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Psychedelics have inspired new hope for treating brain disorders, as they seem to
be unlike any treatments currently available. Not only do they produce sustained
therapeutic effects following a single administration, they also appear to have broad
therapeutic potential, demonstrating efficacy for treating depression, post-traumatic
stress disorder (PTSD), anxiety disorders, substance abuse disorder, and alcohol use
disorder, among others. Psychedelics belong to a more general class of compounds
known as psychoplastogens, which robustly promote structural and functional neural
plasticity in key circuits relevant to brain health. Here we discuss the importance of
structural plasticity in the treatment of neuropsychiatric diseases, as well as the evidence
demonstrating that psychedelics are among the most effective chemical modulators
of neural plasticity studied to date. Furthermore, we provide a theoretical framework
with the potential to explain why psychedelic compounds produce long-lasting
therapeutic effects across a wide range of brain disorders. Despite their promise
as broadly efficacious neurotherapeutics, there are several issues associated with
psychedelic-based medicines that drastically limit their clinical scalability. We discuss
these challenges and how they might be overcome through the development of
non-hallucinogenic psychoplastogens. The clinical use of psychedelics and other
psychoplastogenic compounds marks a paradigm shift in neuropsychiatry toward
therapeutic approaches relying on the selective modulation of neural circuits with
small molecule drugs. Psychoplastogen research brings us one step closer to actually
curing mental illness by rectifying the underlying pathophysiology of disorders like
depression, moving beyond simply treating disease symptoms. However, determining
how to most effectively deploy psychoplastogenic medicines at scale will be an important
consideration as the field moves forward.

Keywords: psychoplastogen, ketamine, psilocybin, depression, neuroplasticity, prefrontal cortex, psychedelic,
hallucinogenic
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INTRODUCTION

Theories regarding the etiology of depression and related
neuropsychiatric diseases have evolved considerably in recent
years. One of the oldest and most widely known theories posits
that chemical imbalances in the brain are largely responsible
for the development of neuropsychiatric diseases. Support
for this theory originated with the observation in the 1950’
that administration of the natural product reserpine induces
depression (1). Reserpine depletes monoamine levels through
inhibition of vesicular monoamine transporters (2), leading to
subsequent degradation by monoamine oxidase (MAO) (3).
Support for the chemical imbalance hypothesis (also known as
the monoamine hypothesis) was further bolstered by findings
that MAO inhibitors, tricyclics, and selective-serotonin reuptake
inhibitors (SSRIs)—compounds that elevate synaptic levels of
monoamines—all seemed to alleviate depressive symptoms (4).
However, several pieces of evidence have emerged suggesting
that the chemical imbalance hypothesis of depression is a
drastic oversimplification.

Reduction of monoamines through acute tryptophan or
phenylalanine/tyrosine depletion does not induce depression
in healthy subjects (5), which questions the causal role of
“chemical imbalances” in depression. However, the primary
issue with the monoamine hypothesis of depression lies in the
temporal discrepancy between the acute effects of traditional
antidepressants and their delayed therapeutic responses.
Tricyclics, MAO inhibitors, and SSRIs all increase synaptic levels
of monoamines in the brain within minutes, while it takes weeks
before the antidepressant effects become apparent (Figure 1)
(4, 9). In a patient population at heightened risk for suicide, the
need for rapid-acting antidepressants is self-evident.

While traditional antidepressants acutely increase synaptic
levels of monoamines, their chronic administration leads to
changes in structural neuroplasticity that are contemporaneous
with their clinical therapeutic effects (10-12). In fact,
evidence suggests that chronic administration of traditional
antidepressants can re-wire the brain, with chronic fluoxetine
promoting ocular dominance plasticity in the visual cortex of
adult rats (13). Such induced plasticity (iPlasticity) (14) has been
hypothesized to play a major role in the actions of essentially
all antidepressant treatments including slow-acting traditional
antidepressants (15), transcranial magnetic stimulation (16),
electroconvulsive therapy (15, 17), exercise (18), and acute sleep
deprivation (19). Moreover, people (particularly males) with
the brain-derived neurotrophic factor (BDNF) Val66Met single
nucleotide polymorphism—a condition that reduces activity-
dependent BDNF release (20)—are more likely to experience
chronic depression (21, 22). These results lend substantial
support to the neuroplasticity hypothesis of depression
(sometimes referred to as the neurotrophin hypothesis) (11, 23—
36). This hypothesis provides a strong conceptual framework
for understanding mental illnesses as disorders of neural circuits
induced by a combination of genetic and environmental factors
(Figure 2). The corollary being that compounds capable of
rectifying these circuit pathologies can potentially serve as a
powerful, disease-modifying therapeutics.

Psychedelics—molecules with “mind-manifesting”
properties—include pharmacologically diverse compounds
such as dissociatives (e.g., ketamine), classic hallucinogens (e.g.,
LSD, psilocybin, DMT), and entactogens (e.g., MDMA). Several
psychedelics have emerged as some of the most promising
treatments for re-wiring pathological neural circuitry. Given
their unusually robust abilities to produce rapid and long-
lasting changes in neuronal structure and function following a
single administration, these compounds have been classified as
psychoplastogens—a term we coined to describe this new class of
therapeutic compounds (37). Unlike traditional antidepressants,
psychoplastogens produce both fast-acting and sustained
beneficial behavioral effects after a single administration
(Figure 1) (38-42). Here, we present evidence that directly
targeting cortical circuits with psychoplastogens has the potential
to produce enduring therapeutic responses in depression and
co-morbid diseases. First-generation psychoplastogens are all
hallucinogenic—they cause people to perceive things that are not
real—which has important implications for how these medicines
must be administered and how many patients could ultimately
benefit from these treatment approaches. In this regard, non-
hallucinogenic psychoplastogens offer significant advantages,
with the potential to reach much larger patient populations and
even replace traditional antidepressants as first-line treatments.

Harnessing Structural Plasticity to Treat

Mental lliness
Depression and related neuropsychiatric diseases are often
viewed as stress-related disorders given the fact that they
can be precipitated or exacerbated by chronic stress (43). In
animals, chronic stress results in the prolonged release of
glucocorticoids and leads to hypertrophy of the amygdala and
nucleus accumbens, atrophy of the hippocampus and prefrontal
cortex (PFC), and functional impairment of the PFC (44-55).
Given the importance of the PFC in cognition and mediating
top-down control over subcortical brain regions (56-66), these
changes in neural circuitry are believed to underlie the deficits
in learning/memory, mood, motivation, and reward seeking that
are characteristic of depression and related disorders (10, 67-74).
Postmortem studies have demonstrated that patients with
depression and related mental illnesses have lower BDNF and/or
TRKB mRNA levels (75-77), reduced cortical neuron size (75,
78, 79), lower synaptic protein levels (80), decreased mTOR
signaling (81), and fewer dendritic spines/synapses (82, 83) in
the PFC. Clinical imaging studies have confirmed the results
of these studies, demonstrating robust structural and functional
deficits in the PFC across a range of disorders including
depression, bipolar disorder, anxiety, obsessive compulsive
disorder (OCD), schizophrenia, PTSD, alcohol abuse disorder,
and substance abuse disorder (84-103). More recently, the advent
of [''C]UCB-J (104) and ['8F]UCB-J (105) has opened up new
opportunities for using positron emission tomography (PET)
imaging to measure the density of the synaptic protein SV2A
in vivo. Using these new tools, depression severity was found
to inversely correlate with SV2A density, and this neuronal
atrophy was associated with aberrant network function as
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FIGURE 1 | The antidepressant effects of psychoplastogens (e.g., ketamine and psilocybin) are more rapid and sustained than those of traditional antidepressants
(e.g., fluoxetine). Data adapted from three clinical trials evaluating the effects of fluoxetine (6), ketamine (7), and psilocybin (8) for treating depression. Dashed lines
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FIGURE 2 | Genetic and environmental factors lead to the cortical atrophy
observed in depression, which includes retraction of dendritic branches and
loss of dendritic spines. These structural changes are reversed by
psychoplastogens (12).

measured by magnetic resonance imaging (MRI) functional
connectivity (106). Similar results were observed in patients with
schizophrenia (107). Thus, substantial evidence points to the
PFC as the convergence point underlying the pathophysiology of
many neuropsychiatric diseases.

In imaging studies of traditional antidepressant treatment
response, increased cortical thickness and cerebral blood flow
in the PFC correlate with efficacy (108-112). Next-generation,
psychoplastogenic antidepressants also modulate PFC function
with both ketamine and psychedelics increasing PFC activation
as measured by 8F-FDG PET imaging (113-116). In fact,
antidepressant outcomes following ketamine treatment correlate
well with PFC activation (117, 118). There is some evidence in

humans that psychoplastogens can impact brain structure as well.
Chronic use of the psychedelic tisane ayahuasca is associated with
thickening of the anterior cingulate cortex (119), and ketamine
treatment has been shown to rescue atrophy of the inferior frontal
gyrus observed in MDD and PTSD patients (120).

Structural plasticity studies in preclinical animal models
support the findings in humans suggesting that cortical
neuron structure/function plays a key role in depression and
related neuropsychiatric disorders. Cortical neuron atrophy
and dysfunction is observed in rodents following chronic
corticosterone administration (121), chronic unpredictable mild
stress (122, 123), chronic restraint stress (48, 49, 124, 125), and
chronic social defeat stress (126-128). These structural changes
are accompanied by depressive phenotypes related to motivation
(129), anxiety (122), and anhedonia (122, 129). Moreover,
antidepressants appear to rectify these structural changes by
promoting structural plasticity in the PFC.

Nature uses BDNF to induce structural plasticity in many
neuronal populations, and direct administration of BDNF
into the rodent brain has been shown to alleviate several
depressive phenotypes, curb addiction, and enhance fear
extinction (130-133). Conversely, disruption of BDNF signaling
in the brain can block the behavioral effects of antidepressants.
BDNF heterozygous mice are resistant to the effects of
traditional antidepressants (134) and the psychoplastogen
ketamine does not produce antidepressant-like effects in
BDNF inducible knockout animals (135). The BDNF Val66Met
single-nucleotide ~polymorphism causes major structural
atrophy and functional deficits in the PFC and blocks the
synaptogenic effects of ketamine (136, 137). Both rodents
and humans with BDNF Val66Met polymorphisms exhibit
impaired fear extinction learning and reduced mPFC activity
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during extinction (138), phenotypes that are common in
stress-related disorders.

All antidepressant treatments impact BDNF/TrkB signaling
in some way. Chronic, but not acute, administration of several
traditional antidepressants has been shown to significantly
increase mRNA levels of BDNF and/or TrkB as well as increase
levels of cAMP response element binding protein (CREB), a
transcription factor that regulates the expression of several
proteins important for plasticity including BDNF (17, 139).
Other studies have found that antidepressants from a variety of
chemical families (e.g., SSRIs, SNRISs, tricyclics, etc.) all increase
activation of TrkB and its downstream effector CREB (140).
Moreover, the effects of the traditional antidepressant fluoxetine
on synaptic plasticity and fear extinction have been shown to be
dependent on BDNF (141, 142). Recent evidence suggests that
several antidepressants, including traditional antidepressants,
may directly interact with the TrkB receptor to facilitate
TrkB signaling (143, 144). Taken together, the importance of
BDNEF/TrkB signaling in the therapeutic effects of traditional
antidepressants is clear, even if these agents must be administered
chronically to achieve robust regulation of this pathway.

Psychoplastogens are also known to impact BDNF/TrkB
signaling, but in contrast to traditional antidepressants, they
do so rapidly after a single administration. Ketamine increases
BDNF protein translation (135, 145) and its antidepressant effects
are absent when administered to inducible BDNF knockout
mice (135) or homozygous mice harboring the BDNF Val66Met
mutation (136). Ketamine and psychedelics modulate cortical
neuron function by increasing dendritic spine and synapse
density in the PFC (129, 146-149); however, ketamine’s effects on
structural plasticity appear to last for approximately a week (150)
while psilocybin’s effects seem to be more durable lasting for at
least a month (151, 152). Though the primary molecular targets
of ketamine and serotonergic psychedelics are distinct, their
downstream pharmacology overlaps, requiring AMPA receptor,
TrkB, and mTOR activation to elicit changes in neuronal
structure and function (135-137, 148, 153, 154). Moreover, their
effects seem to be Cpyx driven, as very short stimulation periods
(15 min—1h) are sufficient to induce sustained changes in
cortical neuron structure (153). Psilocybin has also been shown to
increase the density of SV2A in vivo as measured by PET imaging
(155). Importantly, Liston et al. recently used a photoactivatable
Racl to demonstrate that ketamine-induced spine growth in the
PFC was causally related to long-lasting antidepressant effects
of the drug in rodents (129). In humans, the subjective effects
of ketamine wane after a few hours, but the antidepressant
response continues to increase over several days (156). This time
course is consistent with what we know about how ketamine
and other psychoplastogens alter neuronal structure over time.
An exceedingly short stimulation period (<1h) is sufficient for
psychoplastogens to activate cortical neuron growth mechanisms
that can last for several days (153).

Several volatile anesthetics, such as isoflurane, nitrous
oxide, propofol, and xenon, may produce rapid antidepressant
effects (157-165). Xenon is not a small molecule, and by
definition, is not a psychoplastogen. Other volatile anesthetics
might be considered psychoplastogens if additional studies in

Reduced
Alcohol Drinking
Tye et al., 2019

dPAG

Decreased
Drug Seeking
Peters et al., 2016

Enhanced
Fear Extinction
Deisseroth et al., 2015

Reduced Immobility
in Forced Swim Test
Deisseroth et al., 2012

FIGURE 3 | Opto- and chemogenetic experiments have revealed a number of
circuits originating in the PFC that are relevant to the treatment of
neuropsychiatric disorders. Arrows indicated excitatory projections.

larger patient populations confirm that they produce sustained
therapeutic effects after a single administration. The data
for isoflurane are encouraging as isoflurane produces rapid
antidepressant effects after a single administration in both
preclinical and in a subset of patients suffering from treatment-
resistant depression (157-160). Moreover, these effects appear
to be mediated via TrkB signaling and subsequent increases
in dendritic spine density in the PFC and hippocampus (164,
165). Thus, preliminary evidence suggests that isoflurane may be
considered a psychoplastogen.

Possible Explanations for the Broad

Therapeutic Potential of Psychoplastogens
While the beneficial effects of psychoplastogens can last for
months following a single administration (40, 166, 167), and
these medicines have demonstrated efficacy across a range of
neuropsychiatric disorders including depression, PTSD, and
addiction (156, 168-172), they are not panaceas. Their broad
therapeutic utility likely arises from their ability to impact the
structure/function of layer V pyramidal neurons in the PFC.
As the PFC is a key hub impacted in most neuropsychiatric
disorders, it is not surprising that psychoplastogens have proven
useful for a variety of indications. Indeed, with the advent of
opto- and chemogenetics, systems neurobiology has developed
a much deeper understanding of what circuits control behavior.
The PFC is known to exert top-down control over a variety of
subcortical regions, and recent research has identified a number
of circuits originating in the PFC that control behaviors relevant
to the treatment of depression, anxiety, and addiction (Figure 3)
(56, 173).

In mice subjected to social defeat stress, optogenetic
stimulation of the ventral medial PFC increased social interaction
and reduced anhedonia as measured via the sucrose preference
test (174). Deisseroth et al. later found that optogenetic
stimulation of medial PFC neurons projecting to the dorsal
raphe nucleus (DRN) decreased immobility in the forced swim
test (175). The forced swim test is a preclinical assay for
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antidepressant potential with high predictive validity (176, 177),
and activation of this PFC— DRN circuit likely mediates the
robust effects of psychoplastogens on forced swim test behavior.
While the National Institutes of Mental Health (NIMH) has
stressed that the FST is not a model of depression, it is a powerful
behavioral readout for activation of the PFEC— DRN circuit. The
DRN is a serotonergic nucleus that has been implicated in major
depressive disorder (178), and recent evidence suggests that acute
activation of serotoninergic neurons in the DRN increase active
coping to inescapable stress (179). Dzirasa et al. demonstrated
that optical stimulation of layer V pyramidal neurons in the
PFC expressing channelrhodopsin-2 was sufficient to produce
an antidepressant-like response in the forced swim test and
suppress anxiety-like behavior in the elevated plus maze for over
10 days after the last optical stimulation session (180). This type
of long-lasting anxiolytic effect is reminiscent of sustained effects
observed following a single administration of a psychoplastogen.
Finally, Duman et al. found that optogenetic stimulation of the
infralimbic cortex produces rapid and sustained antidepressant-
like effects comparable to ketamine in the forced swim, novelty-
suppressed feeding, and sucrose preference tests (181). Moreover,
microinfusion of ketamine into the infralimbic cortex produces
comparable antidepressant-effects as systemic administration
of ketamine and inactivation of the infralimbic cortex with
muscimol was sufficient to block the antidepressant-like effects
of systemic ketamine (181).

In addition to relieving symptoms associated with depression,
psychoplastogens have also demonstrated efficacy for treating
PTSD—a disorder that can involve dysfunction of the amygdala
(AMY). The medial PFC and amygdala are well-connected, and
bi-directional communication between these structures is likely
involved in modulating responses to emotional stimuli (182). In
fact, optogenetic stimulation of ventral medial PFC projections to
the basomedial amygdala decreases fear responses and facilitates
fear extinction learning (183). Chemogenetic inhibition of PFC
neurons projecting to the amygdala is sufficient to impair fear
extinction learning (184). As PTSD has often been described
as a disorder of impaired fear extinction (73, 185-187), the
therapeutic effects of psychoplastogens might result from their
ability to strengthen PFC— AMY circuits mediating top-down
control of fear responses.

Like fear extinction, drug-cue extinction is believed to involve
neurons in the PFC (59). This is perhaps unsurprising given
the large body of neuroimaging data suggesting that PFC
hypofunction is a hallmark of addiction (68). Chemogenetic
activation of ventral medial PFC neurons projecting to the
nucleus accumbens (NAc) shell was able to reduce cue-induced
reinstatement of drug-seeking behavior (188). Moreover, chronic
cocaine self-administration has been shown to decrease the
intrinsic excitability of pyramidal neurons in the PFC (189).
Optogenetic stimulation of these neurons prevented compulsive
drug-seeking while silencing these neurons promoted drug-
seeking behavior despite being paired with aversive foot shocks
(189). Similarly, pharmacological activation and inactivation of
neurons in the infralimbic cortex suppressed and enhanced
reinstatement of drug-seeking behavior, respectively (190).
Optogenetic experiments have also revealed that ventral medial

PFEC projections to the NAc shell are involved in suppressing
ethanol self-administration in the presence of aversive stimuli
(191). A PFC— NAc circuit appears to be involved in compulsive
food-seeking behavior as well, given that chemogenetic inhibition
of this circuit led to compulsive food seeking even in the
presence of aversive foot shocks (192). While PFC— NAc circuits
have been well-established in controlling drug-seeking behavior,
more recently, Tye et al. demonstrated that a PFC projection
to the dorsal periaqueductal gray (dPAG) may also play an
important role in addiction (193). Specifically, they showed
that optogenetic activation of a PFC— dPAG circuit prevented
compulsive alcohol consumption.

Psychoplastogens produce robust, fast-acting, and long-
lasting effects on structural plasticity in the PFC. This may
explain why they have demonstrated efficacy in many preclinical
rodent behavioral tests involving PFC circuitry including the
forced swim test and fear extinction learning (151, 194-197).
However, achieving circuit-level selectivity is a key challenge
in the design of optimized psychoplastogens with minimal
to no side effects. The issue with non-selective activation
of BDNF/TrkB signaling is apparent from chronic stress
studies demonstrating that enhanced BDNF/TrkB signaling
in the amygdala leads to maladaptive plasticity resulting in
overactivation of this brain region and exacerbated anxiety and
fear responses (47, 198-200). Furthermore, compounds that
promote plasticity in the mesolimbic pathway could have pro-
depressive and/or addictive properties (201, 202).

Psychoplastogens that target the 5-HT2A receptor have
advantages over NMDA receptor antagonists like ketamine, as 5-
HT2A receptors exhibit a relatively selective expression profile.
With the exception of the claustrum, the highest density of 5-
HT2A receptors is in layer V pyramidal neurons of the PFC,
which are precisely the neurons that are most impacted in stress-
related neuropsychiatric diseases. In rodents, this expression
pattern has been confirmed using immunohistochemistry (203-
206), light and electron microscope immunocytochemistry (203),
in situ hybridization (207, 208), receptor autoradiography (209),
and transgenic mice expressing EGFP under control of the 5-
HT2A receptor promoter (210). A similar pattern of 5-HT2A
receptor expression has been shown in human post-mortem
tissue using both autoradiography (211) and in situ hybridization
(212). Additionally, PET imaging has revealed a high density
of 5-HT2 receptors in the frontal and temporal cortices of the
human brain (213). The high genetic localization of 5-HT2A
receptors to excitatory neurons in layer V of the PFC is perhaps
why animals do not typically self-administer classic serotonergic
psychedelics (214, 215) and most psychedelics are not considered
to be addictive (216, 217).

Can the Intoxicating Effects of
Psychedelics Be Removed to Create More
Scalable Therapeutics?

At high doses, psychedelics reliably induce both hallucinations
and mystical-type experiences. Currently, it is unclear if the
mystical-type experiences they induce are necessary for their
therapeutic effects in humans (218, 219). Moreover, it is unclear
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if the intoxicating effects of psychedelics can be decoupled from
their therapeutic properties. This critical question has profound
implications for healthcare, as hallucinogenic treatments will
inevitably be more limited in scope given safety and cost
considerations. Many patients describe psychedelic-induced
“peak” or “mystical” experiences as being among the most
meaningful events of their lives, and the intensity of these
events correlates with therapeutic responses (40, 220-226).
While these events could provide patients with valuable insight
relevant to their disease symptoms, it is important to remember
that correlation does not imply causation, and mystical-type
experiences could simply be an epiphenomenon associated with
5-HT2A receptor activation (227, 228). Activation of 5-HT2A
receptors also promotes structural and functional neuroplasticity
(148), which could be the primary driver of the sustained
behavioral effects following a single administration of ketamine
or serotonergic psychedelics.

Given that 5-HT2A receptor activation is associated with both
psychoplastogenic effects (148) and mystical-type experiences
(227, 228), it is challenging to determine exactly how much
each contributes to the therapeutic properties of psychedelics.
However, a number of key pieces of evidence suggest that
intoxicating subjective effects are not necessary to achieve some
level of therapeutic efficacy. In patients treated with ketamine,
floating sensations did not correlate with PFC activation as
measured by '8F-PET, demonstrating that it is possible to activate
cortical circuits to produce antidepressant responses without
inducing dissociative effects (117). In fact, several studies have
demonstrated that intraoperative ketamine administration can
improve postoperative mood even though the patients were
unconscious at the time of administration (229-231). This
strongly suggests that the dissociative experience itself is not
necessary for ketamine to produce antidepressant effects.

Additionally, there is preclinical evidence suggesting that
R-ketamine is a potent psychoplastogen that induces longer-
lasting antidepressant-like effects than the S-enantiomer (i.e.,
Spravato®) despite having a lower affinity for the NMDA
receptor and producing fewer dissociative effects (232, 233).
Similarly, a metabolite of R-ketamine lacking dissociative
properties has also demonstrated robust antidepressant-like
effects in rodents (234). Future clinical trials using these non-
hallucinogenic agents will prove informative when assessing the
role of subjective effects in ketamine treatment response.

While R-ketamine is still in the early stages of clinical
development, 3,4-methylenedioxymethamphetamine (MDMA)
has demonstrated robust results in a recently disclosed Phase III
trial (235). As an atypical psychedelic of the entactogen family
(236), MDMA produces robust effects on cortical neuron growth
(148), and facilitates fear extinction learning (197) through a 5-
HT2-dependent mechanism (237) without inducing psilocybin-
or ketamine-like perceptual effects or dissociation. In fact, only
about 20% of recreational MDMA users report experiencing any
visual hallucinations, and these are relatively mild compared to
those induced by psilocybin and LSD (236, 238, 239). While
MDMA does induce a “blissful state,” likely due to its effects on
monoamine efflux, it does not produce mystical-type experiences
as measured using a variety of scales related to altered states of

consciousness (240, 241). This is in stark contrast to drugs like
ketamine and psilocybin.

As an entactogen, MDMA is pharmacologically distinct
from classic serotonergic psychedelics like psilocybin and
LSD. However, there is clinical evidence suggesting that
non-hallucinogenic analogs of classic psychedelics can also
produce therapeutic effects. Lisuride, a non-hallucinogenic
structural analog of LSD, has been shown to have an
antidepressant properties in the clinic (242). Moreover, lisuride
has demonstrated some efficacy in preclinical models as well
(243). Lisuride has a polypharmacology profile that includes
activation of D2 and 5-HT1A receptors in addition to 5-HT2
receptors, and thus, it is currently unclear what receptor(s)
mediate its antidepressant effects.

In addition to the clinical evidence supporting the efficacy
of non-hallucinogenic psychoplastogens, mounting preclinical
data suggest that the beneficial effects of psychoplastogens can
be dissociated from their hallucinogenic effects. In 2019, we
demonstrated that low doses of DMT produce beneficial effects
in rodent behavioral paradigms relevant to treating depression
and PTSD comparable to high doses (194, 195). The low
dose was predicted to be subhallucinogenic in humans based
on allometric scaling while the high dose was predicted to
be hallucinogenic. However, the data on human psychedelic
microdosing are equivocal, and therapeutic benefit of low doses
of psychedelics remains to be demonstrated in a well-controlled
clinical study (244-249). Moreover, administration of low doses
of hallucinogenic compounds is not an ideal therapeutic strategy,
as these compounds still possess the potential for abuse.
Fortunately, through careful chemical design, we were able to
engineer several non-hallucinogenic analogs of psychedelics with
beneficial properties (250-252). These compounds do not induce
a head-twitch response—a behavioral proxy for hallucinations
in mice that correlates exceptionally well with hallucinogenic
potency in humans (253, 254).

Our two most advanced compounds—AAZ and TBG—
have demonstrated robust plasticity-promoting properties
and produce sustained (>1 week) antidepressant-like effects
following a single administration in both environmental (chronic
unpredictable stress) and genetic (VMAT?2 heterozygous mice)
models of depression as measured via behavioral tests relevant
to motivation, anhedonia, anxiety, and cognitive flexibility
(250, 251, 255). TBG has also been shown to have anti-addictive
properties in models of alcohol and opioid use disorders (250).
Moreover, a single dose of TBG was able to completely rescue
circuit-level dysfunction induced by chronic stress, which
included deficits in dendritic spine density, calcium dynamics,
and interneuron function (255). The psychoplastogenic effects
of TBG and AAZ may involve activation of 5-HT2 receptors
(250, 251, 256), though detailed mechanistic studies have not yet
been reported.

One of the most important questions to address is the
durability of psychoplastogen effects. In both humans and
rodents, the antidepressant responses of ketamine appear to
last for about 1 week. This correlates well with the effects of
the drug on dendritic spine density (129, 150). In contrast, the
mood-elevating properties of psilocybin seem to last significantly
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longer (40-42, 151), as do its effects on neuronal structure
(152). Currently, it is unclear exactly how long the effects
of non-hallucinogenic psychoplastogens will last following a
single administration, and head-to-head comparisons with
ketamine and psilocybin are warranted to help establish optimal
dosing frequency.

Patient Populations Best Suited for
Hallucinogenic and Non-hallucinogenic
Approaches

Given that ~20% of American adults suffer from a mental illness
in a given year (256), the economic burden of these disorders is
estimated to be in the hundreds of billions of dollars annually
(257, 258). Moreover, the current standard of care treatments
suffer from slow onset (e.g., 7 week average response time with
citalopram) (259), low efficacy (only 27% of depressed patients
achieved remission after 12 weeks of citalopram treatment as
measured by HAM-D) (259), and often intolerable side-effects
(260), it is clear that we need to expand psychiatry’s arsenal
to include a variety of new approaches. Both hallucinogenic
and non-hallucinogenic psychoplastogens have important roles
to play in the fight against mental illness, but it is critical to
identify which patient populations are best served by these types
of treatment. First, many patients may not want to participate in
psychedelic-assisted therapy (261) given that hallucinogens can
induce acute anxiety and may lead to challenging experiences
(40). For those who are open to psychedelic-assisted therapy,
significant barriers to treatment still exist.

Currently, there are over 300 clinical trials registered on
clinicaltrials.gov! to study the effects of psychedelics in humans
with the majority of recent studies focusing on the effects of
psilocybin and MDMA (262, 263). However, only a fraction
of patients who volunteer for psychedelic-assisted therapy are
permitted to participate. Exclusion criteria for these trials
typically include cardiovascular and mental health risks that
could potentially be exacerbated by psychedelics. For example,
psychedelic-assisted therapy is generally contraindicated for
people with a family history of psychotic disorders or
complex psychiatric comorbidities to avoid the possibility of
triggering a first episode of psychosis or precipitating suicidal
behaviors (264).

In two recent psilocybin clinical trials, ~95% of all volunteers
were eliminated on the basis of exclusion criteria (Figure 4) (8,
42). For comparison, ~25% of participants were excluded from
two recent major depressive disorder (MDD) trials of the non-
hallucinogenic compound vortioxetine (Figure 4) (265, 266). If
these strict exclusion criteria are deemed necessary by the FDA
and payers, they will drastically limit the number of patients
who could potentially benefit from this treatment paradigm,
especially when you consider the high genetic heritability and co-
morbidity of neuropsychiatric disorders (Figure 5) (272-278).
Between 33 and 66% of patients suffering from MDD have a

IClinical trials. https://clinicaltrials.gov/ [Accessed June 12, 2021]. (2021).
Keyword: psychedelic including synonyms hallucinogen and hallucinogenic drugs.
We identified 316 studies. Re-querying the database in August 2021 we identified
324 studies of which 151 studies are completed.

Hallucinogenic Not Hallucinogenic
(Psilocybin) (Vortioxetine)
Carhart-Harris Griffiths Nishimura Thase
etal. etal. etal. etal.
2021 2020 2018 2013
# of people 1,000
screened
Excluded
Participated
% allowed to
participate 5.9% 2.8% 83.3% 70.7%
FIGURE 4 | Percentage of patients excluded from recent large MDD trials of
the hallucinogenic drug psilocybin and the non-hallucinogenic drug
vortioxetine. A comprehensive analysis of all psychedelic trials is beyond the
scope of this review. For additional information on the broad range of smaller
trials with psychedelics, please see (262, 263).

psychiatric comorbidity that could potentially exclude them from
psychedelic-assisted therapy (267-271, 279, 280).

Identifying factors that can predict how patients will respond
to psychedelic-assisted therapy will be important for maximizing
efficacy and reducing adverse events. For example, patients who
exhibit apprehension, preoccupation, or baseline attachment
avoidance appear to be more likely to have challenging
experiences following administration of a psychedelic drug (281,
282). Using these metrics to pre-screen patients should improve
the safety and efficacy of psychedelic-assisted therapy; however,
stratification of patients in this manner will inevitably reduce the
addressable patient population, again, emphasizing the need for
a non-hallucinogenic first-line treatment against depression and
related disorders.

Presumably, treatment with non-hallucinogenic
psychoplastogens would not be limited by comorbidities or
other factors that might exclude someone from participating
in psychedelic-assisted therapy. For these reasons, and others
described below, it seems reasonable for non-hallucinogenic
psychoplastogens to potentically be used as first-line treatments,
assuming that they demonstrate greater efficacy in humans
than the standard of care (i.e., traditional antidepressants).
Psychedelic-assisted therapy could be reserved for patients who
have not responded to any other medicine. Indeed, some patients
may benefit from the mystical-type experiences occasioned by
psychedelics as many people rate these experiences as among
the most meaningful in their lives. Such a positive experience
could have a variety of effects on patients including, but not
limited to, improving the relationship between therapist and
patient, helping patients to gain insight about their condition,
or producing a powerful placebo effect. It is challenging to
design truly double-blind placebo-controlled clinical trials with
psychedelics given their profound subjective effects. Despite
efforts to employ “active placebos” (e.g., niacin or a low-dose of
a psychedelic) (40, 220), many patients and clinicians can still
correctly distinguish between a high dose of a psychedelic drug
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obtained from references (267-271), respectively.
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FIGURE 5 | Percentage of MDD with various comorbidities. Data for bipolar disorder, psychosis, substance use disorder, personality disorders, and suicidality were

and an active placebo. Thus, the exact role of placebo effects
in the overall efficacy of psychedelic-assisted therapy has not
been firmly established. Even so, an enhanced placebo effect can
potentially be leveraged to treat severely depressed patients who
have not been helped by other means (283-285).

Healthcare System Issues With the
Psychedelic-Assisted Psychotherapy
Model

In addition to comorbidities and genetic predispositions, the
basic mechanics of healthcare systems are likely to be major
factors limiting the number of patients who will ultimately be able
to receive hallucinogen-based therapeutics. Given their profound
effects on perception, these drugs necessitate administration
in a clinical setting where the patient can be observed by
medical professionals. In 2019, Johnson & Johnson’s Spravato®
(esketamine nasal spray) became the first hallucinogenic
psychoplastogen treatment approved by the FDA for refractory
depression (286), and in 2020 the indication was expanded to
include adult major depressive disorder (287). Spravato® has to
be administered in a clinic under supervision due to the known
risks of serious adverse outcomes resulting from disassociation
and sedation as well as the potential for abuse. After intake and
medical screening, the patient is enrolled in the Spravato® REMS
(Risk Evaluation and Mitigation Strategy) program. Spravato®
is self-administered intranasally in the presence of a healthcare
professional, and the patient is monitored for the next 2h.
Patients receive two treatments a week for the 1st month, and
once a week or once every 2 weeks after that. For racemic
ketamine administered intravenously, clinics follow the NIMH
trial protocol of six infusions administered over a two-to-3-week
period in an outpatient clinic or medical facility. Boosters are
given every 3-5 weeks after that. Intravenous infusion takes
about 40 min, and guidance is provided not to drive, operate
any dangerous machinery, or make any important decisions
until the day after a ketamine treatment. The requirement for

administration in a clinical setting drastically increases the cost
of both racemic ketamine and Spravato®.

Though psychedelics are expected to be administered less
frequently than ketamine given their robust effects, they too
must be administered under the care of a healthcare professional.
Current research-based psychedelic-assisted therapy has three
phases: preparation, treatment, and integration. Given that
psychedelics have the potential to cause dangerous behaviors
due to potential negative psychological reactions such as anxiety,
fear, panic, or psychosis, a team of two professional therapists is
required to be in attendance to supervise, but minimally interact
with the patients throughout the course of the drug’s action (288).
Moreover, it is recommended that multiple healthcare workers be
involved in all three stages to ensure that professional boundaries
are maintained (289). The preparation session establishes the
alliance between the therapist and the participant. Treatment
sessions, which typically last 6-8 h for psilocybin-assisted therapy
(288) allow the participants to have a peak experience within
a set and setting thought to be most conducive to optimizing
the therapeutic effect. The integration session is meant to help
the participant process, rationalize, and gain insight from the
hallucinogenic experience. Although psychedelic therapies have
demonstrated outstanding benefits in several clinical trials (290),
the cost-effectiveness and overall accessibility of such therapies
raises major concerns.

The costs associated with treating mental illness with
hallucinogenic psychoplastogens is extremely high compared
to the standard of care (Figure6). For example, the initial
month of ketamine therapy costs from $4,720 to $6,785, and
subsequent monthly therapy can range from $2,360 to $3,540
(291). Additional costs associated with patients taking time
off work to receive treatment and to travel to appropriately
staffed/equipped clinics must also be considered.

Many people assume that psilocybin-assisted therapy will be
cheaper than ketamine treatment as the antidepressant effects
following a single administration of psilocybin appear to be
more enduring than those of ketamine (292). However, the
overall cost of psilocybin treatment is estimated to be close to,
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FIGURE 6 | Estimated quarterly (3 months) costs (L = low, M = medium, H =
high) for daily administration of non-hallucinogenic take-home traditional
antidepressants (blue) and intermittent dosing of clinically administered,
dissociative psychoplastogen (ketamine) treatments (red). Note: generic
ketamine costs include drug, administration (IV), and required monitoring,
while Prozac®, Zoloft®, Celexa®, and Spravato® costs are for the drug only.
Retail costs for SSRiIs reflect the low and high branded price published on
goodrx.com? with the medium price being calculated as an average of the
two. To estimate the total cost, we used medium doses for each drug
(Prozac® 20 mg, Zoloft® 50 mg, and Celexa® 20mg,) and assumed daily
dosing for 90 days. Ketamine infusion cost was sourced from
ketamineclinicsdirectory.com/ketamine-infusion-cost/.% This site estimates the
low and high cost of a complete set of 4-6 generic ketamine infusions to be
$1,600-$4,800, respectively. The medium cost was calculated as an average
of the two ($3,200). Our estimate for the 3-month cost of generic ketamine
assumes that no additional doses are needed beyond the initial 4-6 doses.
Retail Spravato® costs were estimated based on the price of a 56 mg dose
($900) published on goodrx.com® and dosing was based on the package
insert (Revised 7/2020). The label indicates Spravato® should be dosed twice
a week during the induction phase (weeks 1-4; $900 x 2 x 4 = $7,200),
once a week during the maintenance phase (weeks 5-8; $900 x 1 x 4 =
$3,600), and once a week thereafter (weeks 9-12; $900 x 1 x 4 = $3,600).
The estimated low cost of Spravato® includes the induction phase only. The
estimated medium cost of Spravato® includes the induction phase and the
maintenance phase. The estimated high cost of Spravato® includes the
induction phase, maintenance phase, and 4 weeks of additional treatment.
Note: the cost of administration and monitoring for Spravato are not publicly
available, and thus not included, but these costs are anticipated to be
significant.

if not higher than, the cost of Spravato® treatment due to the
increased session participation of therapists. The low-throughput
nature and associated high costs of the psychedelic-assisted
therapy model have been acknowledged by the community and
have resulted in new studies being launched by non-profit and
corporate sponsors to streamline the process and reduce costs
through group and virtual therapy sessions (293). However, it is
currently unclear if such approaches will be as safe and efficacious
as the current model.

The cost associated with rolling out the psychedelic-
assisted therapy model poses a great hurdle to its effective
implementation in the current mental health ecosystem. In 2019,
the Institute for Clinical and Economic Review (ICER) issued
a recommendation that deemed Spravato® to deliver a “low
value for money” according to their value-assessment framework
(294). Furthermore, the UK price watchdog agency, the National

2Data were obtained from goodrx.com [accessed June 2021].
3Data for racemic ketamine were obtained from https://ketamineclinicsdirectory.
com/ [accessed June 2021].

Institute for Health and Care Excellence (NICE), refused to
endorse Spravato® therapy for inclusion as a reimbursable
drug on the UK’ National Health System (NHS) (295).
Although NICE acknowledged the drug’s efficacy for relieving
the symptoms of depression, the agency also commented that
the “introduction of esketamine into clinical practice in the NHS
will be complex because the structure and delivery of services
would need to be changed. Estimates of the costs of providing the
clinical service for esketamine were highly uncertain.” As these
price watchdog agencies become progressively more influential
in the decision-making process of payers, their recommendations
will likely lead to payers raising their medical criteria for
coverage, potentially jeopardizing patient access to psychedelic-
assisted therapy for financial reasons. We are already seeing
racemic ketamine being administered off-label for a variety
of neuropsychiatric disorders without reimbursement from
insurance companies (296). This leads to an inequity issue, where
only wealthy individuals who can afford the out-of-pocket costs
have access to this type of treatment.

In addition to the financial burdens to the patients,
understaffing of qualified psychotherapy practitioners is likely
to be one of the biggest issues for nationwide implementation
of psychedelic-assisted therapy. The FDA requires all U.S.
therapists to have at least a master’s degree, and current
best practices require a minimum of two therapists to be
present during psychedelic sessions (288). Moreover, all the
therapists who participate in the psilocybin and MDMA clinical
development programs are required to hold a professional
license and demonstrate clinical experience in psychotherapy or
mental health counseling (288). Although institutes such as the
California Institute of Integral Study (CIIS), Multidisciplinary
Association for Psychedelic Studies (MAPS), and corporate
programs from companies like COMPASS Pathways offer short-
term training programs for psychedelic-assisted counseling, there
is a huge demand and supply gap for competent therapists
considering that the estimated prevalence of treatment-resistant
depression (TRD) in the U.S. is around 2.8 million people (258).
Moreover, given that set and setting are well-known to influence
the subjective effects of psychedelics (288, 297), clinical centers
with appropriate facilities will need to be established.

Democratizing Access to
Psychoplastogenic Medicines

The limitations associated with hallucinogenic medicines could
prevent many patients from benefiting from the growing body
of psychedelic-inspired research related to pathological circuit
remodeling. By eliminating the need to treat patients in the
clinic, non-hallucinogenic psychoplastogens—which would
presumably be available from retail pharmacies much like
traditional antidepressants—would reduce the complexity of
treatment administration and have the potential to greatly
expand access of patients to psychoplastogenic medicines.
These molecules produce the same types of long-lasting
structural and functional changes in the brains of preclinical
animals that follow administration of ketamine or serotonergic
psychedelics. Assuming that they are efficacious in humans,
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Traditional Ketamine and Non-Hallucinogenic
Antidepressants Psilocybin Psychoplastogens

Fast-Acting? No Yes Yes*
Long-Lasting? No Yes Yes*
Scalable? Yes No Yes**
Cost-Effective? Yes No Yes**

FIGURE 7 | Comparison of traditional antidepressant treatments with
hallucinogenic and non-hallucinogenic psychoplastogen treatments.
*Currently, no clinical trials have been conducted with non-hallucinogenic
psychoplastogens, and thus, their fast-acting and long-lasting effects refer to
preclinical testing only. **The scalability and cost-effectiveness of
non-hallucinogenic psychoplastogens are based on the assumption that they
will produce clinical efficacy greater than the standard of care (i.e., traditional
antidepressants).

non-hallucinogenic psychoplastogens would not bear the
same administrative costs and limitations as first-generation
hallucinogenic psychoplastogens. When comparing the known
or predicted yearly healthcare costs associated with ketamine,
psilocybin, SSRIs, and non-hallucinogenic psychoplastogen
treatments, it is clear that the non-hallucinogenic approaches
will be more cost-effective (Figure 6).

Non-hallucinogenic psychoplastogens could potentially meet
the demands of patients who fail to respond to monoaminergic
agents, or even replace them as more effective first-line
treatments with fewer side-effects. In preclinical animal models,
like in humans, traditional monoaminergic antidepressants
require chronic administration to achieve robust efficacy
(298). Such chronic dosing paradigms inevitably lead to a
host of undesirable side-effects that include weight gain,
sexual dysfunction, and gastrointestinal problems (299), with
many patients refusing to take traditional antidepressants due
to their side-effects (260). In contrast, non-hallucinogenic
psychoplastogens, like their hallucinogenic counterparts,
produce sustained therapeutic behavioral responses in preclinical
animal models after a single administration (250, 251). Thus,
the need for chronic dosing in humans will likely be obviated
resulting in fewer undesired side-effects. However, a major
challenge for the field will be to determine exactly what
frequency of dosing will be most effective. Fortunately, new
imaging tools have the potential to identify biomarkers of
psychoplastogen efficacy. These include relatively new positron
emission tomography (PET) tracers (104, 105) that can non-
invasively measure the effects of psychoplastogens on synaptic
vesicle density in vivo (155).

It is quite possible that insight gained from mystical-
type experiences coupled with changes in neurocircuitry is
responsible for the large effect size and durability of psychedelic-
assisted therapy. However, if even a fraction of the efficacy
or durability could be achieved using compounds that do not
induce mystical-type experiences or hallucinations, a much

larger patient population could benefit. While mystical-type
experiences will undoubtedly be beneficial for some patients, they
may not be necessary for all patients. Thus, if non-hallucinogenic
psychoplastogens can demonstrate efficacy in the clinic as robust
as their effects in preclinical models, their advantages over both
traditional monoaminergic antidepressants and hallucinogenic
psychoplastogens should position them as first-line treatment
options (Figure 7).

CONCLUSION

The ability to selectively modulate neural circuits using
small molecule psychoplastogens opens up new horizons in
neuropsychiatry focused on healing pathological neural circuitry
rather than masking disease symptoms. This type of circuit-
based approach represents a fundamental shift in how we might
treat a number of neuropsychiatric diseases and has important
implications for the future of CNS drug discovery. Given the
history of neuropsychiatry and the intractable nature of brain
disorders, we need to take advantage of every available tool in
our therapeutic arsenal including both hallucinogenic and non-
hallucinogenic psychoplastogens. Ketamine and psilocybin have
demonstrated that it is possible to produce long-lasting beneficial
changes in neural circuitry using small molecule drugs, and they
have forged a path for future, optimized psychoplastogens to
take their place. If we ever hope to heal the nearly 20% of
the population suffering from a mental illness, we must find
innovative ways to reduce healthcare costs and broaden patient
access to psychoplastogenic medicines. Non-hallucinogenic
psychoplastogens have the potential to be truly scalable solutions
to many of the problems facing neuropsychiatry.
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