (Random Forest, SVM, and K-
nearest neighbor) were tested in one set to discriminate
between OCD patients and healthy controls and another set to
discriminate between OCD patients with sensory phenomena,
without sensory phenomena and healthy controls. All three ML
methods performed better than logistic or multimodal regression

on the same datasets. Decision-making measurements best
distinguished between groups based on sensory phenomena (8).

With unsupervised learning, a combination of Principle
Component Analysis (PCA) and a K-means clustering algorithm
was utilized to separate subgroups in the compulsive-impulsive
dimensions. Clustering converged to yield four subgroups:
low compulsivity–low impulsivity group; two groups showing
roughly equal clinical severity, but with opposing dimensions
(i.e., high compulsivity and low impulsivity, and vice versa);
and the fourth with both high compulsivity and impulsivity
and recording the highest clinical severity. The largest cluster
of individuals with OCD was characterized by high impulsivity
and low compulsivity (28). The identification of these subgroups
might have potential implications for OCD treatment.
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A recent study based on multi-level brain imaging
and behavioral data from children using the Random
Forest classification algorithm identified four new brain-
behavior groups cutting across neurodevelopmental
disorders such as autism spectrum disorder, OCD, and
attention-deficit/hyperactivity disorder (13). It was demonstrated
that children within these groups had more similar profiles on
brain and behavioral measures than found among conventional
diagnostic groupings (13).

4. REINFORCEMENT LEARNING:
GOAL-DIRECTED AND HABITUAL
SYSTEMS

Another class of models were developed to simulate goal-directed
behavior, where OCD patients may have impairment. Deficits in
goal-directed control implies vulnerability for developing rigid
habits (16). These models are usually computationally formalized
as a type of RL (56) and can be regarded formally as dynamical
systems as well (46).

Model-based RL learns to represent the environment for goal-
directed predictions and allows learning to guide actions most
accurately, at the expense of high computational and energy
costs. Model-free RL optimizes dynamics and heuristics for
habit learning without external representations and it demands
less computational and memory resources, but is inflexible and
generalizes poorly (15).

In healthy cohorts, individual differences in model-based
learning predicted sensitivity to outcome devaluation, suggesting
that an associative mechanism underlies a bias toward habit
formation. But no evidence was found of a causal relationship
between model-free learning and devaluation sensitivity (15).

Most previous work focused on distinguishing between only
two RL systems: model-based and model-free RL (14), as
prototype extremes. Recent evidence shows that there are likely
several parallel systems present in the brain, which are involved
in OCD pathology and their dynamics is best captured by a
mixture of RL algorithms (18, 53). It has been suggested that
model-free learning might simply be an imperfect formalization
of habit-learning (1). A review article proposed that inflexible
reliance on habit in OCD may reflect a functional weakness
in the mechanism for context-appropriate dynamic arbitration
between model-free and model-based decision-making (52).
Thus, re-consideration is needed about this model-free/model-
based dichotomy. For example, it was found that model-free
spatial-motor outcome-irrelevant learning generalized across
distinct state features (31, 53). In a meta-study of juvenile
OCD (53), subjects had difficulties in model-based complex
decision-making and set shifting. However, unlike adults, there
was only limited evidence for pathologies such as distorted
habit formation.

Model-based (over model-free) strategies were found to
be positively correlated with gray matter volume in the
ventromedial prefrontal cortex (PFC) and caudate, regions that
are critical for goal-directed control (15, 17). Dysfunctional
caudate hyperactivity was shown in OCD patients when

performing habits (15, 57). In a healthy population, ventral
striatal presynaptic dopamine levels reflected a balance in
behavioral and neural signatures of model-free and model-based
control. Higher presynaptic dopamine levels were associated with
stronger coding of model-based information in lateral PFC and
diminished coding of model-free prediction errors in ventral
striatum (32).

In adults, stimulant addiction and OCD were associated with
a significant shift in habit formation and this abnormality can
be quantified as model-free learning. Lower gray matter volumes
in the caudate, medial OFC, and lateral prefrontal cortices
were associated with a greater shift toward model-free habit
formation (17).

5. BAYESIAN APPROACHES FOR OCD

A plethora of studies have built on the idea that the brain
implements Bayesian inference. This can be formalized in
a Bayesian state-space model that aims to infer the current
state of the environment by combining prior knowledge
and current evidence, weighting each by its relative
uncertainty. With this, learning is governed by the balance
between uncertainty on state transitions and observational
uncertainty (36).

Some theoretical works analyzed the assumption that OCD
patients have excessive uncertainty regarding state transitions. In
this case, high transition uncertainty results in increased relative
weighting of prediction errors. This could explain findings
of increased responses to predictable stimuli. The increased
weighting of prediction errors seems more likely to be the
result of high transition uncertainty than underestimation of
sensory noise. Increased weighting of prediction errors are
related to perceiving the world as more unstable. Further, the
above alterations could account for sensory over-responsiveness
in OCD, as well as the experience of intrusive thoughts.
Overweighting of sensory data often implies an impairment in
processing, as it leads to a failure of the use of prior information
and less attenuation of sensory noise. As a further consequence,
this can manifest in patients’ experiences that actions were not
performed correctly, obsessional thoughts, compulsions, and
sensory over-responsiveness (37, 39).

Severe cognitive flexibility impairments in OCD have been
described in several studies (49), although other computational
works and meta-analysis pointed out that inflexibility in OCD
is controversial (36, 58). A decreased reliance on the past,
excessive uncertainty and an assigned lower weight to prior
experience has been shown to lead to over-exploratory behavior.
Also, OCD patients require longer response times, higher
decision boundaries and more evidence in perceptual contexts
with high uncertainties (43). Somewhat counterintuitively, OCD
symptoms correlated with over-flexibility in another set of
computational studies (36). Excessive uncertainty and distrust
of past experiences rather than perseveration were identified
and these results might challenge pre-conceptions of OCD as a
disorder of inflexibility (36).
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In a combined experimental and computational study, it was
shown that OCD patients develop an accurate internal model
of the environment but they use it less to guide behavior.
This suggests a cognitive architecture that separately interprets
the environment independently of performance (39). Different
memory systems separately influence repeated decisions. In a
study of perceptual dot motion decisions, Solway et al. found
that both the actual choice made during the first decision episode
as implicit memory and the choice people explicitly remember
making influenced the subsequent decision. Transfers specifically
driven by implicit memory were reduced in individuals with
higher levels of OCD symptoms (41). Verbal recognition
memory was also investigated as a function of OCD symptoms,
using a drift-diffusion model selected with model evidence
using a multi-level Bayesian framework (42). It was found that
discriminability defined as how well one is able to tell the
old vs. new stimuli apart was reduced as a function of OCD
symptoms, and that the degree of impairment was larger for
easier recognition decisions (42).

6. ADDITIONAL COMPUTATIONAL
ANALYSIS OF NEUROPATHOLOGICAL
CORRELATES

Enhanced activation in the fronto-cingulate system in OCD
patients and task-related modulation of effective connectivity
from the dorsal anterior cingulate cortex (ACC) to left
dorsolateral PFC was demonstrated by using dynamical causal
modeling (DCM) on patient fMRI data. These findings
implicated an overactive error control system in OCD (35).
Another method was utilized to characterize patients with OCD
based on resting-state fMRI. The Riemann kernel PCA method
extracted features from functional connectivity matrices and
demonstrated stronger connections between basal ganglia and
cortex and weaker cerebellum-related connections in OCD (29).

6.1. Insight
Patient insight in OCD is crucial. The diagnostic status of poor
insight is ambiguous but is a key clinical factor that influences
therapy outcome (59). Poor insight has been associated with
earlier age-at-onset, longer duration of illness, and a more
chronic course of OCD (60). Checking-related uncertainty was
correlated with the level of insight in OCD patients (61).
Information gathering was found to be related to indecisiveness,
but not symptom severity in OCD (38). This absence of a
correlation with symptom severity was implicated to be caused
by an imprecise estimate of the OCD severity, which was related
to a lack of insight in juvenile OCD (38).

OCD patients with good and poor insight (OCD-GI and
OCD-PI) have partly distinct brain structural alterations (62).
OCD-PI patients have decreased cortical thickness in the left
superior frontal gyrus, left anterior ACC, and right inferior
parietal gyrus, compared to both OCD-GI and healthy controls
(62). It was also indicated that the OCD-GI group had
significantly increased functional connectivity between the right
anterior insula (AI) ←→ left dorsal anterior cingular cortex

(dACC) than healthy controls (63). The connectivity alterations
between the AI←→ OFC and AI←→ ACC may be important
neural correlates of insight in OCD and even in schizophrenia
(7). Alterations have been demonstrated at the theta (θ) EEG
band in a small-world network framework and these changes
existed only in the OCD-PI patients but not in the OCD-
GI patients. Thus, poor insight OCD may be associated with
disruptive functional integrity in the brain functional network in
the theta band (45).

6.2. Co-morbidity and Trans-dimensional
Analysis
Trans-dimensional biologically grounded approaches to OCD
symptoms are supported by the obvious existence of OCD
sub-types. A shift from a categorized disease framework to
a dimensional one may enable more personalized treatment
choices (16). We list some examples of such approaches.

RL models were able to capture certain behavioral
microstructure differences between stimulant use disorder
(SUD) and OCD. Stimulus-bound perseveration is a measure of
how a subject is responding to a repeated stimulus, irrespective of
outcome. This measure was found to be significantly increased in
SUD, but decreased in OCD, compared to controls. Individuals
with SUD exhibited reduced reward-driven learning, while
both the SUD and OCD groups showed increased learning
from punishment. Dopamine receptor D2/3 agonists and
antagonists had similar effects on OCD groups, as both increased
punishment-driven learning (33). In addition, a pharmacological
fMRI study of RL has shown an abnormally increased signaling
of prediction errors in the anterior ACC. This effect was reduced
by both a D2/3 agonist and an antagonist (30). Modeling results
did not demonstrate the same effects but did show a marginally
significant reduction in prediction error learning rates in OCD
patients (30).

Another aspect of behavioral microstructure was analyzed
by 2-level factor modeling in OCD patients. This modeling
study found that heterogeneous symptoms (as quantified, e.g., in
Yale-Brown Obsessive Compulsive Scale) reflect four underlying
symptom dimensions with deviations from previous results (40).

Obsessions and compulsions might independently contribute
to the pathophysiology (1, 16). An alternative possibility posits
that rather than goal-directed avoidance behaviors, compulsions
derive from manifestations of excessive habit formation (50, 51),
thus obsessive thoughts may develop as a result of compulsive
behavior. It has even been suggested that the acronym OCD be
rearranged to COD (50). Compulsivity and impulsivity might
be only partially independent dimensions, considering that
patients with substance abuse can transition from impulsivity
to compulsivity (16). A “Compulsive Behavior and Intrusive
Thought” dimension has been described as deficits in goal-
directed control and presented in multiple psychiatric disorders
such as OCD, addiction, and eating disorders (16).

The neuropathophysiology of co-morbid OCD and
schizophrenia was examined in a phenomenological
computational model (7). It was found that cortical self-
inhibition alterations (e.g., SSRI treatment) together with
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dopaminergic input to the striatum (e.g., anti-dopaminergic
medication) has non-trivial complex effects on the network
oscillatory behavior, with an optimal modulatory window.
Also, the modeling results predicted that as a consequence of
over-compensation of the primary pathology, emergence of the
other disorder might occur (7).

6.3. Personalized Computational
Approaches
The clinical implications of certain computational results suggest
possible development of personalized medicine to identify and
optimize specific therapies for individual OCD patients. We
list some of those efforts. Pre-treatment functional connectivity
patterns within the default mode network and visual network
significantly predicted the effect of cognitive behavioral therapy
(CBT) and post-treatment OCD severity. These networks
were stronger predictors than pre-treatment clinical scores
(64). Abnormally strong cingulate signaling was measured
using fMRI during reward processing with OCD patients.
Bidirectional re-mediation by dopaminergicmodulation suggests
that exaggerated cingulate error signals in OCD may be of
dopaminergic origin (30).

Transcranial magnetic stimulation (TMS) has shown promise
as an adjunct treatment for the symptoms of OCD (48).
Quantitative EEG was found to be helpful for predicting TMS
treatment response for OCD patients. Using artificial neural
network (ANN) classifiers with Particle Swarm Optimization
(PSO) it was found that repetitive TMS responders had higher
pre-treatment theta band power at all electrodes than did the
non-responders (27).

Therapy refractory OCD patients have benefited from
deep brain stimulation (DBS). Optimal therapeutic results are
associated with the activation of distinct fiber pathways. The
stimulation of the right anterior middle frontal gyrus (DLPFC)
has shown a positive response. Focused stimulation of specific
fiber pathways, which allows stimulation with lower amplitudes,
may be superior to activation of a wide array of pathways,
typically associated with higher stimulation amplitudes (44).
Closed-loop neuromodulation is an emerging field in DBS.
Model-based prediction was proposed for an optimal sub-
thalamic nucleus (STN) DBS on treatment-refractory OCD
with a combination of a stochastic dynamical model and
microelectrode recording datasets (22).

A recent meta-analysis using a Bayesian hierarchical model
framework examined adverse effects of selective serotonin
reuptake inhibitors (SSRIs) and serotonin-norepinephrine
reuptake inhibitors (SNRIs) treatments in pediatric OCD and
anxiety disorders. It was found that compared with SNRIs,
SSRIs are more likely to produce activation such as insomnia,
irritability, hyperactivity, and impulsivity. The results suggested
that although SSRIs are superior to SNRIs and the treatment
of choice, for those patients who become activated on SSRIs,
SNRIs might represent a good second choice given their reported
efficacy and lower risk of activation (34).

7. LIMITATIONS

There are computational contributions that were not included
in the current work. The contents of the obsessive-compulsive
symptoms (sexual, religious, aggressive, contamination) were
only partially explored. Computational work with brain histology
was also excluded. We did not include comprehensive aspects of
the developmental trajectories of the disease (age of onset, etc.).
Further reviews are necessary to follow and categorize this rapidly
growing field.

8. CONCLUSION

To summarize, we reviewed some of the computational
modeling efforts which were developed to explain certain
aspects of OCD pathophysiology and symptomology. These
models span from mechanistic dynamical systems approaches,
across ML techniques which aim to integrate and classify
patient data (including supervised, unsupervised models,
RL), to include Bayesian model selection frameworks. We
related the modeling evidence and results to diagnostic
procedures, co-morbid states, and therapeutical consequences.
In conclusion, computational psychiatry has powerful
methods, which can arm psychiatrists with more quantitative
tools (46). Although it is challenging to move from a
phenomenologically based thought process to a dynamical
approach, we claim that a phase transition in understanding
psychiatric disease as dynamical pathologies is inevitable.
To this end, computational/theoretical frameworks have
been synthesized to capture how OCD symptoms can be
further analyzed from a trans-diagnostic and computational
perspective (1).
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