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Recent fMRI studies on specific animal phobias, particularly spider phobia

(arachnophobia), have identified a large variety of specific brain regions involved in

normal and disturbed fear processing. Both functional and structural brain abnormalities

have been identified among phobic patients. Current research suggests that both

conscious and subconscious fear processing play a crucial role in phobic disorders.

Cognitive behavioral therapy has been identified as an effective treatment for specific

phobias and has been associated with neuroplastic effects which can be evaluated using

current neuroimaging techniques. Recent research suggests that new approaches using

virtual (VR) or augmented reality (AR) tend to be similarly effective as traditional “in vivo”

therapy methods and could expand treatment options for different medical or individual

scenarios. This narrative review elaborates on neural structures and particularities of

arachnophobia. Current treatment options are discussed and future research questions

are highlighted.

Keywords: specific phobia, functional neuroimaging, augmented reality, virtual reality, psychotherapy, spider

phobia, arachnophobia, neuroscience

INTRODUCTION

Animal phobia is a type of specific phobia, which is classified under the Anxiety Disorders section
of the DSM-5 (1). To meet the DSM-5 criteria for specific phobia, individuals have to show a
marked and disproportionate fear or anxiety reaction when exposed to the phobic stimuli (i.e.,
animals like spiders). This fear or anxiety reaction may result in a full or limited panic attack.
Due to fear or anxiety, individuals with specific phobia take significant steps to avoid the feared
stimulus. Additionally, the fear and anxiety of a specific stimulus causes clinically significant
distress or impairment in social, occupational, and in other relevant areas of function. Symptoms
should last for at least 6 months. Individuals with specific phobias, who present without other
comorbid diagnoses, are often seen in non-medical mental health settings. However, in medical-
clinical settings, specific phobias are rarely seen without comorbid psychopathology, as they are
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frequently associated with other mental disorders, especially
anxiety and depressive disorders (1). In fact, the median lifetime
prevalence of specific phobia was estimated to be 7.2% with
substantial variation between countries and sites (2). Most
studies provide evidence for a higher risk to develop a specific
phobia in females. Among the specific phobias, the prevalence
of animal phobia is ranging among the most prevalent subtypes
(with fear of heights). In this focused narrative review, we
first elaborate on the neural structures involved in phobia
before mentioning mental and neural processes, as well as
structural and physiological changes. We continue by reviewing
subconscious fear processing and cognitive behavioral therapy
for arachnophobia, followed by a section of VR-AR based
treatment options.

NEURAL STRUCTURES INVOLVED IN
PHOBIA

Early neuroimaging studies of fear conditioning, as well as more
recent experiments, have found evidence of an activation of
the amygdala, the anterior cingulate cortex, and the insula—
when healthy participants are confronted with conditioned fear-
evoking stimuli independent of the task design (3). These
structures are commonly referred to as the “fear network,” which
is activated during the acquisition phase of fear-conditioning or
corresponding paradigms, and shows stronger activation during
extinction learning (4). The amygdala, an important structure
for reward learning (5), processing of socially and emotionally
relevant stimuli (6, 7), and fear acquisition (8), shows stronger
activation to conditioned vs. unconditioned fear-evoking stimuli
in healthy controls [e.g., (9)]. However, a more general approach
assumes a state value-determining function of the amygdala
(5, 10). According to this approach, the amygdala calculates
and holds a continuously updated representation of value (5).
Additionally, studies suggest that the amygdala is also involved
in extinction learning in conjunction with the prefrontal cortex
(PFC) (11). Apart from the amygdala, the anterior cingulate
cortex and the insula are activated during fear conditioning.
The insula, responsible for sensorimotor processing, socio-
emotional processing, as well as higher cognitive functions,
also holds representations of aversive body states (especially
the left insular cortex) (12, 13). The anterior insula receives
input from the amygdala and projects to the amygdala in turn.
The main function of the anterior insula is thought to be the
integration of internal states, whereas the posterior insula is
responsible somato-visceral integration (14). Thus, the insula
might integrate the somato-visceral sensations from anxiety
inducing stimuli with the aversive stimuli in the environment
(15). A comprehensive overview of the brain regions involved in
the fear network can be seen in Figure 1.

Resting state fMRI paradigms suggest that the anterior
cingulate cortex (ACC), as well as limbic- and hypothalamus-
related areas, is functionally connected to areas responsible
for affective processing (16). Although not all anxiety-related
disorders (e.g., PTSD) show an increased activation of the
subgenual ACC or the anterior middle cingulate cortex (17),

e.g., patients suffering from social-anxiety disorder or specific
phobias demonstrate an increased activity of the pregenual ACC
and middle cingulate cortex in comparison to healthy controls
(12, 17). In their meta-analysis, Etkin and Wagner (17) report
hypoactivation in the insula and amygdala for PTSD patients, but
no deactivations could be observed in specific phobia. Similarly,
no hypoactivation in specific phobia was observed in the rostral
anterior cingulate cortex, the ventromedial prefrontal cortex, the
dorsal anterior cingulate cortex, or the thalamus. However, a
more recent review reports evidence for hypoactivity in phobic
patients in ventral, dorsomedial and dorsolateral prefrontal areas
compared to healthy controls (15). These prefrontal areas are
functionally connected to the amygdala. The dorsal system
comprising the dorsolateral prefrontal cortex (DLPFC) and
dorsomedial prefrontal cortex (DMPFC) might be related to the
regulation of affective states, whereby a stronger activation is
coupled with limbic inhibition (18–20). Altogether, these findings
suggest a deficient regulatory mechanism of affective states in
individuals suffering from specific phobia in comparison to
healthy controls.

In general, current fMRI research studies indicate that a
large array of brain regions are involved in both normal and
phobic fear processing; however, the activation in phobic states
has been found to be stronger (21). The stronger activation
in phobic patients includes increased neural, electrodermal,
pupillary, and subjective reactions, as well as stronger activated
neural structures, compared to non-phobic individuals. For
instance, when confronted with the feared stimulus, individuals
with spider phobia show increased activation of different
brain regions, particularly in areas related to visuo-attentional
processing (occipital and parietal regions; ventral visual
pathway), emotional processing (amygdala, pulvinar nucleus
of the thalamus), representations of aversive body states (ACC,
insula, specifically left insular cortex), and flight behavior
processing (premotor areas) (22–24).

Interestingly, individuals suffering from spider phobia
compared to non-phobic individuals show an increased fear
response pattern in the mid-insula, dorsal anterior cingulate,
and the ventrolateral PFC that grows linearly with perceived
danger. Thus, these brain regions seem to hold a quantitative
representation of the exaggerated fear response (25). While
most of the regions mentioned above are involved in normal
fear processing, the activation of the supplementary motor area
(SMA) seems to be unique in specific phobias (26).

As mentioned above, a predominantly known key structure
in fear processing is the amygdala, which usually shows
hyperactivity in individuals with phobia (23). Increased activity
of the amygdala is due to an exaggerated input from a fast
subcortical pathway and can be reduced by glucocorticoid
administration (27). An extrageniculostriate pathway has been
suggested as the main pathway responsible for fear processing,
which connects the thalamus and the amygdala (23). In
contrast to common fear theories, which postulate that the
activation of the amygdala is independent from attention
when perceiving threatening stimuli, recent research shows that
amygdala activation in response to very briefly presented cues is
not independent from attention processes in patients with phobia

Frontiers in Psychiatry | www.frontiersin.org 2 August 2021 | Volume 12 | Article 704174

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Hinze et al. Spider Phobia: Diagnosis and Psychotherapy

FIGURE 1 | Neural structures involved in fear processing. Arrows indicate the direction of the activation.

(28). However, the amygdala response to phobic stimuli among
individuals with phobia is a stronger but briefer one as compared
to healthy controls, suggesting that it might be responsible
for the rapid onset of phobic disorders (29). Additionally, the
increased activity in the amygdala in patients with phobia does
not only occur when they are confronted with phobic stimuli,
but also as a response to generally repulsive and threatening
stimuli (26). This suggests that increased activity in the amygdala
may occur as a result of detection of motivationally relevant
stimuli in general, whereas the activation of the insula and
supplementary motor area seem to be superficially connected
to the processing of phobic stimuli (26, 30). The attenuating
effect of glucocorticoid administration on the fear response of
the amygdala among individuals with phobia might be due to the
fact that high glucocorticoid levels weaken traumatic and fearful
memory traces, which are assumed to play a crucial role in phobic
disorders and therefore facilitate the extinction of phobic fear
(31). It has been recently shown that cortisol administration was
able to alter the activity of the salience network to a level that was
comparable to that found in healthy controls (32). In addition,
high endogenous cortisol levels, which physiologically peak in
the morning, strengthen the effect of exposure therapy in spider
phobia compared to lower cortisol levels in the afternoon (33).

MENTAL AND NEURAL PROCESSES
INVOLVED IN FEAR PROCESSING

While structures of the network mentioned above are involved
in fear processing in general, their specific roles seem to be more
complex. The temporo-spatial activation of different brain areas
in spider phobia can especially be linked to different emotion
regulation deficiencies. While automatic emotion regulation

deficiencies seem to be reflected by increased activity in the
insula and reduced activity in the ventromedial PFC, effortful
emotion regulation deficits are reflected in an enhanced activity
in medial PFC areas (34). Different neural processes have
also been found for phasic fear in comparison to sustained
anxiety (35). Phasic fear is defined as an apprehensive state
that accumulates rapidly and diminishes if the threatening
stimulus is removed (36). While phasic fear was found to
be associated with amygdala activity, sustained anxiety was
identified to be related to activity in the bed nucleus of stria
terminalis (BNST), the ACC, and the insula among spider phobic
patients compared to healthy controls (35). When comparing
brain activation patterns in different types of phobias, several
studies show very similar immediate responses but differences
in the sustained response, which reflects the cross-linked mental
processes behind anxiety disorders (12, 22). These findings
correspond to fMRI studies on anticipatory fear of phobic
stimuli. Straube et al. (37) showed that patients with phobia
showed increased activity in the ACC, insula, thalamus, visual
areas (i.e., fusiform gyrus), and BNST in comparison to healthy
controls. This suggests that ACC regions and the anterior medial
PFC seem to be related to the severity of the phobic disorder
(37). These findings support the idea of the amygdala being
related to automatic fear processing, while the insula, ACC, and
dorsomedial PFC seem to be related to direct fear processing
which requires attentional processes (37). In sum, these data
highlight the dynamic relationship underlying neural processes
involved in fear reactions, which is consistent with the finding
that both visual and linguistic stimuli (phobia related words) are
able to activate the aforementioned fear-related brain regions,
supporting the idea of integrating neural networks for the
processing of threatening stimuli (38).
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STRUCTURAL AND PHYSIOLOGICAL
CHANGES

Both functional and structural abnormalities like thinning of
the right ACC can be found in patients with spider phobia
(39). The size of the amygdala is negatively correlated to
severity of symptoms among phobic patients (40). However, it
remains unclear whether the structural changes are a causal or a
consequence of the symptoms.

Phobias can not only be associated to neural abnormalities
but also associated with physiological changes. When exposed to
a phobic stimulus, patients with phobia show somatic response
patterns or “markers” which differ from healthy controls, such
as greater heart rate amplitudes and hypervigilance, as well as
increased pupillary dilatation, electrodermal response, and self-
reported affect (21, 41). Although some of these markers do not
reflect a general tendency for anxiety, they are stimuli-dependent
when comparing different types of phobias in fMRI studies (41).

The evidence for sex differences in activation patterns as
a response to phobic stimuli is still not entirely clear. There
is some evidence that phobic activation patterns may differ
between males and females. These differences might be due
to different attention styles and self-control strategies (42) as
well as more pronounced and repetitive negative thoughts in
females compared to males (43). Further support is based on
epidemiological studies showing a higher frequency of phobic
disorders in young female patients (44).

BIOPSYCHOSOCIAL THEORIES OF
PHOBIAS

Past research has relied on Seligman’s theory of prepared learning
(45, 46) to explain the nature of fear and the rise of phobias.
However, more recent research shows again that the underlying
mechanisms might be more differentiated. For instance, animal
phobias (i.e., spider phobia) have been found to be more robust
and less susceptible to social influence compared to social fears
(47). Hence, in order to explain phobic disorders, a bio-psycho-
social theory combining particularly genetic and cultural factors
seems be more useful. For example, the heritability in animal fear
is estimated to be 45% (48).

Studies on the biological origin of fear and phobic reactions
have highlighted the role of structural differences in anxiety
sensitivity, such as the inclination to interpret physical symptoms
as potentially threatening. Anxiety sensitivity is found to be
correlated to right anterior insular cortex size (volume and
thickness) in patients with spider phobia (49). Other structural
regions that are involved in emotional and attentional processing
are also involved in the detection of body states and motor
behavior (22–24).

Not surprisingly, a crucial part in the neurobiological
understanding of phobic disorders is the involvement of
the amygdala. While common fear theories postulate that
its activation is independent from attentional processes (23),
others postulate that the amygdala’s activation is influenced
by distractors (28), suggesting that attention is needed for its

activation. The strong and brief activation of the amygdala
when confronted with distressing stimuli is hypothesized to
be responsible for the rapid onset of phobic disorders (29),
suggesting thatminimal exposure with phobic objects is sufficient
for the onset of the disorder. Other research proposes a
more general overactivation of the area, which does not seem
to be connected to specific stimuli, but rather to generally
motivational relevant stimuli (26). Altogether, the amygdala
has been identified as a key region of interest when trying to
understand phobic disorders; however, the exact mechanisms
remain to be understood.

SUBCONSCIOUS FEAR PROCESSING

Phobic stimuli are assumed to have greater affective salience in
patients with phobia and therefore gain a more rapid access to
awareness. Schmack et al. (50) demonstrated that the activation
in orbitofrontal and ventral visual areas (higher-level cortical
areas) as a response to the presence of phobic stimuli could
be crucial for the affective salience of subjective invisible object
stimuli (suppressed from view). Further research has shown
that presentation of subliminal stimulus activates fear regions in
spider phobia (right amygdala) while deactivating conscious fear
processing, suggesting that the threat is computed even before the
stimulus is processed consciously (51–53). While some studies
suggest that amygdala activation in spider phobia is robust to
distraction tasks requiring the participant’s attention (54), other
studies have found that amygdala activation appears to decrease
in healthy controls when performing distraction tasks (54–56).
Overall, there is some evidence that phobic reactions can occur
outside an individual’s awareness, however, the role of distraction
in this process is not clear.

PHOBIC COGNITION BIASES

The covariation bias is a common bias that occurs among
individuals with phobias. There is evidence suggesting that
individuals with phobias tend to overestimate the association
between the feared stimulus and aversive consequences (57).
Recent research suggests that the covariation bias may be
enhanced by simultaneous activity in senso-motoric and visual
cortices, while the right PFC has been found to reduce the bias
(57). In addition to the covariation bias, patients with phobia
tend to show an encounter expectancy bias which means that
they overestimate the likelihood that they will encounter a feared
object (58). Recent fMRI studies suggest that the encounter
expectancy bias appears to be related to deficits in cognitive
control and contextual integration (lateral PFC, precuneus, and
visual cortex) (58). Furthermore, a dysfunctional circuit of
greater rostral ACC activation in response to phobic related
stimuli compared to neutral stimuli was found in subjects with
animal phobia, but not in healthy controls, suggesting attention
abnormalities (59). Other studies indicate that amygdala
activation depends on attention allocation when the stimuli are
briefly presented (28), whichmight contribute to the behaviorally
observable attention bias in anxious individuals (60).

Frontiers in Psychiatry | www.frontiersin.org 4 August 2021 | Volume 12 | Article 704174

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Hinze et al. Spider Phobia: Diagnosis and Psychotherapy

TREATMENT OF SPIDER PHOBIA:
EFFECTS OF COGNITIVE BEHAVIORAL
THERAPY

Although a variety of treatment options for specific phobia
exist, this review focuses on CBT and new approaches based
on CBT-techniques, as they are regarded to be clinically the
most promising evidence-based therapeutic procedures so far
(61). However, a variety of other treatment options exist,
including (but are not limited to) psychopharmacotherapy (e.g.,
SSRI or benzodiazepine medication), hypnotherapy, cognitive
therapy, psychodynamic psychotherapy, imaginal or virtual
reality exposure, augmented or in vivo-exposure.

Ongoing research on various modalities of psychological
treatments for mental health disorders strongly suggests that
problem-oriented psychotherapy can reliably modulate the
neurophysiological and neurochemical processes in brain regions
responsible for perception, movement, pain, and emotion
processing (62, 63). Functional MRI-resting state studies among
individuals with spider phobia show that cerebral blood
flow in fear-related brain regions is reduced after cognitive
behavioral interventions (64). This effect was not only found
for the anticipatory fear, but also for fear processing after the
presentation of spider pictures in the scanner (64). Some fMRI
studies have shown a significant pre to post decrease in amygdala,
insula, and ACC hyperactivity among individuals with phobia
after an intensive one-session exposure therapy was provided
(23). In addition, the dorsolateral PFC and the parahippocampal
gyrus have been found to be hyperactive among individuals
with spider phobia prior to receiving therapy, which might
reflect deficiencies in metacognitive strategies when confronted
with a spider on the one hand and fear memory on the other;
however, these effects disappeared after successful therapy (63).
Eye-tracking studies show that patients use maladaptive coping
skills (i.e., visual avoidance) when faced with phobic stimuli
whilst their fear circuit is activated and experiencing a threat
(65). In comparison, healthy controls showmore effective coping
skills when paying visual attention to potentially dangerous
stimuli, such as looking at them for a longer period of time;
this might help to downregulate cognitive evaluations of risk
(65). This might also be the case among successfully treated
individuals who learned to effectively cope with perceived threats
by reducing avoidance. Furthermore, fMRI studies have revealed
that the long-term positive effects of CBTmay be due to increased
activation of the orbitofrontal cortex (OFC), which is involved
both in emotional-related learning and neural inhibition (66).

CBT has been found to effectively treat specific phobias
in most, but not all cases. Recent research identified different
neural mechanisms for automatic and elaborated responses to
threat (51). For instance, hyperactivation in the right amygdala
and fusiform gyrus were found to rise when subliminal phobic
stimuli were shown, an effect which did not disappear after
CBT, suggesting that CBT might only influence conscious
fear responses. Moreover, Zilverstand et al. (67) found that
neurofeedback facilitates anxiety regulation in spider phobia
when comparing a neurofeedback-group to a group with no

specific strategies via fMRI. The neurofeedback-participants
showed significantly lower anxiety levels at the end of the
neurofeedback training as well as a down-regulation of the
insular region. Neurofeedback was provided in response to
activation in the left dorsolateral PFC and right insula, which
was used as a marker for successful regulation of the phobic fear
(67). Similar effects were observed for the hyperactivity of the
insula and ACC when confronted with phobic stimuli, as this
hyperactivity disappeared after successful CBT (95).

Another crucial contributing factor to the outcomes of CBT
treatment in phobia might be that fear-relevant emotions can
modulate learning processes and change activity in frontostriatal
and medial temporal lobes, which are associated with specific
learning processes (68). In addition, research shows that the
effects of CBT can be enhanced by the administration of
D-cycloserine, which is known to enforce the activations in
the fear relevant brain regions (69); this suggests that high
levels of acute activation in the fear regions predict better
therapy outcomes. For a comprehensive overview of the present
state of literature on neural networks predicting psychotherapy
response in anxiety disorders, see Lueken et al. (70). Considering
the mentioned gender differences in fear processing, recent
research also suggested that that progesterone could be a useful
pharmacological adjunct to cognitive therapy (71).

NEW APPROACHES: VIRTUAL AND
AUGMENTED REALITY IN PHOBIA
TREATMENT

Although in-vivo exposure provides an excellent treatment
option, patients are often reluctant to leverage the treatment
options. Therapists often avoid the logistic difficulties that come
with in-vivo-exposure therapies (e.g., time-consuming therapy
session, catching, and keeping the spiders). In addition, spider-
phobic individuals can be reluctant to confront their fears in
reality. Hence, treatment options using virtual or augmented
realities might be an interesting alternative from different
viewpoints. Augmented Reality (AR) is a new approach to
treatment that allows enriching real-life environments with
virtual elements and has been successfully applied in various
settings including treatment of mental health disorders (72).
Advantages of AR in the treatment of psychological disorders
include the adaptability to individual needs, as well as its
accessibility and ecological validity, such that it can be used
in personally relevant, real life settings (72). Furthermore,
rare scenarios (e.g., special spider moving behaviors) can be
administered repeatedly and consequentially the threatening
content of the simulated spider can be varied more easily. Early
research on AR and its use to treat specific phobia (especially
small animal phobia) provides an insight on the feasibility of this
new approach (73–77). Newer studies demonstrate equivalent
treatment efficacy between augmented reality based and in-vivo
exposure therapies (78–80). Moreover, the safety and usability
of augmented reality systems in clinical samples has been
demonstrated [e.g., (81)].

Frontiers in Psychiatry | www.frontiersin.org 5 August 2021 | Volume 12 | Article 704174

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Hinze et al. Spider Phobia: Diagnosis and Psychotherapy

Virtual Reality (VR), in contrast, describes completely
simulated, artificial environments—an approach which has
recently gained popularity to treat psychiatric diseases, in
particular anxiety disorders (82). The success of VR therapy
approaches is supported by various research reports showing
good effects for adults and children (82, 83). Patients with
specific phobias prefer a virtual treatment-option over in-
vivo-exposure and have fewer reservations (84). Several
trials have demonstrated efficacy of VR-based exposure
treatment in spider phobia when compared to a control
condition (85, 86). Furthermore, non-inferiority of virtual
reality exposure therapy for small animal or spider phobia
was demonstrated in comparison to an in-vivo exposure
therapy, particularly after 3 (87, 88) and 12 months (88).
Research using fMRI to examine brain activation while
participants explore VR environments shows that identical
anxiety-related brain regions are activated as with real life
photographs (89). Some studies suggest a potentially beneficial
augmentative effect of non-invasive brain stimulation such
as intermittent Theta Burst Stimulation (iTBS) over the
left prefrontal cortex on a VR challenge in spider phobia,
supporting the relevance of the prefrontal network in phobia
treatment [e.g., (86, 90)].

DISCUSSION

While technically new approaches promise many advantages
in the field of treating natural object phobias (such as spider
phobia), one can question if unpredictable nature elements
like a real threat can be completely replaced by artificial
elements at this stage. More research has to be conducted
to assess the similarity between simulated human behavior
and real-life behavior. Concerns regarding addictive behavior
in virtual reality have also been raised (83). Because a sense
of immersion is important in virtual reality therapy, new
approaches promise—besides further technical improvements—
the integration of tactile simulation in conjunction to the
simulated visual experience.

Altogether, meta-analyses estimating the outcome and
effectiveness of VR therapy state that VR-based psychological
procedures appear to be equivalent to in-vivo exposure
therapy, and superior to no treatment, and comes along
with several advantages such as accessibility [e.g. (91, 92)].
However, there is currently no evidence that VR therapy
could be superior to conventional face-to-face therapy
methods with a real therapist. Additionally, more light has
to be shed on both possible side effects like cybersickness
(symptoms like vertigo, nausea, and headache) and methods
to circumvent these have to be established (83, 93, 94).
Future studies should also focus on improving the immersive
experience for the user, e.g., by combining the simulated
visual experience with tactile or auditory information. To
the best of our knowledge, no study to date includes the
auditory input in the simulated environment, e.g., when a
particularly large spider moves over a surface. In addition,
the therapy systems available to date require input from the

therapist. In order to increase accessibility of exposure therapy
interventions, a standalone therapy system is favorable. Last
not least, a future challenge will be the smooth real time
interaction between the simulated phobic object and the hands
of the participants.

The aim of this focused review was to provide an overview
and summarize recent findings in the field of specific phobic
disorders, especially spider phobia. A particular emphasis was
drawn on brain circuits and neural networks associated with
spider phobia and treatment using cognitive behavioral therapy
(“gold standard”) and emerging approaches including virtual or
augmented reality.

Functional MRI has proven to be a strong research tool
to investigate the neural basis for both normal and phobic
fear. Accordingly, research over the past decade has been
able to identify a large array of brain regions associated with
fear processing: not only those involved in emotional and
attentional processing, but also for the detection of body
states and motor behavior. While the amygdala seems to
be mainly involved in automatic fear processing, albeit not
fully independent of attentional processes, other structures as
the insula, ACC, and dorsomedial PFC appear to be directly
related to fear processing requiring attentional resources (37).
As a consequence, further research is mandatory for a better
understanding of the underlying mechanisms and the neural
bases of spider phobia for both predicting and potentially
enhancing therapy outcome.

Cognitive behavioral therapy has been proven as a very
effective clinical treatment and its effects can be observed even
at a neural level (62). The newly emerging approaches such as
virtual and augmented reality appear to show similar effects
in comparison to in-vivo exposure therapy while increasing
the accessibility and acceptance of treatment opportunities
and supporting therapy-resistant patients (72, 83). Virtual and
augmented reality-based therapy can thus already provide an
excellent add-on option to the usual treatment. However,
further research in VR/AR-based therapies is mandatory, in
particular with a focus on improvement in feasibility and
prevention and management of the immanent side effects of
VR-based therapies.
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