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Nutrition is known to play an important role in the pathogenesis of Alzheimer’s disease.

Evidence is obtained that the gut microbiota is a key player in these processes. Dietary

changes (both adverse and beneficial) may influence the microbiome composition,

thereby affecting the gut-brain axis and the subsequent risk for Alzheimer’s disease

progression. In this review, the research findings that support the role of intestinal

microbiota in connection between nutritional factors and the risk for Alzheimer’s disease

onset and progression are summarized. The mechanisms potentially involved in these

processes as well as the potential of probiotics and prebiotics in therapeutic modulation

of contributed pathways are discussed.
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INTRODUCTION

Over 50 million people worldwide were living with dementia in 2019 and their number is expected
to rise to 152 million in 2050 (1). Dementia, particularly Alzheimer’s disease (AD), as the major
cause of disability and dependence in elderly persons lead to a significant negative socioeconomic
impact (2). In 2015, the global costs of dementia increased to 818 billion of US dollars and estimated
costs in 2030 can reach about 2 trillion US dollars (3). Among the multiple risk factors identified
for AD the presence of potentially modified cardiometabolic risk factors opens the opportunities
to impact them through dietary modification (4, 5). Moreover, recent evidence indicates that
imbalances in the gut microbiota (GM) can be also associated with the neurodegeneration (6, 7). So,
the GM appears to be an attractive aim for prevention or treatment of AD (8–10). In this context,
modulation of the GM composition offers diet a strong potential (6, 11).

NUTRITION AND ALZHEIMER’S DISEASE

In the last decades, the influence of dietary factors on cognitive function has become the
subject of active research in pre-clinical and clinical studies. Various nutritional approaches
have demonstrated a potential impact to prevent or slow down neurodegeneration or improve
certain cognitive capacities. Accordingly, some benefits for cognitive performance may be
found for vitamins E, D, B-group vitamins, various polyphenols, carotenoids, capsaicin, n-3
polyunsaturated fatty acids (PUFAs) and monosaturated fatty acids (MUFAs), some food and
dietary patterns (12, 13).
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Food Group
The relationships between the consumption of various food
groups and cognitive health has been investigated for many
years. Currently, studies of the various foods impact on cognitive
performance mostly report mixed data. Vegetable intake was
correlated with better cognitive score in a prospective cohort
study or with larger cortical thickness in a cross-sectional
study (14, 15). Consumption of vegetables was also shown to
improve orientation ability in cognitively healthy adults or adults
with mild cognitive impairment (MCI) (16). Positive impact of
vegetables on cognitive performance is thought to be attributed
to high content of carotenoids, polyphenols, other antioxidants
and fiber.

Animal protein food is of interest as it is a significant
source for the formation of neurotransmitters or neurotoxic
substances by the GM (17). However, fish consumption seems to
affect cognitive function positively. In cognitively healthy elderly
individuals higher fish intake was associated with larger cortical
thickness or larger total gray matter volume (15, 18). Elderly
adults with fish consumption≥1 servings/week had a slower rate
of cognitive decline (19). Nevertheless, in other study no evidence
was found for fish to prevent age-related cognitive impairment
(20). Inmeta-analysis by Bakre et al. a 20–30% decrease in the risk
of dementia and AD in people who eat fish was reported (21). The
potential benefits of fish intake are considered to be linked to the
n-3 PUFAs content in marine fish (12). N-3 PUFAs were shown
to diminish amyloid-beta (Aβ) peptide aggregation, increase Aβ

clearance, modulate synaptic plasticity and Tau phosphorylation,
and decrease neuroinflammation (22–26). Existing findings
indicate that n-3 PUFAs may also influence the GM composition
and intestinal barrier integrity (27, 28). Interestingly, cognitive
changes induced by dietary n-3 PUFAs deficiency correlated with
microbiota composition and inflammatory status in an animal
study (29). However, in the systematic review by Rangel-Huerta
et al. evidence that n-3 PUFAs supplementation can prevent or
slow down AD in older adults appeared to be inconclusive (30).

Consumption of dairy and meat is thought to impact
negatively on cognition, as a high intake of this protein
sources is part of the unhealthy Western-style diet. Nonetheless,
Ngabirano et al. found that elderly people who consumed
meat ≤1 time/week were at an increased AD risk. Moreover,
low meat consumers also ate less fish, fruit and vegetables,
therefore, they could have low dietary intake in general and
some nutritional deficiencies (31). No strong association between
meat consumption and cognitive decline was observed in the
meta-analysis by Zhang et al. (32).

Currently, several reviews failed to find a dose-response
effect of milk and dairy consumption on cognitive performance
(33, 34). In part, the mixed findings can be explained by
methodological heterogeneity of studies included and the
existence of opposing consumption patterns in countries with
different dairy cultures such as Japan and the US, for example
(35, 36). Concerns about dairy consumption are related to their
D-galactose content since excess D-galactose has been shown
to impair neuronal function (37). Interestingly, interventions
with probiotics (38) or antioxidants (39, 40) may attenuate
D-galactose-induced brain senescence in animal studies.

Dietary Pattern
Accumulating evidence indicates that combinations of foods and
nutrients might have a synergistic effect and thus more benefits
on cognitive function than individual components. This may be
due to the improved micronutrient intake and overall health
and, of course, better microbiota composition in people adherent
to healthy diet. Some dietary patterns such as Mediterranean
diet (MeD), Dietary Approaches to Stop Hypertension (DASH)
and Mediterranean-DASH Intervention for Neurodegenerative
Delay (MIND) were associated with improved cognitive scores
in population aged ≥40 y (12, 41, 42). MeD, DASH and MIND
are plant-based diets with moderate to high consumption of fish,
whole grains, vegetables and fruit, nuts and limited amount of
red meat and sweets. Some differences between these diets lie
in the amounts of other foods and nutrients (41–44). Higher
adherence to MeD was associated with lower brain atrophy in
non-demented elderly adults (15, 18). In the meta-analysis by
van den Brink et al. higher MeD adherence decreased AD risk
in case-control and longitudinal studies (42). The longitudinal
studies showed a lower AD risk for high adherence to the
DASH and MIND diets and for moderate adherence to the
MIND diet (45, 46). Of note, the mentioned dietary patterns are
high in fiber promoting the growth of healthy GM. Moreover,
these diets contain nutrients associated with antioxidant and
anti-inflammatory properties and suppression of Aβ deposition,
including n-3 PUFAs, vitamin E, folate, carotenoids, and
polyphenols (44, 47). Elevated MUFAs consumption as part of
MeD and MIND diets is also considered to be beneficial for
reducing the dementia risk (12, 48).

GUT MICROBIOTA COMPOSITION AND
ALZHEIMER’S DISEASE

The previous data showed that the detrimental changes in the
GM composition result in increase of intestinal permeability and
systemic inflammation, which negatively affects the blood-brain
barrier integrity (49–51). Further, bacterial lipopolysaccharides
(LPS) and proinflammatory cytokines may activate microglia and
accelerate neuroinflammation which contributes to a neuronal
loss (7, 52–54). Activation of intestinal NLRP3 by gut flora was
also shown to be involved into AD pathogenesis. In animal model
upregulation of NLRP3 inflammasome after fecal microbiota
transplantation (FMT) from AD patients lead to activation
of systemic inflammation and neuroinflammation in the
hippocampus (55). The most discussed potential mechanisms of
GM impact on AD risk are associated with active metabolites and
signaling molecules such as: trimethylamine N-oxide (TMAO)
(56, 57), bile acids (58, 59), dysregulated P-glycoprotein (60),
kynurenine (61), and nuclear factor-κB-sensitive microRNA-
146a (62).

In addition, bacterial amyloid proteins prime the immune
system, thus triggering an immune response to the brain
amyloids and promoting the alpha-synuclein aggregation (63,
64). Therefore, an increasing number of studies are devoted
to the relationship between AD and GM. Significant changes
in the GM were demonstrated in many studies on AD
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mouse models. For example, 27 bacterial species from six
phylogenetic groups differed in SAMP8 mice compared to the
control (65). Significant differences in the GM composition
were also revealed for AD patients, both at the phylum and
species levels. Quantitative differences between AD patients
and healthy participants were found in 13 bacterial genera.
In particular, AD patients showed an increase in the number
of bacteria belonging to Proteobacteria and Bacteroidetes
phyla, together with a decrease in the representatives of
Firmicutes and Actinobacteria phyla. Additionally, researchers
demonstrated an association between the presence of some
genera in the gut and AD markers, such as Aβ42/Aβ40
and Aβ/p-tau ratio (66). Noted remarkable differences in the
bacterial diversity in the AD patients’ intestines compared
to healthy people were revealed in terms of taxonomic
groups such as Bacteroides, Actinobacteria, Ruminococcus,
Lachnospiraceae, and Selenomonadales (67). An increase of
genera Escherichia–Shigella, a member of Enterobacteriaceae,
and reduction of SCFA-producing genera was found by Hou
et al. (68). In another study, AD patients showed higher
prevalence of proinflammatory taxa and lower abundance of
butyrate-producing species, such as members of the Butyrivibrio
and Eubacterium genera, as well as Clostridium sp. strain
SY8519, Roseburia hominis, and Faecalibacterium prausnitzii
(60). Notably, infection with certain pathogens including
representatives of the oral or gut microbiome such as
Helicobacter pylori, Porphyromonas gingivalis, Candida albicans,
Candida glabrata, and others were found to be associated with
AD risk (69).

Due to obvious differences in the microbiome composition,
the first attempts to use microbial signatures as markers of AD
are being made (70). For example, a model that uses 20 typical
predominant genera can effectively distinguish patients with AD
and MCI from healthy individuals. Moreover, five functional
orthologs which differed in AD patients were identified by using
metagenomic data. The samples obtained from AD patients
showed a deficit of orthologs engaged into the biosynthesis of
the amino acids involved in the metabolism of neurotransmitters
(71). These results are in line with other studies which revealed
the dysregulation of tryptophan metabolic pathways in AD
patients (72, 73).

MICROBIOTA-MEDIATED LINK BETWEEN
NUTRITION AND ALZHEIMER’S DISEASE

Nutrition is one of the main factors that influence the GM
composition throughout the life course (74, 75). In turn,
microbiota mediate interplay between habitual diet and various
processes of a host organism, including cognitive performance
(6, 10). In this context the GM may interact with dietary factors
by contributing to energy homeostasis and metabolic risk factors
and modulating systemic inflammatory response through dietary
metabolites and also affecting the availability of nutrients which
are important for brain functioning (49, 50, 52, 76). Figure 1
summarizes the potential effects of nutrition and the GM on the
AD risk.

Short-Chain Fatty Acids
A positive impact of GM on neuronal homeostasis is associated
with short-chain fatty acids (SCFAs) derived from non-digested
polysaccharides (77). SCFAs were shown to affect brain functions
directly by improving blood-brain barrier integrity and affecting
glial cells or indirectly by modulating the immune response,
and activating vagal and humoral pathways of the gut-brain
axis (78–81). SCFAs such as acetate, propionate, and butyrate
regulate many cellular functions via binding to G-protein-
coupled receptors (82). Moreover, acetate and butyrate are also
well-known inhibitors of histone deacetylases, which activity is
associated with cellular aging (83, 84). Anti-inflammatory and
neuroprotective capacities of SCFAs were foundmainly in animal
studies or in vitro (85–87). In contrast, in one study increased
Aβ plaque deposition was demonstrated in germ free AD mice
fed with SCFAs (88). In human studies acetate and valerate as
well as bacterial LPS were connected with an enhanced amyloid
deposition in the brain. Conversely, a high serum level of butyrate
was found to be associated with fewer amyloid plaques (89).

Polyphenols
Current findings indicate that GM closely interacts with dietary
polyphenols using them as a food source for its own growth
and providing newmicrobiota-derivedmetabolites. Thus, dietary
polyphenols were shown to promote growth of Lactobacillus spp.
and Bifidobacterium spp. and inhibited potentially pathogenic
species (90, 91). On the other hand, GM potentially enhances
the bioavailability of phenolic metabolites to the host (92, 93).
Benefits of polyphenols and their metabolites in prevention of
cognitive decline associated with its anti-inflammatory properties
were reported previously (94–97). For example, gallic acid, which
is a bacterial-derived metabolite of anthocyanins, was shown to
decrease Aβ deposition, reduce neuroinflammation and oxidative
stress in brain of AD mice (98). Noteworthy that polyphenols
and their metabolites may enhance the intestinal barrier integrity
and thus decrease the local and systemic inflammation (99–
101). Accordingly, the GM activity contributes to cognitive
promotion effect of polyphenol-rich dietary patterns like MeD,
DASH, and MIND. Particularly, a positive association between
certain phenolic compounds and abundance of a butyrate-
producing Faecalibacterium prausnitzii was found in healthy
adults adherent to MeD (102).

Trimethylamine-N-oxide
TMAO, which is a bacterial-derived metabolite of dietary
choline, betaine and l-carnitine, was shown to be related to
cognitive decline and AD (56, 57). An increased TMAO level
in cerebrospinal fluid was found in individuals with MCI as
well as with AD. Moreover, elevated TMAO in the cerebrospinal
fluid was associated with markers of neurodegeneration (57).
It is suggested that the TMAO blood level may depend
on various factors, including the diet, GM composition,
liver enzymes activity and urinary excretion (103, 104).
However, the interaction between TMAO, its precursors, and
neurodegeneration remains not fully understood. All of TMAO
dietary substrates were previously found to be beneficial for
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FIGURE 1 | The role of nutrition and gut microbiota in the pathogenesis of Alzheimer’s disease.

the cognitive function (105–110). Systematic reviews and meta-
analyses elucidating the impact on cognition of food rich in
TMAOprecursors such asmeat, eggs, dairy products, andmarine
fish demonstrated mixed results, although fish intake seemed
to improve cognitive performance (12, 21, 32–34). Interestingly,
marine fish already contains an increased amount of TMAO
(103, 111). Studies with food or supplements rich in TMAO
precursor failed to increase fasting plasma TMAO in young
healthy adults (112, 113). Despite this, a concomitant increase in
plasma choline, betaine and gamma-butyrobetaine was observed
in study by Berge et al. (112). Switching to the MeD did not affect
fasting TMAO, choline, betaine, and carnitine in healthy adults
with an increased colon cancer risk (114). However, in another
study daily red meat consumption (meat protein was 12% of
daily energy) elevated TMAO concentration in plasma and urine.
Moreover, red meat intake decreased TMAO renal excretion
(115). Thus, it remains unclear whether consumption of TMAO
precursors should be restricted for better cognitive performance.

Current findings showed that the impact of microbiota on
TMAO metabolism may be related to an abundance of strains
producing trimethylamine (TMA). Among the TMA-producing
species belonging to Firmicutes and Proteobacteria phyla the
representatives of Clostridium, Escherichia, and Proteus genera
were identified (116). It is notable that cognitive impaired
patients with Aβ deposition had higher abundance of the genus

Escherichia/Shigella as compared to Aβ negative patients and
healthy controls (117). In other studies, healthy individuals
with a higher Firmicutes to Bacteroidetes ratio demonstrated an
increased production of TMAO from choline and carnitine rich
food (118, 119). Negative correlation was found between the
Akkermansia mucinophilia presence and fasting plasma TMAO
in healthy adults at risk for colon cancer (114). Additionally, the
GM was shown to regulate TMAO production via the impact on
converting enzyme activity in the liver (117). However, in other
neurodegenerative diseases lower plasma TMAOwas reported to
have worse prognostic implications (120, 121). Altogether, the
existing data indicate that the interaction between TMAO, its
precursors and cognitive impairment is more complex than a
direct link and GMmay play in it one of the key roles.

Prebiotics and Probiotics
The modulation of systemic inflammatory response with
prebiotics and probiotics can be part of a comprehensive
approach to slow down the cognitive decline through an
impact on gut-brain axis (122, 123). A positive effect on
cognitive performance for diets rich in fiber and polyphenols
can partially be attributed to the prebiotic properties of the
mentioned nutrients. Studies on AD mouse models revealed
neuroprotective effects for some non-digested fermentable
carbohydrates, such as mannan oligosaccharide (124), Morinda
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officinalis oligosaccharides (125), xylooligosaccharides (126),
yeast β-glucans (127), lactulose and trehalose (128). Currently,
human studies of prebiotics impact on cognitive function in AD
patients are scarce.

Animal studies on probiotics showed that feeding with
Bifidobacterium breve A1 restored the impaired cognitive
behavior and suppressed neuroinflammation in the hippocampus
of AD mice (129). Human interventions with Bifidobacteria spp.
revealed an improvement in cognitive scores under up to 6
months supplementation in elderly adults with MCI (130, 131).
The interventions with probiotics in AD individuals as of today
are quite limited but still promising. Shot-term supplementation
with multispecies probiotic did not change cognitive scores
in AD patients but affected the microbiome leading to an
increase in Faecalibacterium prausnitzii and decreased intestinal
permeability. A concomitant increase in serum neopterin and
tryptophan breakdown marker could indicate the stimulation of
the immune system (132). In small research of supplementation
with probiotic-fermented milk AD individuals demonstrated a
decrease in inflammatory and oxidative responses, reduction of
DNA damage and apoptosis in peripheral blood leucocytes (133).
In another study, probiotic stains plus selenium supplementation
resulted in a better cognitive score in AD patients. Moreover,
probiotics enhanced the selenium effect on the reduction of high
sensitive C-reactive protein and an increase in total antioxidant
capacity and the glutathione level (134).

FECAL MICROBIOTA TRANSPLANTATION

FMT is a transfer of fecal material from a healthy donor
into the patient’s gastrointestinal tract. This procedure is a
powerful means of regulating the GM and is being actively
studied for many diseases at the moment. Despite this approach
being promising, we have very limited data on the use of this
method for AD (135). FMT from WT mice into ADLPAPT mice
improved intestinal barrier integrity and decreased the formation
of amyloid plaques and neurofibrillary tangles in animal brains
(136). In another ADmouse model FMT from healthy individual

following FMT from AD patients decreased the expression of
pro-inflammatory cytokines in blood and hippocampus and
improved cognitive ability of animals (55). One case study
reported long-term improvement in themental acuity of 82-year-
old patient after FMT (137).

CONCLUSION

Existing evidence suggests that dietary lifestyle changes may
affect cognitive function. Certain nutrients appear to be beneficial
in maintaining neuronal homeostasis and slowing cognitive
decline. Along with it, the most convincing evidence was
reported for whole-diet approaches such as MeD, DASH, and
MIND. One of the key roles in the diet impact on cognitive
performance and AD risk belongs to the composition and
functional activity of the GM. It has now been shown that
microbiota affects brain functions through various metabolites
with potentially positive or, conversely, toxic properties.
Moreover, by converting food precursors, the intestinal flora
regulates the availability of nutrients important for cognition. It
seems that the GM involvement in the SCFA and polyphenols
metabolism may contribute to the cognitive promotion effect of
healthy dietary patterns. In addition, the use of probiotics can be
part of a comprehensive approach to delay neurodegeneration.
However, for a long-term GM modification, a whole-diet may
have advantages over nutrients alone or in combination. Overall,
the GM is an important factor to be considered in future research
of dietary effects on cognitive function. Thus, the underlying
mechanisms of interaction between nutrition, microbiota, and
the host require additional studies for developing effective dietary
strategies within integrated AD prevention and control.
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