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We and many others have noted the advantages of using heterogeneous (HS)

animals to map genes and gene networks associated with both behavioral and

non-behavioral phenotypes. Importantly, genetically complex Mus musculus crosses

provide substantially increased resolution to examine old and new relationships between

gene expression and behavior. Here we report on data obtained from two HS

populations: the HS/NPT derived from eight inbred laboratory mouse strains and

the HS-CC derived from the eight collaborative cross inbred mouse strains that

includes three wild-derived strains. Our work has focused on the genes and gene

networks associated with risk for excessive ethanol consumption, individual variation in

ethanol consumption and the consequences, including escalation, of long-term ethanol

consumption. Background data on the development of HS mice is provided, including

advantages for the detection of expression quantitative trait loci. Examples are also

provided of using HS animals to probe the genes associated with ethanol preference

and binge ethanol consumption.

Keywords: RNA-Seq—RNA sequencing, alcohol use disorder (AUD), genetic variability, gene networks, excessive

ethanol consumption

INTRODUCTION TO HS MICE

McClearn and Rodgers (1) observed that among five inbred mouse strains there was a marked
difference in ethanol preference (2-bottle choice, water vs. 10% ethanol). Of the strains tested,
the C57BL/6 (B6) showed the highest preference. This experiment, with numerous variations,
has been repeated hundreds of times [e.g., (2)] with the B6 strain consistently showing a high
preference. Further, the B6 strain shows the highest binge ethanol consumption when tested in the
Drinking-In the-Dark (DID) model (3). These data have cast a long shadow on ethanol research
resulting in the almost exclusive use of the B6 strain to test for mechanisms of ethanol action and
for new therapeutic treatments. This monoculture focus has some obvious advantages including
replicability across laboratories and the ability to use genetically modified mice, which are almost
exclusively on a B6 or largely B6 background, for hypothesis testing. These and related advantages
are substantial. However, the major disadvantage of using the B6 strain or even B6 diallel crosses
(e.g., B6 × DBA/2 [D2]) is that the biology extracted may not be generally applicable. Thus,
important pathways are missed due to the lack of genetic diversity and further, individual variation,
a key component of some analyses, will be substantially reduced. One solution to these problems is
the use of outbred mice and heterogeneous stocks (HS) [see e.g., (4, 5)].
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The first widely used mouse HS appears to be the HS/Ibg,
described by McClearn et al. (6). This HS was a cross of 8
laboratory mouse strains; the cross was begun at Berkeley before
the mice were transferred to the Institute for Behavioral Genetics
(Boulder), hence the Ibg designation. For an 8-way cross there are
>40,000 possible breeding funnels. Rather than dealing with this
issue, the colony was formed balancing for the Y chromosome
from each of the founder strains. The colony was maintained at
∼40 families. These mice served as the founders for a number
of alcohol-related selected lines including the Long Sleep/Short
Sleep, Withdrawal Sensitive Prone(WSP)/Withdrawal Sensitive
Resistant (WSR), the FAST/SLOW and the High Alcohol
Preference/Low Alcohol Preference lines (7–10). Here, we briefly
focus on the replicate WSP/WSR selected lines; the lines were
selectively bred for withdrawal severity after cessation of 3 days
of ethanol vapor exposure. Crabbe et al. (11) discussed the
consilience of the mouse genetic models with human genetics
in some detail. It was concluded that the overlap was greatest
for tolerance and withdrawal and that for both mice and
humans, these phenotypes had independent genetic risk. From
the perspective of alcohol use disorder, the question naturally
arises as to whether the WSP and WSR lines differ in ethanol
consumption. Previous studies in animals with a B6xD2 genotype
[see details in Metten et al. (12)] suggested a strong negative
genetic relationship between withdrawal and consumption,
although there are exceptions (13). In the WSP/WSR lines
derived from HS founders, the situation appears more complex.
Crabbe et al. (13) found, as predicted, the WSR-2 line had
significantly higher preference than the WSP-2 line, but the
opposite line difference was found for the WSP-1 and WSR-
1 lines. Regarding drinking in the dark (DID), a model of
binge consumption (see below), both WSP lines consumed
more ethanol and had higher BECs than the WSR lines; thus,
greater genetically-determined withdrawal severity predicted
higher ethanol consumption, opposite to previous findings (12).
Turning things around, the High DID-1 and−2 selected lines
(selectively bred from HS/NPT founders—see below) do not
differ in withdrawal severity after cessation of vapor inhalation.
There aremany interpretations of these data. However, we simply
wish to make the point that lessons learned from simple crosses
may not apply to HS and vice-versa.

In 1991, Gerry McClearn suggested to one of us (RH) that
there was a need for a new HS. Two of the HS/Ibg founder strains
(Is/Bi and RIII were no longer available for testing) and random
genetic drift over the >25 years of breeding was likely to have
significantly distorted allele frequencies. Our interest at the time
was not in ethanol-related behaviors, but rather in haloperidol-
induced catalepsy [see e.g., (14)] and in developing haloperidol
response selected lines. The 6 HS/Ibg founders available for
testing were skewed to very haloperidol responsive strains. Two
non-responsive strains (CBA/J and LP/J) were chosen to fill out
the 8 founders for developing a new HS. However, it should be
noted that the 8 strains included 2 representatives each from
4 different phylogenetic clades [see Figure 1b in (3)]. The new
HS was formed by pseudo-random breeding at the Northport
VA, hence the NPT designation. The first report on the HS/NPT
is found in Hitzemann et al. (15). For more than 25 years,
the HS/NPT have been maintained as 48 families using a circle

breeding design. HS/NPT were first used in ethanol research to
fine map a QTL for ethanol-induced locomotor activation on
chromosome 2 (16).

Breeding pairs from each of the 48 HS/NPT families were
shipped in 2000 to Jonathan Flint (Oxford, U.K). Over the next
several years >2,400 animals were phenotyped for a variety
of physiological and behavioral traits (17). Valdar et al. (18)
examined the genetic and environmental effects on 88 of these
traits and mapped the QTLs for 97 traits to a reasonably high
resolution (19). Huang et al. (20) mapped eQTLs in a subset
of the tested animals; data were obtained for the hippocampus,
liver and lung. Although these authors noted a large number
of hybridization artifacts for detecting eQTLs, the data obtained
remain an important feature in evaluatingHS/NPT data. Of equal
importance, the 8 HS/NPT founders were among the 17 strains
initially sequenced as part of the Mouse Genomes Project (21).

Twenty years ago, members of the Complex Trait Consortium
(CTC), later renamed the Complex Trait Community, began a
series of meetings to develop the Collaborative Cross [CC] (22).
The CC was proposed as a large panel of recombinant inbred
(RI) strains derived from a genetically diverse HS. The initial
plans were to develop more than 1,000 RI strains. Much of the
early CC planning sessions focused on determining the 8 strains
that would be crossed to form the HS founders. How the final 8
strains were chosen could easily be the subject of another review.
There was however, general agreement that three wild-derived
strains (WSB/EiJ, CAST/EiJ, and PWK/PhJ) would be included,
which in turn would boost the overall HS genetic diversity to
more than 90% of what is available in Mus musculus [see (23)].
In 2005, we began crossing the 8 CC founder strains. Thirty-two
unique breeding funnels were used and each funnel was bred
in duplicate [see (24) for breeding details]. Of the 64 breeding
funnels, 3 produced no offspring, but each was unique. The 32
families were expanded to 48 and have been bred continuously
since 2007 using a circle breeding design. This HS was designated
the HS-CC (25).

The Diversity Outbred HS were formed by crossing 144 of
the partially inbred CC lines [see (26) for breeding details]. The
DO colony is maintained as a panel of ∼175 breeding pairs; all
matings are randomized with avoidance of sibling matings. The
HS-CC and DO were compared in (27). Of particular note, a
meiotic drive locus on chromosome 2 has been eliminated from
the DO but not the HS-CC. However, this difference does not
appear to have affected the high ethanol preference found in both
the HS-CC and DO. Given the larger DO breeding population,
genetic drift in the DO compared to the HS-CC will be slower.
Compared to the HS/NPT, ethanol preference in the HS-CC and
DO is 3–4 times higher. The reason for the higher preference in
both populations would appear to be at least partially associated
with the fact that in addition to the B6 strain, the PWK/PhJ
founder strain also has a high ethanol preference (28).

TRANSCRIPTOMICS IN HS POPULATIONS

Sandberg et al. (29) were the first to detect differences in
genome-wide brain gene expression between 2 inbred mouse
strains (B6 and129S6/SvEvTac). Several differentially expressed
(DE) genes aligned with known behavioral quantitative trait loci
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(bQTLs). For example, Kcnj9 was DE and is located on distal
chromosome 1 in a region where bQTLs had been identified
for locomotor activity, alcohol and pentobarbital withdrawal,
open-field emotionality, and certain aspects of fear-conditioned
behavior. This study was unable to determine whether or not
the elements regulating Kcnj9 expression were located within
the bQTL intervals and/or near the gene locus. However, it
is possible to make such links by combining gene expression
and genotype data. Jansen and Nap (30) termed this approach
“genetical genomics.” This approach was quickly adopted to
examine gene expression in Arabidopsis, Drosophila, yeast, and
themouse [see (31) and references therein]. The expressionQTLs
(eQTLs) can be classified as either cis (mapping near the gene
locus) or trans (mapping elsewhere in the genome) (32). When
bQTLs and cis-eQTLs overlap, the cis-eQTL genes are inferred as
causal genes [see e.g., (32)].

This general strategy from the perspective of HS populations
has evolved in several important ways. First and beginning
with Talbot et al. (33), mapping QTLs, including eQTLs in
advanced HS populations has become relatively straightforward.
QTL intervals of 1–2 Mbp can be routinely obtained and a
haplotype signature for each QTL can be extracted. Behavioral
and gene expression data are generally available for the founder
strains, which facilitates the mapping process. Rather than using
relatively expensive microarrays, very cost effective genotype
information can now be obtained by low density genome-
wide sequencing, which builds upon the detailed founder strain
sequence information. Second, mouse microarrays used probes
based on B6 sequence. Because of hybridization errors, this was
problematic even for di-allele crosses and resulted in false positive
eQTLs [see e.g., (34)]. For HS populations, the hybridization
artifacts increase dramatically. RNA-Seq essentially solved this
problem. However, RNA-Seq has its own set of problems
and biases, which have been detailed elsewhere [e.g., (4, 35)].
Importantly for expression analysis in HS populations, alignment
errors can occur. Although most RNA-Seq experiments use
polyA+ RNA libraries, ribosome depleted RNA libraries can be
used to also look at the expression of non-coding RNAs. Third,
regardless of whether one uses microarrays or RNA-Seq for
genome-wide studies, one is making thousands of comparisons.
The number of independent comparisons is fewer than the
number of genes detected since gene expression can be collapsed
into modules with similar expression patterns. Perhaps the most
widely used algorithm to detect these modules is the Weighted
Gene Co-expression Network Analysis (WGCNA) (36), although
there are many others. In the WGCNA, the general procedure
is to extract the module eigengene (first principal component)
and determine how well the eigengene aligns with the phenotype
of interest. Since the number of modules formed is generally
relatively small (e.g., 30–40), the multiple comparison penalty
is greatly reduced. This approach is relevant to HS animals for
at least two reasons. One, given that RNA-Seq is the preferred
technology to analyze gene expression in HS populations, it
should be noted that because of the difference in variance
structure (compared to microarray data), RNA-Seq datasets have
an advantage when constructing co-expression networks (37).
Two, the expression variances in HS animals are higher than

those found for diallel crosses of laboratory mouse strains (37).
Although it may seem superficially counter-intuitive, increased
variance will, up to a point, improve co-expression detection.
Finally we note that the network based approaches allow one to
differentiate hub and leaf nodes. Module hub nodes are generally
defined as those in the top 10–20 percent of module connectivity,
while the leaf nodes are those that collectively contribute the
bottom 10 percent of connectivity.

Although not explicitly stated in the argument for developing
the CC (22), one could imagine that by including the 3 wild-
derived strains, splicing complexity would greatly increase.
Related arguments could be used for developing any HS
population. Zheng et al. (38) examined the splicing issue
with paired-end sequencing (>160,000,000 reads/strain) of
the ventral striatum in the 8 CC founder strains. Mapped
junctions were >360,000 for all strains; but only 50% of these
junctions were annotated. Strain specific splicing (SSS) events
were those detected in only one strain. Sixty-four thousand
strain-specific junctions were identified when all junctions
were considered; however, for junctions with ≥3 or ≥10 read
coverage, the numbers dropped to an average of∼3,000 and 500,
respectively. The wild-derived strains, CAST/EiJ and PWK/PhJ,
were demonstrated to have the highest percentages of strain-
specific junctions. Some of these junctions were confirmed using
qPCR. From the perspective of genetic diversity and splicing, this
study should be seen as a starting point. The read density would
likely need to be an order of magnitude higher to reliably detect
rare splice junctions and rare SSS events. Further, any survey
would need to include multiple brain regions.

HS4 MICE AND MULTIPLE-CROSS
MAPPING

We briefly introduce here the HS4, a relatively short-lived HS
population (2001–2011). The HS4 was formed by crossing the
B6, D2, BALB/cJ, and LP/J strains. Breeding details for the
HS4 are found in Iancu et al. (24). It is important to note
that a HS derived from only 4 strains can easily be completely
balanced, while for an 8-way cross this is practically impossible
(see above). A comparison of eQTL mapping in a B6xD2 F2,
the HS4 and HS-CC is found in Iancu et al. (24). Two analysis
methods were compared: HAPPY (39) and EMMA (40); the
methods were also combined to produce joint method (JM).
Single-marker (SM) QTL analysis tests for association between
genotype at individual markers and the phenotype of interest
here, gene expression. EMMA implements a variant of SM
analysis. One essential feature of EMMA is to efficiently control
for sample relatedness. HAPPY integrates information from
several markers, and estimates the probability of descent from
each of the founder strains and evaluates if there are significant
phenotype differences between alleles inherited from the different
progenitor strains. Perhaps the key observation from these
analyses was the superior performance of the HS4 for detecting
both cis and trans effects on gene expression when compared to
the F2 and HS-CC. The superior performance was true regardless
of the method used.
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The HS4 were part of a project we and others termed
multiple cross mapping (MCM). A summary of this project
is found in Hitzemann et al. (41). Our interest in MCM was
triggered by the observation that an open-field activity QTL was
independently detected in three different mouse F2 intercrosses
(B6xD2; B6xA; B6xBALB/c) (42–44); however, the QTL was not
detected in D2xBALB/c or D2xLP crosses (45). We proposed
that the information detected from multiple crosses could be
used to sort microsatellite or SNP markers in order to detect
chromosomal regions with the highest probability of containing
QTLs. Empirically, the data described above suggested that
there must be a region or regions on chromosome 1 where
three strains (i.e., D2, BALB/c and A strains) are identical
and different from the B6. Given that it was not possible to
easily sequence the region(s) of interest, MCM appeared to
be a reasonable approach. The down-side of MCM was that
each cross required several hundred animals to be phenotyped
and genotyped, whereas mapping in a HS would require fewer
animals and provide greater precision [see Figure 15 in (41)].
With the advent of sequence data for the inbred mouse strains
(21) and improvements in genotyping technology, including
reduced costs, the MCM approach was no longer appropriate
or necessary.

HIGH DRINKING IN THE DARK (HDID)
SELECTED LINES

Rhodes et al. (46) introduced the Drinking-In-the Dark (DID)
procedure as a simple model of ethanol drinking to intoxicating
blood ethanol concentrations (BECs). B6 mice regularly drank
to BECs >1 mg/ml. Subsequently (3), DID was examined in a
panel of inbred strains that included the 8 HS/NPT founders.
The highest BECs (4 h DID trial) were obtained in the B6
and BALB/c strains, with males having somewhat higher BECs
than females, even though females consumed higher amounts of
ethanol. For all strains, the relationship between consumption
and BECs was at best complex. Crabbe et al. (47) reported
on the selection of the HDID-1 line; HS/NPT mice were the
founders. The selection phenotype was the BEC at the end of
a 4 h DID trial from the ingestion of a 20% ethanol solution.
After 11 generations of selection, the BEC increased from 0.30
to 1.07 mg/ml. A replicate HDID selection (HDID-2) followed
the HDID-1 selection. The lines were separated by 7 generations
of breeding, but the selection response was largely identical [see
Figure 3 in (48)]. Interestingly, the microstructure of drinking
in the HDID-1 and -2 lines is different. HDID-1 mice drink
in larger ethanol bouts than the HS founders, whereas HDID-2
mice drink in more frequent bouts (49). The observation that the
two HDID lines appear superficially phenotypically similar but
do show important differences is not unique to these replicate
lines [see e.g., (50)]. In general, this should not be unexpected
for a complex trait where no genes have a very large effect
and where different allelic combinations can lead to a largely
similar phenotype.

An issue we have indirectly addressed over the past few
years is whether the transcriptional profiles associated with DID

and ethanol preference overlap. Related to this issue, when
compared across panels of inbred strains, DID and 2-bottle
choice preference consumption appear to show some genetic
overlap (3). Crabbe et al. (51) examined this issue in greater
detail by looking at preference consumption in HDID-1 and
the founder HS/NPT mice. The conclusion reached was similar;
preference and DID consumption showed some genetic overlap,
but this depended on the assay being used.

HDID SELECTED LINES AND GENE
EXPRESSION

Iancu et al. (52) used the Illumina Mouse 8.2 array to
examine gene expression in HDID-1, HDID-2, and HS/NPT
mice (N = 48/group balanced for sex). An early version of
the Mouse Universal Genotyping Array (MUGA) was used for
genotyping; the MUGA contained 7,851 SNP markers, with an
average spacing of 325 ± 191 kb. After elimination of non-
polymorphic or low frequency (below 2.5%) SNPs, the data
contained 3,683 markers further analyzed using a marker by
marker approach (53, 54). The genotype data extracted (Figure 1)
illustrated two important points. One, compared to the HS/NPT
founders, genetic variance was strikingly reduced in both of
the selected lines, presumably the result of the inbreeding that
occurs when using a relatively small number of families for
selection. Two, the genotype data illustrated that the selected
lines were genetically distinct. The QTL analysis confirmed this
point. Five unique QTLs exceeding the adjusted LOD threshold
of 10.6 were found in the HDID-1 line and three unique
QTLs were found in the HDID-2 line. There were however,
three common QTLs on chromosomes 4, 14, and 16, each of
which were mapped to relatively good (<5 Mbp) resolution. Of
relevance to subsequent discussions, the Chr 14 QTL contained
only 1 gene, protocadherin 17; the haplotype signature of the
QTL corresponds to the LP/J strain being different than the
other 7 founder strains. The QTL on Chr 4 has a similar
haplotype (LP/J different from other founders) and a similar
position and haplotype to a startle response QTL reported
previously (19).

The gene expression analyses reported in Iancu et al. (52)
and especially the integration of the differential expression
and network analyses, set a pattern that has been repeated in
our subsequent studies. The DE genes are in general, poorly
connected to the co-expression network; i.e., the DE genes are
largely leaf nodes. This cannot be unexpected. Unless the change
in expression is very large, to detect DE the variance must be low.
In contrast, construction of the co-expression network depends
on a robust but biologically relevant variance structure. There
were marked differences between the HDID-1 vs. HS/NPT and
HDID-2 vs. HS/NPT in terms of the number of DE (FDR <

0.1) transcripts (1,430 vs. 301). One hundred and four transcripts
were differentially expressed in both comparisons; 94 of these
had the same directionality. A majority of the DE transcripts (85
out of 94) were found among the gray-network module, which
is reserved for the poorly connected transcripts. GO annotation
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FIGURE 1 | Genome-wide genetic distances between the HDID-1 and -2 selected lines, HS/NPT animals and the inbred strains used to form the HS/NPT. Details of

the animals used are found in the Methods in (52). Data are presented as a multidimensional scaling (MDS) plot. Note the greater dispersion in the HS/NPT animals

when compared to the HDID-1 and HDID-2 selected lines and the differences between the two selected lines. Also note that among the inbred strains the C57BL/6J

is distinct from the other 7 founders. Figure reprinted with permission from (52).

of the DE genes revealed significant enrichments in extracellular
region part (p < 2 × 10−3) and the extracellular matrix
(p < 5× 10−3).

A consensus network approach (55) was used to evaluate
the effects of selection on transcriptome organization. Based
on previous empirical observations (25), we concluded that
in order to form modules of very high quality, sample
sizes of ∼ >40 are required [see Supplemental Table 2 in
(52)]. With modules of high quality, module disruption is
relatively easy to detect (module disruption may be either a
significant increase or decrease in module connectivity). Separate
networks were formed using the HS/NPT and each HDID

line’s expression data; differences between these networks were
evaluated against random changes. An empirical distribution
of random changes was generated by constructing networks
(N = 1,000) using a mixture of samples from the HS/NPT
and HDID animals. Bootstrapping and statistical significance
assessment was performed over samples. Despite the genetic
differences noted above, two of the co-expression modules (black
and magenta [color has no meaning]) were similarly affected;
i.e., the modules were significantly disrupted (see Figure 2).
Both modules were highly enriched in neuronal genes (black
module—p < 3 × 10−27; magenta module—p < 3 × 10−5). GO
annotation of the black module revealed significant enrichments
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in neurological system process (p < 5 × 10−6), glutamate
secretion (p < 7 × 10−5), and neurotransmitter transport (p
< 8 × 10−5). GO annotation of the magenta module revealed
significant enrichments in neuropeptide hormone activity (p <

2 × 10−5), peptide receptor activity (p < 9 × 10−5), and post-
synaptic membrane (p < 2 × 10−4). The progressive effects
of selection on Dgkz, a gene found in the black module and
known to be associated with glutamate neurotoxicity and brain
trauma, are illustrated in Figure 3. Genemodule connectivity was
increased in the HDID-2 animals and further increased in the
HDID-1. Examples of selected genes in the magenta module and
significantly affected by selection are found in Table 1 in (52).
We bring two points to the readers’ attention. The first is that

both selections have affected a subgroup of GABA and glutamate
related genes; this will be a familiar observation. The second
point is the observation that selection affected the neuropeptide
Y system. Manipulation of the neuropeptide Y system affects
both DID and ethanol preference consumption [see (56) and
references therein]. There is some evidence, at least for ethanol
preference that these effects may be genotype-dependent (57).

Hoffman et al. (58) is the brain gene expression study focusing
on ethanol preference that appears to be closest to Iancu et al.
(52). Gene expression in HAP3 and LAP3 animals derived from
HS/Ibg mice (59) were analyzed using Affymetrix microarrays.
Although the analysis strategies were different, there appears to
be no overlap of the DE genes detected in Iancu et al. (52).

FIGURE 2 | Multidimensional scaling (MDS) plots of the coexpression networks in HS/NPT (A), HDID-2 (B), and HDID-1 (C) datasets. For visual clarity, only the 4

modules most consistently affected by selection (“black,” “magenta,” “dark-red,” and “green”) are depicted. Each dot represents a transcript, with colors

corresponding to module assignments. The distances between points correspond to network adjacency. The figure illustrates (1) the modularity of the networks, with

similar colors clustered together and (2) the effect of selection on the network structure, with HDID-1,2 diverging from the original HS/NPT network structure. In

particular, the “dark-red” module appears more dispersed, while the “magenta” module appears more compacted in the selection networks. Figure reprinted with

permission from (52).

FIGURE 3 | The effects of selection on intra-modular connectivity for Dgkz. Dgkz is found in the “black” module. Edge thickness and opacity are proportional with

network adjacency between Dgkz and other module transcripts. The intra-modular connectivity of the other module genes is reflected in the node size. (A) HS/NPT

network connectivity. (B) HDID-2 network connectivity. (C) HDID-1 network connectivity. Note the more pronounced increase in connectivity in the HDID-1 as

compared to the HDID-2 animals. Figure reprinted with permission from (52).
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Following on Iancu et al. (52), Iancu et al. (60) used RNA-
Seq to compare the ventral striatal transcriptome of ethanol
naïve HDID-2 mice and HS/NPT founders. Sample sizes were
sufficient to analyze the male and female data separately. For
females, the number of DE (FDR < 0.05) genes was 227;
there was no significant GO enrichment for this grouping.
For males, there were 1,525 DE genes, 836 and 689 genes
were down- and up-regulated; 153 genes overlapped with the
female grouping. Analysis of the down-regulated genes revealed
significant enrichment in genes associated with extracellular
matrix (ECM) organization and immune system process. No
significant GO enrichment categories were detected for the up-
regulated genes.

Beginning with Colville et al. (61) (see below), we introduced
the differential variability (DV) metric into our analysis strategy
[see (62–64)]. This computationally simple procedure identifies
those genes that are likely to show a change in network
connectivity. “For the DV metric, selection significantly (FDR
< 0.05) increased the variability of 1,498 female genes and 766
male genes; 82 genes overlapped. Included in the overlapping
subset were Calb2, Gabrq, Nos1ap, Oxt, Pomc, Pvab, Slc6a11,
and Trh. For female genes with increased variance (N = 1,418),
there was significant enrichment in annotations that included
extracellular space, plasma membrane part, signaling receptor
activity, and extracellular matrix organization. For female genes
with decreased variance (N = 80), significant enrichment was
detected for cytoskeleton of presynaptic active zone and axon
part; genes involved included Bsn, Pclo, Syn1, Myoc, Nav1,
Tubb4a, Cplx2, and Ank3. Formale genes with increased variance
(N = 663), there were significant enrichments in GO categories
that included modulation of synaptic transmission, voltage gated
cation channel activity, plasma membrane part, and synapse
part. Genes in the latter category included Grin2a, Grin2b,
Dlg4, Gabbr2, Grm2, Pdyn, Gabra1, and Camk2a. For male
genes with decreased variance (N = 103), there were significant
enrichments in GO categories associated with biological adhesion
and extracellular part. From the perspective of the DV metric,
which is closely aligned with network connectivity, the female
and male data were largely mirror images” (64).

Additional analyses of this data set are found in Iancu et al.
(60). However, the main observations are noted above. Two
of these observations we wish to emphasize. The first is the
involvement of neuroimmune systems, at least in males, in the
DID phenotype. These data are consistent with the neuroimmune
hypothesis of alcohol use disorder (AUD) (65). Sex differences
in the alcohol-induced neuroimmune signaling are discussed
elsewhere (64). The second point of emphasis are the data
pointing to the involvement of the ECM. Alcohol and other
drugs of abuse can have marked effects on ECM constituents
[reviewed in (66–68)]. Ethanol has been shown to affect the brain
expression of tPA (or Plat) (69, 70), Mmp-9 (71), Bcan & Ncan
(72), and Tsp2 & Tsp4 (73). Some data show that all elements of
the brain ECM—the basement membrane, the interstitial ECM
and the perineuronal nets– are affected by acute and/or chronic
ethanol treatment (67). The evidence that changes in the brain
ECM are associated with the risk for developing an AUD are
less compelling. However, polymorphisms have been detected in

Mmp-9m, Tnc& Tnr in human alcoholics (74, 75). Genome-wide
association studies (GWAS) have revealed a polymorphism in
Col6a3 associated with alcoholism (76). Our data illustrate that
HDID risk is associated with ECM associated genes in both males
and females.

A common observation in both basic science and clinical
populations is that substantial individual variation is retained
even in groups at high risk for excessive ethanol consumption.
Interestingly, this individual variation is seen even within inbred
mouse strains such as the B6 [see (77)]. We asked whether
the genes associated with individual variation in HDID-1 mice
are different from those associated with selection (risk) (78).
Thirty-five HDID-1 mice (18 males and 17 females) phenotyped
for their BECs at the end of a standard 4-day DID trial, were
sacrificed 3 weeks later. RNA-Seq was used to analyze the
striatal transcriptome. Pearson correlations were used to assess
the relationships between gene expression and the BEC. Five
hundred and fifty-seven genes (375 positive vs. 182 negative)
met the criteria for inclusion in the gene set enrichment analysis.
The most significant (FDR < 0.01) annotation enrichments were
for the positively correlated genes [Table 2 in (78)]. Broadly, the
enriched gene categories were associated with the regulation of
synaptic function. Genes associated with the category included
Grik5, Syn1, Stxbp1, Stx1a, Rims4, Rims1, and Stx1b Camk2g,
Chrm3, Crhbp, Gria3, Grin1, Strn4, Syngap1 and Syt2. These
data generally differ from those reported by Mulligan et al. (77)
for individual DID variation in B6 mice. Given the differences
in experimental design, such differences cannot be unexpected.
However, perhaps their most salient conclusion is consistent with
our results. “One hypothesis that evolved from our modular
network analysis is that striatal medium spiny neurons may react
to acute alcohol consumption with transcriptional changes that
may underlie subsequent changes in behavior, including alcohol
preference, tolerance and dependence” (77).

HS-CC AND ETHANOL PREFERENCE

HDID selection has only used HS/NPT founders. Thus, there
is no way to actually know if a different and/or simpler
founder cross would yield similar results. However, for ethanol
preference, we do have data that gets very close to this
issue (see below). For those unfamiliar with alcohol preference
research, selection from B6xD2 intercross animals and/or data
collected from BXD RI strains has yielded remarkably consistent
preference results for almost 30 years [see e.g., (79–81)].

Colville et al. (82) examined the transcriptional changes
across three brain regions associated with selection for
ethanol preference (24h/7d, 10% ethanol vs. water) from
HS-CC founders. The three brain regions examined were the
nucleus accumbens shell, the prelimbic cortex, and the central
nucleus of the amygdala (CeA). Sample sizes were moderate
(N = ∼30/region/line). The selection protocol was short-term,
terminated after four generations of selection. In the “High” line,
ethanol preference more than doubled to ∼0.5 whereas in the
“Low” line preference was <0.1. As expected [see (83)] there
were a large number of transcriptional changes, unique to each
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brain region. Here we focus on the changes that were common
to all three regions [see Figure 3 in (82)]. 5730455P16Rik, Gdi2,
Skiv2, Tsr1, and Glod4 were the only common DE genes. There
were 30 common DV genes and this grouping was significantly
enriched in genes associated with cell to cell signaling. Genes
with this GO annotation included Dlg2, Egr3, Gabbr2, Lnpep,
Pcdhgb2, Pcdhac2, Sstr4, and Syt10. The common DV genes
were enriched in a common network module that differed in size
across the three regions but shared common annotations. The
three modules also shared 183 common genes. These common
genes included several receptors; Adra1a, Chrna7, Grin2b,
Htr2a, Oprd1, and Sstr4; 17 protocadherins including 14 of the
22 known protocadherins. Common hub nodes across regions
included Dlg2, Gatad2b, Pcdhac2, Tnks, Usp29, and Usp9x.

Figure 4 illustrates the coexpression and physical interaction
partners for Dlg2. Key partners include a number of glutamate
related genes: e.g., Grin2b, Grid1 Dlg1, Dlg4, and Dlgap1. These
data extend the observations of Bell et al. (85) who noted when
comparing ethanol naïve P and NP rats, there were a number of
differences in glutamate signaling genes. Further, clinical studies

have shown that in family history positive (FHP) individuals
there is an altered response to the NMDA antagonist ketamine
(86, 87).

A statistic added in Colville et al. (82) was differential wiring
(DW). DW was restricted to search for Pearson correlations
between individual genes that differed by >0.5. This general
procedure has been used to quantify network rewiring in both
genomic (88) and neural imaging studies (89). We identified for
each gene, the number of changed edges and then inquired as
to whether some genes had a disproportionately high number
of changed edges. For the latter, a binomial test was used to test
for significance. There were 72 significant DW genes common to
all three brain regions and this grouping included Chrna7, Als2,
Pppir9a, Strn, Kcna4, Kif1a, and Slc1a2. Slc1a2, which encodes for
the excitatory amino acid transporter 2 (EAAT2); the inhibition
of EAAT2 has been reported to reduce ethanol consumption (90).

Keeping the Colville et al. (61, 82) data in perspective,
we turn to Kozell et al. (81). Beginning with a B6xD2 F2
intercross founder population, these authors selectively bred
for both high alcohol consumption and low acute withdrawal

FIGURE 4 | Interaction partners for Dlg2 extracted using Gene Mania (84) which was accessed as a Cytoscape plugin with default settings. Depicted are top 20

genes related to Dlg2 through physical interactions, colocalizations, or sharing protein domains. Dlg2 which encodes for PSD93, interacts with a number of genes and

gene products associated with glutamate receptor activity including Dlg4, Syngap1, Neto, Grin1, Grin2b,Dlgap1 & Dlg3. Figure reprinted with permission from (82).
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(SOT line), or vice versa (NOT line). SOT is Old-English
for habitual high alcohol user. Using randomly chosen fourth
selected generation (S4) mice, RNA-Seq was employed to assess
transcriptional differences in the ventral striatum between the
SOT and NOT mice. Data were analyzed as described in
Colville et al. (61, 82). For genes more highly expressed in
the SOT line there was enrichment in genes associated with
cell adhesion and post-synaptic membrane. The cell adhesion
genes included 23 protocadherins, Mpdz & Dlg2. The post-
synaptic membrane genes includedGabrb3, Gphn, Grid1, Grin2b,
and Grin2c & Grm3. Thus, the SOT selection (81) and
High preference line selection show overlapping transcriptional
signatures. In contrast, the NOT line was enriched in genes with
mitochondrial function.

The final study to be reviewed is Hitzemann et al. (68),
which examined in HS-CC mice the effects of chronic (13
weeks) ethanol consumption [24h/7d 2-bottle choice] on CeA
gene expression. Here we focus on the correlation of individual
gene expression and week 13 ethanol preference. For females,
the enriched annotations associated with cilium organization,
extracellular region, and collagen-containing ECM. For males
there were no significant annotation enrichments.

The majority (70%) of female genes correlated with preference
were found in a single WGCNA network module. This module
was enriched (p < 0.0001) in genes with an astrocyte annotation
and in annotations associated with the extracellular matrix
and cilium. Among the female genes positively correlated with
preference, 43 were top hub nodes. “Enrichr (91, 92) was
used to search for key transcription factors among the top
hub nodes. A key finding was that 19 of the top nodes
were down-regulated in an orthodenticle homeobox 2 (Otx2)
knockout mouse [GSE27630; (93)]. Otx2 is often referred to
as a master regulator, and known to have key roles in brain
patterning and post-natal plasticity. Otx2 is further required
for generation of various neuronal subpopulations, including
ocular motor and midbrain dopaminergic neurons (94, 95),
and development and maintenance of perineuronal nets. In the
adult brain, Otx2 expression is largely localized to the choroid
plexus (96). The OTX2 protein is captured by the perineuronal
nets and accumulated in parvalbumin type GABA-ergic neurons
throughout the brain (97). Our data indicate a low, but detectable
expression of Otx2 in the CeA, affected by ethanol exposure and
predicted to have a role in the escalation of ethanol preference
seen in HS-CC females, but not males, and in the observed
sex differences in the transcriptional response” (68). Of related
interest, Coles and Lasek (98) found that DID increased Otx2
expression in the VTA; however, viral mediated down-regulation
of Otx2 did not affect ethanol consumption.

DISCUSSION

Formore than 50 years, HS and other outbred rodent populations
have been key to investigating the genetics and basic biology of
ethanol phenotypes, including excessive ethanol consumption.
To put the current use of HS animals in perspective it is
useful to return to Gora-Maslek et al. (99) who observed that

a panel of BXD RI strains, even with a sparse genetic map,
could be used to map drug-related QTLs. However, this study
also illustrated a point that continues to complicate genomic
research: gene effect sizes for essentially all complex traits are
very small. To confirm a BXD generated QTL with an effect
size of 5 percent (actually a very large effect!) would require
∼600 B6xD2 F2 intercross animals. While confirmation was
possible, resolution of the QTL was poor, given the relatively low
number of recombinations in the F2 population. One suggested
solution to this problem was to generate from the F2 an advanced
intercross that would build the recombination density [see e.g.,
(100)]. This solution introduced a new problem. Since it is
practically impossible to generate an advanced intercross with a
very large number of families, substantial relationships among
individuals will develop over time and relatedness becomes a
confounding factor. HS animals and selected lines have this same
problem. As noted above, there are algorithms that deal with
relatedness and importantly these are included in recent updates
to r/QTL (101). Regardless of how one deals with the relatedness
issue(s), it would seem that independent replication should be a
convincing solution to the problem. For QTLs associated with
ethanol preference and derived from B6xD2 crosses, replication
has worked extremely well (79–81). However, replication in HS
animals does not appear to be straightforward. As shown in Iancu
et al. (52), the replicate HDID-1 and HDID-2 selections yielded
only partially overlapping QTL results. These data suggest that
with the increase in genetic diversity, different sets of genes can be
employed to produce a similar phenotype, in this case high BECs.
In addition, detailed analysis of the drinking behavior in the
two selected lines revealed that there are differences—one favors
larger bouts and the other favors more bouts to increase BECs.
From a certain perspective, one could argue that these differences
in genotype and phenotype are precisely the reasons one uses
an HS population, to generate a diversity of results, detecting
new pathways and mechanisms of action. However, one can also
understand why this diversity is not universally appealing.

The argument that new mechanisms will be revealed as
genetic diversity increases has rarely been tested under identical
laboratory conditions. As noted above, Iancu et al. (24) examined
eQTL expression in the striatum of F2, HS4 and HS-CC animals.
This experiment was conducted using Illumina microarrays; in
order to prevent hybridization artifacts, any probe sequence
known to contain a SNP from one of the founder strains, was
removed from the analysis. As noted previously, the detection of
cis and trans eQTLs was the most reliable in the HS4. However,
the detection of trans eQTLs was higher in the HS-CC. However,
interpretation of these data are complicated by the complex
kinship matrices among samples, which differ on a chromosome
by chromosome basis. The question naturally arises as to how
these and other changes in the regulation of gene expression will
affect issues such as selection for a behavioral phenotype and the
associated transcriptional changes. The only data we have for an
ethanol phenotype (ethanol preference) are described above and
suggest that there is likely overlap between the F2 and HS-CC
along dimensions related to glutamate synaptic transmission and
cell adhesion. However, for a different phenotype, haloperidol-
induced catalepsy, we have a very direct comparison among F2,
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HS4 and HS-CC animals (102). Haloperidol-induced catalepsy is
highly heritable (h2 > 0.6), and the mechanism of action is well-
known (blockade of D2 receptors), as is the target brain region
(the striatum). Short-term selective breeding was used for all 3
populations and selection was stopped after 3 generations. The
High and Low lines differed by 30 fold or more in the haloperidol
ED50; the lines also differed in their response to raclopride and
showed no difference in the response to the D1 antagonist,
SKF23390. Microarrays were used to analyze gene expression.
The number of differentially expressed transcripts (FDR < 0.1)
was significantly higher in the HS-CC compared with the F2 and
HS4 selections (445 vs. 113 and 33, respectively). There were no
differentially expressed transcripts common to all 3 selections. A
consensus network approach, previously described, was used to
compare the effects of the 3 selections. A relatively large number

of transcripts significantly changed network connectivity: 458
(7.0%), 499 (7.6%), and 1,537 (23.4%) in F2, HS4 and HS-CC
populations, respectively. However, as for differential expression,
none of the differentially connected transcripts were shared in
common across the 3 selections. Our analysis revealed that, for
each selection, several modules significantly (Z < −2) changed
intra-modular connectivity structure: 4 modules in the F2, 12 in
the HS4 and 21 in the HS-CC. There were 3 affected modules
in common to all selections and in these the HS-CC showed
the largest changes in connectivity. Importantly, and we believe
this is the most salient point, there was no overlap among the
3 populations in the genes that showed a change in module
connectivity. The common feature was the module(s) not the
genes; the common modules were enriched in annotations
associated with intracellular signaling and locomotor behavior.

FIGURE 5 | The primary cilia as target for the effects of chronic ethanol consumption. There are to our knowledge, no reports linking the brain’s primary cilia to ethanol

preference, chronic ethanol exposure or excessive ethanol consumption. Our data shows that there is a strong cilia signal associated with individual variation in

preference within the context of chronic ethanol exposure. The primary cilium is a long, thin organelle protruding from the apical surface of almost all cell types. This

structure is formed when the cell is in G0 or G1 phase, and often during S/G2 phase (104). The timing of cilium formation, “ciliogenesis,” is restricted to these stages of

the cell cycle because the cilium is rooted at its base by the basal body, which is derived from the mother centriole of the centrosome (105). Differently than mobile cilia,

the axoneme of the primary cilium has a “9+0” structure and is not mobile. The “primary cilia” are fundamentally important for normal cell signaling during development

and homeostasis, resulting in the adoption of the term “cell’s antenna” (106). These signaling functions are carried out by the myriad of signaling molecules.
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The latter category included Drd2, Chat, and Pde10a & Rgs9.
These data suggest that combining the results from populations
at different levels of genetic diversity could be key to finding new
(or old) targets for therapeutic manipulation.

Our last point is that working with HS animals may
be beneficial in finding the truly unexpected. We return to
Hitzemann et al. (68) which focused on the transcriptional
changes associated with a 13 week preference trial. The
unexpected observation was that in females the transcriptional
features associated with week 13 preference were enriched
in cilium annotations. Alcohol is known to affect the motile
cilia in the brain’s ventricles and other tissues [see e.g.,
(103)]. However, in the CeA and other brain regions there
will only be primary cilia in neurons and astrocytes. There
are a number of proteins localized in the neuronal primary
cilia (Figure 5). These include ADCY3, SSTR3, and HT6R.
There is some evidence that the manipulation of these cilia-
specific molecules affects ethanol consumption. For example,
de Bruin et al. (107) found that a highly selective HT6R
antagonist (CMP 42) attenuated both nicotine- and alcohol-
seeking behaviors in Wistar rats. Further, Ht6r knockout
mice are less sensitive to alcohol-induced ataxia and sedation
(108), and HT6R antagonists reduce cocaine self-administration,
attenuate cue-induced reinstatement, attenuate the expression of
cocaine-induced conditioned place preference, and reduce the
acquisition and expression of nicotine-induced sensitization [see
references in (109)]. The orphan receptor, GPR88, is enriched
in striatal neuronal primary cilia (110). The GPR88 agonist,
RTI-13951-33, significantly reduces alcohol self-administration
and intake in female Long-Evans rats in a dose-dependent
manner, without effects on locomotion and sucrose self-
administration. However, given that the module is enriched
in astrocyte annotation genes, it could be reasonably argued
that our attention should focus on astrocyte primary cilia.
However, as noted by Sterpka and Chen (111), “Presently, little
is known about the function, signaling pathways, and structural
dynamics of astrocytic primary cilia in themature brain, although
astrocytes fulfill a wide range of functions including providing
trophic support, maintaining homeostasis, and protecting
neurons from acute insults or brain injury (112). Since
astrocytes can proliferate under certain pathological conditions
(113), astrocytic primary cilia are not static but subject to
dynamic changes.”

For most of the past 50 years, the use of HS mice largely
has been limited to selective breeding; several examples of this
approach in the context of ethanol research have been described.
However, given that all the founder strains of existing HS
populations have been deeply sequenced, it is now possible to
precisely map QTLs in HS mice in much the same way one
uses a GWAS approach to map human QTLs. The founders
of the HS-CC and DO populations possess ∼50 million SNPs.
Thus, it is likely that there are allelic variants associated with the
expression of every gene. Further, there are no rare alleles; absent
the effects of genetic drift, the minimum allele frequency in an
8-way cross is 12.5%. With rare exception, because behavioral
traits of interest are complex and polygenic, with no one gene
accounting for a large percentage of the genetically-determined
variance, sample sizes need to be scaled accordingly. Unlike
human studies, the environment for mouse studies can be strictly
controlled or modified in ways to test specific hypotheses. For
some human disorders such as schizophrenia or major depressive
disorder, a relevant mouse model seems unlikely. This challenge
is considerably lessened for AUDs and substance abuse disorders
and it is for such conditions that we believe HS mice will serve an
important role in detecting new mechanisms of action that will
lead to the development of new therapeutic approaches.
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