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A notable characteristic of autism spectrum disorder (ASD) is co-occurring deficits in

low-level sensory processing and high-order social interaction. While there is evidence

indicating detrimental cascading effects of sensory anomalies on the high-order cognitive

functions in ASD, the exact pathological mechanism underlying their atypical functional

interaction across the cortical hierarchy has not been systematically investigated.

To address this gap, here we assessed the functional organisation of sensory and

motor areas in ASD, and their relationship with subcortical and high-order trandmodal

systems. In a resting-state fMRI data of 107 ASD and 113 neurotypical individuals,

we applied advanced connectopic mapping to probe functional organization of primary

sensory/motor areas, together with targeted seed-based intrinsic functional connectivity

(iFC) analyses. In ASD, the connectopic mapping revealed topological anomalies (i.e.,

excessively more segregated iFC) in the motor and visual areas, the former of which

patterns showed association with the symptom severity of restricted and repetitive

behaviors. Moreover, the seed-based analysis found diverging patterns of ASD-related

connectopathies: decreased iFCs within the sensory/motor areas but increased iFCs

between sensory and subcortical structures. While decreased iFCs were also found

within the higher-order functional systems, the overall proportion of this anomaly tends

to increase along the level of cortical hierarchy, suggesting more dysconnectivity in

the higher-order functional networks. Finally, we demonstrated that the association

between low-level sensory/motor iFCs and clinical symptoms in ASD was mediated by

the high-order transmodal systems, suggesting pathogenic functional interactions along

the cortical hierarchy. Findings were largely replicated in the independent dataset. These

results highlight that atypical integration of sensory-to-high-order systems contributes to

the complex ASD symptomatology.
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INTRODUCTION

The major symptoms defining autism spectrum disorder
(ASD) include persistent deficits in social communication and
interaction, and restricted/repetitive patterns of behaviors and
interests, all of which either fully or at least partly involve
high-order transmodal cortical regions (1–11). Because of such
relevance for various phenotypes, high-order cognitive systems
have long been a focus of ASD research in the past decades,
providing a basis to construct seminal theories centered on
atypical theory of mind (12, 13), or executive dysfunction (14–
16). Given their importance, however, there are also earlier
phenotypic features that can help with a diagnosis of ASD –
i.e., low-level sensory or perceptual anomalies (17–24). These
symptoms have been documented across all sensory modalities
e.g., vision (25), auditory (26), touch (27), taste (28, 29), and smell
(30, 31), affecting up to 95% of children with ASD as a form of
either hypo- or hyper-sensitivity or both (32, 33). Indeed, the
most up-to-date edition of the Diagnostic and Statistical Manual
of Mental Disorders (DSM-5) includes these sensory symptoms
as a part of autism phenotypes (34), suggesting their clinical
importance to characterize this pervasive condition.

Accumulating evidence indicates that atypical development
of early primary regions is not limited to sensory-related
problems, but may cascade into the development of higher-order
transmodal functional systems (35, 36). Low-level sensory areas
such as visual and auditory cortices have a critical period during
their brain development (37–39), for which abnormal synaptic
connections or neurotransmitter system dysfunction may affect
the formation of a large-scale cortical hierarchy (40–42). Previous
neuroimaging studies in ASD provide supportive findings, with
a demonstration of atypical functional changes in multiple
sensorimotor and subcortical areas as well as in their connections
toward the high-order brain networks in infants at high risk for
ASD (43–46). In parallel, several studies also demonstrated that
aberrant responses to sensory stimuli reliably predict symptom
severity at a later stage in ASD (19, 20, 47). These results,
together with perception-related theoretical accounts for ASD
such as predictive coding (48) or weak central coherence (49),
highlight the potential mechanisms involving atypical functional
interplay between the low-level sensory (bottom-up sensory
signal transmission) and higher-order transmodal (top-down
modulation) systems in ASD. Despite the significance of this
model, how the interaction between these hierarchically distinct
two subsystems contribute to each behavioral symptom of ASD
remains poorly understood, mainly because of lack of analytical
tools to integrate multiple brain systems and behaviors in a
mechanistically meaningful way.

Over the last two decades, resting-state functional magnetic
resonance imaging (rs-fMRI) has been instrumental to
elucidate large-scale canonical networks of intrinsic functional
connectivity and their relationship to complex human behaviors
(50, 51). Providing testable measurements to probe the
macroscale functional organization without requiring explicit
tasks during the scan, rs-fMRI became one of the most efficient
tools across multiple research domains, especially for clinical
neuroscience which has been actively seeking the reliable
biomarkers (52). Beyond conventional approaches focusing

on connectivity profiles of specific regions, recent methods
increasingly characterize distributed functional networks (53–
55). A recent study of our group utilizing a dimensionality
reduction technique on rs-fMRI data revealed cortex-wide
gradients that describe a continuous transition of connectivity
profiles along the multiple cortical hierarchy axes including
sensory-to-transmodal and visual-to-sensorimotor streams (55).
Notably, mapping such topological organization is not confined
to the whole brain space but has been also applied to pre-
specified cortical regions of interest corresponding to domain
specific processes. Recapitulating a biologically meaningful
functional organization of visual (54), somatosensory (54, 56),
thalamus (57), hippocampus (58, 59), and insula (60, 61) areas,
this approach, called “connectopic mapping,” becomes a versatile
tool to probe the details of local circuit systems in terms of their
intrinsic functional connectivity organization.

Here, we combined connectopic mapping and seed-based
analyses tomap biological substrates underlying the co-occurring
deficits of low-level sensory/motor and high-order behavioral
symptoms in ASD. The current study is grounded on the
premise that normative sensory development will provide the
foundational building blocks for the formation of higher-order
cortical systems in the later developmental stages. Based on
this notion, we focused on four major sensory/motor systems,
namely, sensory (S1), motor (M1), visual (V1) and auditory
(A1) cortices, and investigated their relationship to high order
transmodal systems as well as subcortical structures. Our
framework was 3-fold: (i) We first established the functional
organization of each targeted sensory/motor area in neurotypical
(NT) and ASD groups by comparing their connectopic gradient
maps. In ASD, we further, examined the association of each
gradient with key behavior symptoms. (ii) After assessing the
functional topology of each sensory/motor area, we compared
the detailed seed-based functional connectivity profiles of the
sensory/motor and subcortical areas between ASD and NT.
Likewise, functional connectivity within high-order networks
was also investigated to delineate a full picture of functional
relationships between the systems within the cortical hierarchy.
(iii) Finally, based on these results, we conducted a series
of integrative mediation analyses to examine the impact
of sensory/motor networks on high-order organization and
consequently, their collective role in the manifestation of
behavioral symptoms in ASD. We hypothesized that (i) the
ASD group will show atypical functional gradient profiles
across multiple sensory/motor areas, (ii) given recent studies
demonstrating disrupted cortical hierarchies in autism (50), their
high-order transmodal systems and relationship with low-level
sensory/motor networks will also reveal atypical representations
of connectivity, and (iii) altered functional integration between
those subsystems may mediate the key behavioral symptoms
in ASD.

MATERIALS AND METHODS

Subjects
We extracted two waves of datasets from the Autism Brain
Imaging Data Exchange repositories (ABIDE-I & II; http://fcon_
1000.projects.nitrc.org/indi/abide/) for the purpose of discovery
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TABLE 1 | Demographic and clinical characteristics of the ABIDE-I dataset.

ASD (n = 107) NT (n = 113) Statistical test

Mean (SD) Mean (SD) t p

Age (years) 20.9 (8.03) 19.3 (7.31) 1.48 0.14

Mean FD 0.11 (0.10) 0.10 (0.11) 0.40 0.69

ADOS-total 12.7 (3.68) NA NA NA

ADOS-repetitive behavior 2.02 (1.50) NA NA NA

ADOS-communication 4.25 (1.51) NA NA NA

ADOS-social 8.40 (2.65) NA NA NA

ASD, autism spectrum disorder; NT, Neurotypical control; SD, standard deviation;

FD, framewise displacement; ADOS, Autism Diagnostic Observation Schedule; NA,

not available.

and replication of findings. Inclusion criteria were similar to
our previous studies (62–64). Briefly, the data acquisition sites
were selected only when there were more than 10 individuals per
group, including both children and adults with ASD as well as
neurotypical (NT) controls. Due to the low prevalence of females
in the ABIDE-I dataset, all analyses were restricted to males.
After quality control, a total of 220 individuals were included in
the final analyses set from three sites (107 ASD [age, mean ±

SD = 20.9 ± 8.03], 113 age-matched NT [age = 19.3±7.31]):
(i) NYU Langone Medical Center (NYU, 35/51 ASD/NT); (ii)
University of Utah, School of Medicine (USM, 52/40 ASD/NT);
(iii) University of Pittsburg, School of Medicine (PITT, 20/22
ASD/NT). For ABIDE-II, inclusion criteria were similar except
that females were included because of their high rate of data
availability (n = 19). A total of 116 individuals from 3 sites
were included (57 ASD, 59 NT): (i) NYU Langone Medical
Center (NYU, 29/19 ASD/NT); (ii) Institut Pasteur/Robert Debré
Hospita (IP, 11/21 ASD/NT); (iii) Trinity Centre for Health
Sciences, Trinity College Dublin (TCD, 17/19 ASD/NT). The
ASD and NT groups in this dataset showed a difference in their
age (ASD: mean ± SD = 12.1 ± 5.89, NT: mean ± SD = 16.5 ±
8.21; t = 3.3, p < 0.001). Therefore, in all replication analyses, we
included both age and sex as nuisance covariables. Moreover, we
assessed the reproducibility of our main findings while excluding
female subjects from the replication dataset. Individuals with
a diagnosis of Autistic, Asperger’s, or Pervasive Developmental
Disorder Not-Otherwise-Specified were all included in the ASD
group. Diagnosis was established based on a structured or
unstructured in-person interview by an expert clinician using
the Autism Diagnostic Observation Schedule (ADOS) and/or
the Autism Diagnostic Interview-Revised (ADI-R). Total scores
along with those for reciprocal social interactions (ADOS-
S), communication/language (ADOS-C), and restricted/repeated
behaviors (ADOS-R) were provided in the ABIDE phenotypic
dataset (65). Classic total ADOS scores were calculated by adding
the reciprocal social interaction and communication/language
subscores (66). Demographic and clinical characteristics for
ABIDE-I (Table 1) and ABIDE-II (Supplementary Table 1),
as well as participant profiles based on ADOS modules
(Supplementary Table 2) are provided.

MRI Data Acquisition
Data was acquired on Siemens (NYU, PITT, USM) or Philips (IP,
TCD) 3T MRI scanners across five different sites.

At NYU, Allegra with 3D-TurboFLASH was used for T1-
weighted (T1w) data acquisition (matrix = 256 × 256; 1.3 × 1.0
× 1.3 mm3 voxels; TR = 2530ms; TE = 3.25ms; TI = 1100ms;
flip angle= 7◦), and 2D-EPI was used for rs-fMRI (matrix= 80×
80; 180 volumes, 3.0× 3.0× 4.0 mm3 voxels; TR= 2,000ms; TE
= 15ms; flip angle = 90◦). At PITT, Allegra with 3D-MPRAGE
was used for T1w data acquisition (matrix = 269 × 269; 1.1
× 1.1 × 1.1 mm3 voxels; TR = 2100ms; TE = 3.93ms; TI =
1000ms; flip angle = 7◦) and 2D-EPI was used for rs-fMRI (200
volumes, 3.1 × 3.1 × 4.0 mm3 voxels; TR = 1500ms; TE =

35ms; flip angle = 70◦; matrix = 64 × 64). At USM, T1w data
were acquired on a TrioTim using 3D-MPRAGE (matrix = 240
× 256; 1.0× 1.0× 1.2 mm3 voxels; TR= 2300ms; TE= 2.91ms;
TI = 900ms; flip angle = 9◦) and 2D-EPI for rs-fMRI (matrix
= 64 × 64; 240 volumes; 3.4 × 3.4 × 3.0 mm3 voxels; TR =

2,000ms; TE = 28ms; flip angle = 90◦). At TCD, Achieva with
3D-MPRAGE was used for T1w data acquisition (matrix = 256
× 256; 0.9× 0.9× 0.9 mm3 voxels; TR= 3000ms; TE= 3.90ms;
TI = 1150ms; flip angle = 8◦) and 2D-EPI for rs-fMRI (matrix
= 80 × 80; 210 volumes; 3.0 × 3.0 × 3.2 mm3 voxels; TR =

2,000ms; TE= 27ms; flip angle= 90◦) at TCD. At IP, data were
acquired on Achieva using 3D-MPRAGE for T1w (matrix = 240
× 240; 1 × 1 × 1 mm3 voxels; TR = 2500ms; TE = 5.60ms;
flip angle = 30◦) and 2D-EPI for rs-fMRI (matrix = 64 × 63;
85 volumes; 3.59 × 3.65 × 4 mm3 voxels; TR = 2700ms; TE =

45ms; flip angle= 90◦).

MRI Processing
Structural MRI
T1w images were processed with FreeSurfer (v5.1; http://surfer.
nmr.mgh.harvard.edu/) to perform intensity normalization,
skull stripping, registration to stereotaxic space, and tissue
segmentation. White and pial surfaces are reconstructed by
fitting a triangular surface tessellation and going through
automated topology correction and surface deformation. These
surfaces are inflated and then spherically registered to an atlas,
fsaverage, with regards to the gyral and sulcal curvature.

rs-fMRI
rs-fMRI data already preprocessed by the Configurable
Pipeline for the Analysis of Connectomes (C-PAC; https://
fcp-indi.github.io/) were provided from the Preprocessed
Connectomes initiative (http://preprocessed-connectomes-
project.org/abide/). Briefly, preprocessing included slice-
time correction, head motion correction, skull stripping,
and intensity normalization. Effects of head motion, white
matter and cerebrospinal fluid signals were statistically
removed using CompCor (67). Following band-pass filtering
(0.01–0.1Hz), rs-fMRI data were registered to the MNI152
standard space using linear and non-linear transformations.
After verification of surface alignment, individual rs-fMRI
data were interpolated along the corresponding mid-
thickness surfaces and resampled to the Conte69 template
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(https://github.com/Washington-University/Pipelines). Surface-
based spatial smoothing was applied with a 5mm full width at
half maximum kernel.

Connectopic Mapping of Low-Level
Sensory/Motor Regions
Regions of Interest
Connectopic mapping targeted four primary sensory/motor
areas (i.e., M1, S1, V1, A1). Three of them (i.e., M1, S1, A1) were
derived from the Desikan-Killiany (DK) atlas (https://surfer.nmr.
mgh.harvard.edu/fswiki/CorticalParcellation), where M1 and S1
correspond to the precentral and postcentral gyri, respectively,
while A1 consisted of the transverse temporal and superior
temporal gyri. V1 was delineated from a separate Brodmann
Areas (BA) atlas, (https://surfer.nmr.mgh.harvard.edu/fswiki/
BrodmannAreaMaps) to accurately capture the primary visual
cortex corresponding to BA17 (Figure 1A).

Connectopic Mapping
The connectopic map represents how the vertex-wise
connections of intrinsic functional connectivity (iFC) between
the targeted sensory/motor area and the rest of neocortex
vary topographically within the given ROI. The procedures
to compute this map consist of two steps, a construction
of a cortex-wise similarity matrix based on the functional
connectivity profile followed by dimensionality reduction based
on Laplacian Eigenmaps. Details can be found in Haak et al.
(54). To reduce the computational cost during the calculation
of similarity matrices, we first performed a lossless reduction
of the functional time-series in the rest of the neocortex
(outside the targeted sensory/motor region) using singular
value decomposition (= # of time-series × # of eigenvectors).
We then correlated this neocortical timeseries to those of
the target sensory/motor area (= # of vertices at the given
sensory/motor area × # of eigenvectors), which was in turn
used to construct a similarity matrix with the η

2 coefficient.
This matrix represents the vertex-wise connectopic similarity
between the sensory/motor area and the rest of the brain. For the
second step, the algorithm for Laplacian eigenmaps was applied
to the similarity matrices, in order to obtain a representation
of the dominant modes of change in iFC across the ROIs. We
used the generalized Procrustes analysis (https://brainspace.
readthedocs.io/en/latest/) to align these resultant connectopic
components of each individual (target) to a group-level gradient
template (source) that was derived from an average connectivity
matrix comprised of NT individuals.

Seed-Based Functional Connectivity
Networks
While the connectopic gradient approach effectively captures the
regional topology of functional organization in a given system,
it does not necessarily elucidate detailed pairwise connectome-
level contribution to the macroscopic functional network. To
achieve that, we stratified the whole brain into the low-level
sensory/motor, subcortical and high-order transmodal systems,
and assessed their interaction in the following systematic order:
(i) within sensory/motor areas, (ii) between sensory/motor and

subcortical areas, and (iii) within high-order transmodal areas.
With these stratified brain systems, we performed a targeted seed-
based connectivity analysis, in which individual iFC matrices
were constructed by correlating the functional time-series across
the predefined parcels. The resultant correlation values were r-to-
z transformed. To obtain the boundaries of these parcels, we used
the Yeo-Krienen 17 (Yeo-17) network atlas [Figure 3C; (68)].

Low-Level Functional Networks
As the original Yeo-17 network atlas merged the auditory
cortex into the somatomotor area without distinction, the
boundary of the parcels for low-level areas had to be modified
by intersecting them with the ROIs used for the connectopic
mapping (i.e., DK & BA atlases; Figure 1A). Specifically, a
total of 7 parcels for each hemisphere was included as primary
sensory/motor networks. For the first 4 parcels (M1Upper,
M1Lower, S1Upper, S1Lower), the somatomotor networks from
the Yeo-17 atlas, which are originally subdivided into two
networks (upper and lower) along the dorsoventral axis, were
overlayed on the precentral (M1) and postcentral (S1) cortices
corresponding to the DK atlas. This procedure yields parcels
that closely reflect the functional topological organization (based
on Yeo17 atlas) within the anatomically defined boundaries
of M1 and S1 (from the Desikan-Killiany atlas). Similarly,
the next 2 parcels (V1Central and V1Peripheral) were delineated
by overlaying the central and peripheral visual networks
from the Yeo-17 atlas on the V1 cortex based on the BA
atlas. The final parcel, auditory cortex (A1), was derived
from the DK atlas including the transverse temporal and
superior temporal gyri. Together with subcortical structures
including the thalamus, caudate, pallidum and putamen,
which parcels were derived from the Human Connectome
Project parcellation (69, 70), this sensory/motor-subcortical
network resulted in a 22 × 22 functional connectivity matrix
(7 × 2 bilateral sensory/motor areas + 4 × 2 bilateral
subcortical structures; Figure 2).

High-Order Functional Networks
The parcels from the original Yeo-17 network atlas, except
for the primary sensory/motor areas, were employed to
construct the high-order iFC matrix. As a result, a 26 ×

26 matrix was calculated including the following high-
order networks: dorsal attention (DAA, DAB), ventral
attention (VA), salience (Sal), frontoparietal control
(ConA, ConB, ConC), default mode network (DMNA,
DMNB, DMNC, DMND), and limbic networks (LimA,
LimB) (Figure 3C).

Statistical Analysis
Connectopic Gradients
Functional connectopic maps for each sensory/motor region
were statistically compared between ASD and NT using surface-
based linear models implemented in a Matlab toolbox, SurfStat
(http://www.math.mcgill.ca/keith/surfstat/). A series of analyses
were also conducted to assess correlations with ADOS total
and sub-scores in functional connectopic maps for each
sensory/motor region. Finally, age-by-group interaction effects
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FIGURE 1 | Connectopic mapping analysis. (A) The functional gradient maps of neurotypicals (NT) for low-order sensory/motor regions are presented. The motor

(precentral), sensory (postcentral) and auditory (transverse and superior temporal) masks are derived from the Desikan-Killiany atlas, while the visual mask is from the

Brodmann Area (BA) atlas corresponding to the primary visual area (BA 17). (B) The cluster that showed significant group difference in M1Upper is marked in solid,

white outlines. More extreme negative gradient scores were found in the ASD group, indicating an abnormally more segregated intrinsic functional connectivity (iFC).

(C) The clusters that showed significant group differences in V1Central and V1Peripheral are marked in yellow and blue solid outlines, respectively. This

central-to-peripheral gradient expansion in ASD indicates that iFC in the visual region becomes more segregated in ASD. (D) A cluster in M1Upper showed significant

associations with ADOS scores for restricted and repetitive behavior in ASD. (E) The cluster that showed a significant age-by-group interaction effect is marked in

solid, white outlines. ADOS, Autism Diagnostic Observation Schedule.
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FIGURE 2 | Subcortical-primary sensory/motor network. Top right. Parcellations used for the seed-based functional connectivity analysis of within-primary

sensory/motor and subcortical networks are shown. (See Materials and methods for details.) Bottom left. A heatmap representing correlation coefficients of intrinsic

functional connectivity (iFC) in subcortical-primary/motor networks. Significant group differences are shown with asterisks (FDR = 0.05). Hypoconnectivity (ASD < NT)

was found in the within-primary sensory/motor network, and hyperconnectivity (ASD > NT) was found between subcortical structures and sensory/motor cortices,

collectively suggesting an atypical diverging pattern of iFC in ASD. L, left; R, right; NT, Neurotypical controls; ASD, Autism Spectrum Disorder.

were tested to compare “cross-sectional” aging effects between
ASD and NT. All models included age, acquisition site, and
framewise displacement (and sex for the replication data) as
covariates and were conducted as two-tailed tests. Correction for
family-wise errors due to multiple comparisons were performed
using the random field theory method with a cluster level
correction of pFWE < 0.05 (cluster defined at p= 0.025).

Functional Connectivity
Similar to the gradient analysis, individually identified functional
connectivity matrices were also statistically compared between
ASD and NT groups. We fitted a linear model to test for
group effects while controlling for age, acquisition site, and
framewise displacement as covariates. We also assessed
the correlations between functional connectivity and the
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FIGURE 3 | Within-high-order transmodal network. (A) A schematic diagram showing the hierarchical relationships of canonical resting-state networks. The figure

component adapted from Margulies et al. (55). (B) Top. The proportion of altered connectivity in ASD shows an increasing trend along the hierarchy of high-order

networks that was aligned based on the schematic diagram on the left. Bottom. A heatmap representing correlation coefficients of intrinsic functional connectivity (iFC)

within high-order networks. Markedly decreased iFC in ASD suggests a less integrated high-order transmodal system. Significant group differences in iFC between

ASD and NT are shown with asterisks (FDR = 0.05). (C) High-order network parcels were derived from the Yeo-Krienen 17 resting state networks (68). DA, dorsal

attention network; VA, ventral attention network; Sal, salience network, Con, frontoparietal control network; DMN, default mode network; Lim, limbic network.

ADOS scores (i.e., total and subdomain scores). Finally,
age-by-group interaction effects were tested for all regions
that showed significant group differences of functional

connectivity. The significance of these parcel-wise tests was
corrected for multiple comparisons using a false discovery rate
(FDR) procedure.
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Mediation Analyses
The impact of low-level sensory/motor iFC on high-order
connectivity networks and ASD-related symptoms was tested
with a series of mediation models. In principle, testing for
mediation is a two-step regression with three major components,
i.e., a predictor (independent variable), a responder (dependent
variable) and a mediator. First, the interaction of the predictor
and responder is controlled for when testing the effects of
the mediator to responder. A complete mediation occurs
when the effect of the mediator is over and above the effect
variance captured by predictor-responder. In our model, both
predictor and mediator were taken from the results of the
previous analyses. Specifically, the predictor was computed as
an average of within-primary sensory/motor iFCs that showed
the statistical associations with ADOS scores, while the mediator
was calculated in the same manner using within-high-order
transmodal iFCs. The responder was a severity score of each
symptom in ASD (i.e., total, social interaction, communication,
and restricted/repeated behaviours ADOS scores). Please note
that the statistical relationship between the predictor and
mediator is designated as effect “a,” and that between the
mediator and responder as “b,” while between the predictor
and responder as “c.” In our study, effect “a” tested whether
sensory/motor iFC is correlated with high-order iFC, while effect
“b” tested whether high-order iFC is related to ASD-related
symptom severity, controlling for sensory/motor iFC. Finally,
effect “a × b” tested the mediation effect by examining the
significance of c - c’ (c’ refers to a direct effect after taking
into account the mediation effect). A significant mediation
effect suggests that high-order transmodal iFCs explain a
significant proportion of the association between sensory/motor
iFCs and ASD symptom severity. All coefficients were tested
for significance using bootstrap tests (100,000 iterations) with
the Mediation Toolbox for Matlab [https://github.com/canlab/
CanlabCore (71, 72)].

RESULTS

Connectopic Profiling of Primary
Somatosensory Regions
We compared the dimension-reduced, intrinsic functional
connectivity (iFC) gradients of representative sensory/motor
systems between ASD and neurotypical (NT) groups. Please
note that in the Laplacian Eigenmaps, eigenvalues are sorted
in ascending order and more variance is explained by the
first eigenvalues (73). According to this criterion, we therefore,
chose to focus on the first gradient at each sensory area,
because they represent biologically meaningful functional
organizations (e.g., retinotopic, somatotopic, and tonotopic
maps), established by other independent modalities such as
electroneurophysiology (74–77).

First, we profiled the NT group to establish normative
functional gradients across the targeted primary sensory/motor
systems (Figure 1A). Specifically, S1 and M1 showed a
well-established somatotopic organization which follows a
dorsomedial-to-ventrolateral gradient [i.e., homunculus; (74)]

along both pre- and post-central gyri. V1 displayed an accurate
representation of eccentricity i.e., a property representing
the foveal-to-peripheral gradient in the receptive field (78),
extending from posterior to anterior along the medial surface
of the calcarine cortex. Despite less consensus on the tonotopic
mapping of the auditory cortex (79), the gradient in A1
ran in anterior-to-posterior direction, including the transverse
temporal gyrus (i.e., Heschl’s gyrus) and planum temporale.

Gradient patterns were globally similar between the NT and
ASD groups. However, vertex-wise statistical analyses revealed
marked anomalies specific to ASD. In particular, the upper
left motor cortex showed a significant change of more extreme
negative gradient scores (i.e., abnormally more segregated iFC)
in ASD (t = −2.28, pFWE ≤ 0.05, Cohen’s d = 0.4; Figure 1B).
Alterations were also observed in the right visual cortex, showing
both increased (V1Peripheral: t = 2.06, pFWE ≤ 0.05, Cohen’s
d = 0.2) and decreased (V1Central: t = −1.97, pFWE ≤ 0.05,
Cohen’s d = 0.3) gradients in the ASD group (Figure 1C). As
similar to the M1 finding, this central-to-peripheral gradient
expansion suggests that the iFC in ASD becomes excessively
more segregated within the primary visual area. There were no
significant group differences for sensory and auditory regions.
These gradient changes in ASD were largely replicated in the
ABIDE-II dataset, regardless of whether including both sexes or
only males (Supplementary Figure 1).

When associating these gradient values with symptom
severity, the M1 region (adjacent to the area we found significant
group differences above) revealed a correlation to the ADOS
scores for repetitive and restricted behaviors in ASD (r =

0.22, pFWE = 0.04; Figure 1D) but not for the other two
subdomain scores (i.e., social interaction and communication).
Finally, a significant age-by-group interaction effect was found
in M1 where the gradient values increased as aging in ASD,
which pattern indicates a shift toward more extreme values
(F = 6.14, p = 0.01; Figure 1E), similar to the results
from the group difference analysis. These findings were not
replicated in ABIDE-II.

Seed-Based Functional Connectivity
Analysis
Following the gradient analyses, we sought to understand the
relationship between low-level primary sensory/motor and the
high-order transmodal systems in ASD by using the seed-based
iFC approaches.

Within-Primary Sensory/Motor and Subcortical

Networks
We first assessed how iFCs in these low-level sensory/motor
related areas were affected in ASD. This analysis demonstrated
hypoconnectivity between S1 and A1, S1 and M1Upper, and
within the S1 and M1 areas (FDR = 0.05), corroborating the
previous reports of dysconnectivity syndromes in ASD. Notably,
however, assessing the sensory/motor-subcortical iFC showed
rather marked hyperconnectivity across virtually all pairs of the
structures in ASD, suggesting that iFCs in ASD are composed
of mixed anomalies (increase and decrease), depending on the
functional systems investigated (Figure 2A).
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Within-High-Order Transmodal Systems
Beyond the analyses focusing on the low-level system, we
further examined transmodal networks, independently from the
sensory/motor iFC. The group comparison of iFC revealed
markedly decreased connectivity across different functional
networks in ASD, suggesting their less integrated transmodal
systems. Notably, the proportion of such hypoconnectivity in
ASD shows a trend of increase along the presumed order of
cortical hierarchy (Figure 3A), for instance, from the dorsal
attention networks showing mildly affected iFCs (percentage of
significant t-score of hypoconnectivity = 4.8%) to the default
mode (10.1%) and limbic (20.2%) systems with more severely
decreased iFC patterns (Figure 3B).

Age-by-Group Interaction Effects
These effects were tested in the network connections that
showed significant group differences in the previous analyses
(i.e., within-primary sensory/motor and subcortical networks;
within-high-order transmodal systems). Overall, both hypo- and
hyperconnectivities in ASD, regardless of which networks are
involved, revealed increasing patterns across age (Figure 4).
However, these changes in ASD differed depending on
whether they are hypo- or hyperconnectivity. The former (i.e.,
hypoconnectivity within low-level and high-order networks)
remained constant or even became less severe with age
(Figures 4A,C), while the latter (i.e., hyperconnectivity patterns
in both low-level cortico-subcortical networks and higher-order
networks) became increasingly more severe across age in ASD
(Figures 4B,D).

Mediation Analysis
We performed mediation analyses assessing the relationship
between low-level sensory/motor and high order transmodal
systems as well as the behavioural symptoms of ASD in a unified
statistical model. The effect between low-level and high-order
networks (Figure 5A: effect a= 0.51, p= 0.007, Figure 5B: effect
a = 0.34, p = 0.003), and that between high-order networks
and ADOS total score (effect b = −0.62, p = 0.01) as well as
ADOS social interaction scores (effect b = −0.40, p = 0.04)
were statistically significant after controlling for the effect of
low-level networks. Critically, the effect of a mediator (i.e., high-
order transmodal iFC) was also significant for the relationship
between the low-level iFC and ADOS total (= the sum of
social interaction and communication subscores), as well as for
social interaction scores (100,000 bootstrapping; ADOS-total:
a × b = −0.33, FDR-corrected p = 0.005; ADOS-social: a
× b = −0.14, p = 0.04). On the contrary, the direct effect
from low-level to symptom severity was not significant for total
severity scores (p = 0.26) after controlling for the effect of
high-order networks, indicating a complete mediation effect.
Compared to this, however, regarding social interaction scores,
it was marginally significant (p = 0.05), indicating a partial
mediation effect. This partial mediation effect indicates that
there is a remaining association between low-level sensory/motor
systems and social interaction symptoms even after accounting
for the mediation effects of high-order networks. There were no

significant mediation effects for the ADOS communication and
repetitive/restricted behavior subscales (Figures 5C,D).

It is worth noting that for mediation analysis, the independent
variable (i.e., sensory/motor) is required to have temporal
precedence to make any strong claims regarding causality. In
the present case, sensory/motor areas can be viewed as having
temporal precedence relative to higher order association areas
based upon feedforward models of information flow (80–82).
However, we would caution against such claims given the
associational nature of resting state functional connectivity, as
well as the presence of multisynaptic relations and indirect
connectivity (i.e., connections between brain areas without
physical connectivity). Though, it is worth noting that when
we tested an alternative model, in which high-order iFCs
were the predictor and low-level sensory/motor iFCs were
the mediator, no significant effects were detected. Likewise,
when the subcortico-sensory/motor iFCs were the predictor and
high-order iFCs were the mediator, the mediation effect was
also not significant (Supplementary Figure 2). Moreover, our
significant mediation effects were replicated after global mean
signal regression, which indicates that this result is not merely
a consequence of overall drifting by global mean of iFCs across
individuals (Supplementary Figure 3).

DISCUSSION

Our study focused on connectome-level anomalies in ASD to
address system-level substrates underlying co-occurring deficits
of sensory/motor anomalies and impaired social cognition. By
combining connectopic mapping and targeted seed-based iFC
analyses, we observed converging evidence of atypical functional
connectivity profiles between the low-level sensory/motor and
high-order transmodal cortical networks in autism. Connectopic
mapping of sensory/motor regions revealed more excessively
segregated connectivity patterns in M1 and V1, which findings
were largely replicated in an independent dataset (i.e., ABIDE-
II). Seed-based iFC analyses along the cortical hierarchy stream
further demonstrated hypo-connectivity within both low-level
sensory/motor and high-order cortical systems, while showing
marked hyper-connectivity in the subcortico-cortical interaction
in ASD. Notably, restricted and repetitive behavior was correlated
with regional connectopic gradient changes in the primary
motor cortex, while impaired social interaction was mediated
by the altered sensory/motor and high-order iFCs in ASD.
These findings collectively reinforce the notion of the postulated
cascading effects from the low-level sensory/motor areas to the
high-order brain functional networks, as well as their potential
link to the key symptomatology of ASD, providing critical
information to develop potential treatments targeting specific
aberrant brain network connectivity (83).

Emerging evidence suggests that the degree of altered
sensory sensitivity during early developmental period predicts
the impairments of language development and social cognition
in later life (84, 85). Supporting this behavioral evidence, a
recent neuroimaging study also revealed a disrupted macroscale
hierarchy affecting both unimodal and transmodal cortical
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FIGURE 4 | Age by group interaction effects in the connectivities showing significant group differences in previous seed-based analyses. (A) Hypoconnectivity among

low-level sensory/motor regions in ASD compared to NT was consistently observed across age, but there was no significant interaction effect (F = 0.03, p = 0.85).

(B) Hyperconnectivity among low-level cortico-subcortical network connections became increasingly more severe across age in ASD, revealing a significant

interaction effect (F = 5.27, p = 0.02). (C) Hypoconnectivity among high-order networks in ASD showed a less severe pattern with age, resulting in a significant

interaction effect (F = 4.04, p < 0.05) (D) Hyperconnectivity among high-order networks in ASD showed an increasing age-dependent trend, yet no significant

interaction effect (F = 1.27, p = 0.26).

systems in ASD (62), which are collectively associated with
the deficit of social interaction and the restricted/repetitive
behaviors. Our mediation analyses further enrich the context
of this finding, as we demonstrated that the severity of social
impairment (related to higher-order cognitive function) is
mediated by the iFC of the transmodal systems, which may be
in turn affected by atypical development of early sensory areas
in ASD. Notably, the restricted and repetitive behaviors did not
show any mediation effect from the transmodal iFCs but rather
correlation to the altered motor functional gradients. These
distinct brain-behavior associations suggest hierarchy-specific
mechanisms depending on the symptom of interests, which is in
line with a recent molecular study (86) demonstrating that two
dissociable symptom domains (i.e., social vs. restricted/repetitive
behaviors) make up the genetic architecture of autism. The
neurocognitive accounts related to developmental trajectories of
social/communication dysfunction propose that the impairments
in low-level, bottom-up processes may lead to diminished
experiential learning, which in turn interrupt the development of

high-order cognition (87). Our findings are reflective of potential
biological substrates underlying this detrimental cascading effect
in ASD, corroborating increasingly adapted perception-based
mechanistic theories such as erroneous predictive coding (88). In
addition, the results of our iFC analyses recapitulated a current
perspective on the ASD connectopathies, which are largely
summarized into the mosaic patterns of both cortico-cortical
hypo-connectivity and subcortical-cortical hyper-connectivity
(45, 47, 89–92).

Although, the functional organization of primary regions
appeared qualitatively very similar between ASD and
neurotypical groups, quantitative statistical analyses found focal
changes of gradient in the dorsolateral area of M1. This pattern
also revealed significant associations with repetitive/restricted
behaviors. Our results join the line of accumulating evidence that
repetitive/restricted behaviors are related to deficits in the motor
cortex (93–95), suggesting high specificity of our connectopic
gradient for brain-symptom mapping. ASD-specific anomalies
in the gradient organization were also found in the foveal and
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FIGURE 5 | Mediation analysis. Mediation analyses with low-level sensory network as the predictor and high-order network as the mediator were tested with the

following ASD symptom severity as a responder: (A) ADOS-total score, (B) ADOS-social score, (C) ADOS-communication score, (D) ADOS-repetitive/restricted

behavior score. *significant at p < 0.05, **survived multiple comparison correction using a false discovery rate procedure, ADOS, Autism Diagnostic

Observation Schedule.

peripheral fields of V1, which patterns follow the main direction
of the eccentricity observed in the retinotopic mapping. This
receptive property is previously known for reflecting the capacity
of visual search, or the ability to detect the target amongst
distractors (96), which is documented to be superior in ASD
along with a detail-oriented perceptual processing style, or
enhanced processing of local features at the expense of global
information (22, 97). The more extreme values at each end of the
gradient indicate an excessively isolated functional organization,
which may be potentially induced by abnormally increased local
connectivity clustering. Although, further, investigation would
be needed to confirm this hypothesis, our finding on “over-
segregated V1 connectivity” thus may explain the symptom of
the locally-oriented visual processing in ASD (98–101).

Several points should be considered in the interpretation of
our findings. First, the mediation analyses were based on the
premise that sensory development provides the building blocks
for high-order cognitive systems. Unfortunately, objectively

quantifying this developmental effect requires longitudinal data,
which was not available in this study. However, as our dataset
covers a wide range of age, we were instead able to map “cross-
sectional” aging-dependent changes of functional connectivity,
by performing age by group interaction analyses. We found
significant interaction effects in the motor connectivity gradient,
which showed more extreme gradient values across age in ASD,
indicating a more isolated functional connectome organization,
consistent with the results from the group difference analysis.
Meanwhile, differential changes in hyper- and hypoconnectivity
patterns across age corroborates substantial heterogeneity of
functional connectivity network in ASD and thus suggests
that the previous inconsistent literature on the hyper vs.
hypoconnectivity in ASD should be viewed within the context of
dynamic network changes during the life span of this condition.

Secondly, regarding the absence of mediation effects for
restricted and repetitive behaviors, it may possibly be related to
the limited coverage of a single symptom scale, the ADOS in
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our study. Indeed, in general, to objectively profile the restricted
and repetitive behaviors in individuals with ASD, the symptom
scale should include a wide range of distinct behavioral domains
encompassing both low-level and higher-order domains, such
as motor stereotypic behaviors, daily rituals, and rigid interests
in repetitive play (3, 102). While the ADOS is a widely used
standardized diagnostic tool for ASD, previous reports have
shown that it does not fully capture themultidimensional domain
of restricted and repetitive behaviors (103); therefore, much
caution would be required when deriving conclusions on the
behavioral phenotypes based on a single diagnostic tool.

Finally, the results regarding the upper left motor cortex may
seem contradictory because a positive association with clinical
symptoms was found despite the ASD group showing “more
negative” gradient values. These contrasting results may suggest
a complex brain-behavior mechanism, i.e., group differences of
functional organization may represent the pathological effects
of ASD, whereas, the behavioral association may be reflective
of a compensatory process that occurs during development.
In fact, repetitive/restricted behaviors and interests have been
known to serve as a compensatory strategy against atypical
sensory processing, because through ritualistic behaviors, a sense
of control and predictability can be established when exposed
to sensory-laden situations (104–107). Given this context, in
our finding, this compensatory effect at the behavioral level
may be represented as an increased gradient value in the
brain, a pattern that becomes more similar to the typically
developing individuals.

Such behavioral explanability of the “connectopic mapping”
technique naturally motivates to think about how we can develop
this functional gradient into a robust biomarker in the clinical
neuroscience. A recent biomarker study of our group (108)
proposed three critical conditions for this purpose, namely
reproducibility, reliability and predictive validity. Specifically,
first, the biomarker should show high reproducibility across
large and multiple independent datasets. Owing to collective data
open-sharing efforts in the field such as the ABIDE initiatives,
our study was able to demonstrate the reproducibility of some
findings. However, the sample size required for reproducibility
may vary, depending on the conditions of the biomarker such
as the kind of target measures or the number of features per
sample (109). A recent study based on more than 10,000 datasets
suggested that the brain-behavioral associations become more
reproducible with sample sizes of N ' 2,000 (110). While this
is a clear message emphasizing the necessity of more active
community-wise data-sharing efforts, in the meantime, advanced
statistical methods such as bootstrapping (111) or dimensionality
reduction (112) may reduce model overfitting, increasing
reproducibility even in smaller samples. Second, the biomarker
should show high test-retest reliability, which represents the
consistency of a metric when measuring the same object multiple
times (113). This is a desirable trait because the high consistency
allows for the increase of an individual identification rate (=
individual fingerprint) for biomarkers. Regarding the gradient
approach, therefore, we need to optimize the dimensionality
reduction algorithm (e.g., Laplacian Eigenmaps) to obtain the
best parameters providing the highest reliability of the gradient

metrics. Finally, the predictive validity should be systematically
tested for a given metric. In ASD research, the clinical variables
of interest include the diagnostic label, symptom severity,
relevant neuropsychological scores (e.g., Social Communication
Questionnaire and the Social Responsiveness Scales) and
cognitive performance. The reliability provides only an upper
bound of prediction ability (114), and how to further optimize
the biomarker beyond the metric quality depends on the domain
knowledge and the target biological phenomenon. While there
is no established answer for this question, one way to increase
predictive validity would be through the testing of the biomarker
over the targeted variable (= true positive) with the data as much
as available, but also against irrelevant or confounding variables
(= true negative) to increase the specificity.

CONCLUSION

The present study investigated the role of low-level
sensory/motor and high-order transmodal networks in
heterogeneous autism symptoms. Our findings demonstrate
multiple levels of functional connectivity anomalies along
the cortical hierarchy, ranging from atypical gradients in
primary sensory/motor areas to diverging patterns of hypo-
and hyper-connectivity among the subcortico-cortical and
cortico-cortical networks. Moreover, these alterations were
shown to be associated with key symptoms in ASD, and
replicated in an independent dataset. Collectively, our
findings suggest clinical utility of connectopic mapping
and targeted iFC analyses, which may be developed into
an effective biomarker that takes into consideration the
integrative properties of multiple hierarchical functional
brain systems in the context of heterogeneous symptom
manifestation in ASD.
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