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Background: Depression has been a common mental health problem during the

COVID-19 epidemic. From a network perspective, depression can be conceptualized

as the result of mutual interactions among individual symptoms, an approach that may

elucidate the structure and mechanisms underlying this disorder. This study aimed to

examine the structure of depression among residents in Wuhan, the epicenter of the

COVID-19 outbreak in China, in the later stage of the COVID-19 pandemic.

Methods: A total of 2,515 participants were recruited from the community via snowball

sampling. The Patient Health Questionnaire was used to assess self-reported depressive

symptoms with the QuestionnaireStar program. The network structure and relevant

centrality indices of depression were examined in this sample.

Results: Network analysis revealed Fatigue, Sadmood, Guilt andMotor disturbances as

the most central symptoms, while Suicide and Sleep problems had the lowest centrality.

No significant differences were found between women and men regarding network

structure (maximum difference = 0.11, p = 0.44) and global strength (global strength

difference = 0.04; female vs. male: 3.78 vs. 3.83, p = 0.51), a finding that suggests

there are no gender differences in the structure or centrality of depressive symptoms.

Limitations: Due to the cross-sectional study design, causal relationships between

these depressive symptoms or dynamic changes in networks over time could not

be established.
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Conclusions: Fatigue, Sad mood, Guilt, and Motor disturbances should be prioritized

as targets in interventions and prevention efforts to reduce depression among residents

in Wuhan, in the later stage of the COVID-19 pandemic.

Keywords: depression, network analysis, COVID-19, Wuhan, mental health

INTRODUCTION

Coronavirus disease 2019 (COVID-19) was first found inWuhan,
China and was subsequently reported in over 200 countries and
territories. The virus, together with quarantine and isolation
measures (1–3), contributed to increases in common psychiatric
syndromes such as anxiety and depression (3–9). Based on
previous findings (10, 11), psychiatric syndromes of infectious
diseases (e.g., Influenza and Ebola), particularly depression, can
persist long after the peak of an outbreak. Of the psychiatric
disorders that increase during and after pandemics, depression
is among the most common and debilitating syndromes, and is
associated with a range of negative health outcomes including
cognitive impairments (12), increased risk of suicide (13) and
cardiovascular disease risk (14), high disease burden and lowered
quality of life (15, 16). For instance, one study found that 50.4%
of people who were exposed to COVID-19 patients experienced
depressive symptoms (17) while the corresponding figure was
20.4% in the general population in China during the COVID-
19 epidemic (2). A meta-analysis of 12 studies (18) revealed
that the prevalence of depressive symptoms was 25% during the
COVID-19 outbreak.

Traditional theories of psychopathology assume individual

symptoms of a particular psychiatric disorder are the

manifestations of a latent variable but do not explore how

these symptoms interact with each other (19, 20). In traditional

frameworks, for example, depression is the common cause

of a collection of symptoms, such as sad mood, fatigue, and

insomnia (21, 22). As symptoms are the indicators of an

underlying disorder, instruments with a set of items, such as

Patient Health Questionnaire (PHQ-9) and the Beck Depression

Inventory (BDI), are commonly used to investigate whether

or not an individual suffers from depression. In traditional

perspectives, individual symptoms are interchangeable and are

not distinct from each other in their mechanisms or impact on

functional impairment (23). Furthermore, individual symptoms

in traditional models usually share a common origin, although,

in fact, some symptoms are more strongly associated with other
symptoms (24), and also impair different functions (23).

In recent years, network analysis (NA) has been proposed
as a novel alternative approach to conceptualizing psychiatric
disorders. From an NA perspective, a psychiatric disorder
consists of a set of dynamically interacting, reciprocally
reinforcing symptoms (20, 21). According to NA, depression
is the result of interactions between a set of individual
symptoms (20, 21, 25). For example, sleep problems may lead
to fatigue, which, in turn, leads to motor problems or impaired
concentration in depressed patients. In the depression symptom
network, central symptoms feature the most connections with

other symptoms and can also trigger other symptoms. As
such, pinpointing central symptoms has important clinical
implications for developing effective targeted strategies or
interventions to treat psychiatric disorders (21, 25, 26).

Because infectious disease epidemics contribute to the rise and
persistence of psychiatric disorders, particularly depression (27)
in the general population (10, 11), it is important to examine the
structure of depression in the context of groups most directly
affected by an epidemic. In China, the COVID-19 outbreak
had been well-controlled by the middle of 2020, although there
continued to be some imported cases from time to time (28–30).
Although one study using NA examined changes in depression
and anxiety symptoms during the peak of the COVID-19
pandemic (5), no NAs have been published on the aftermath of
the COVID-19 peak, although it is important to develop timely
treatment and preventive measures for depression in stages after
the peak of the COVID-19 pandemic has receded. Therefore, we
aimed to explore associations of individual depression symptoms
inWuhan residents in the later stage of the COVID-19 pandemic.

METHODS AND MATERIALS

Participants
This cross-sectional study was conducted in Wuhan between 25
May and 13 June 2020 using snowball sampling. The assessment
was conducted using the QuestionnaireStar program, which has
been widely used in epidemiological studies (31–33). To be
eligible for this study, participants needed to meet the following
criteria: [1] aged 18 years or above; [2] current residents of
Wuhan who could be able to read Chinese and understand
the contents of the assessments; [3] not infected with COVID-
19 during the pandemic. All participants were required to
electronically sign the written informed consent. The study
protocol was approved by the ethics committee of Beijing Anding
Hospital (2020-Keyan; No. 10).

Data Collection
Basic demographic data were collected. The Chinese version
of the Patient Health Questionnaire (PHQ-9) was used to
measure depression symptoms (34). The PHQ-9 consists of 9
items investigating depressive symptoms, including Anhedonia,
Sad mood, Sleep problems, Fatigue, Appetite problems, Guilt,
Impaired concentration, Motor disturbances and Suicidal
ideation (35). Each item is scored from 0 (not at all) to 3
(nearly every day), with higher scores reflecting more severe
depressive symptoms. The PHQ-9 had satisfactory psychometric
properties (e.g., Cronbach’s alpha coefficient = 0.86; 2-week
test-retest reliability of r = 0.86; sensitivity and specificity of
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0.86, respectively; convergent validity with other measures of
depression and reduced well-being) in Chinese populations (36).

Network Estimation
All analyses were conducted using R program (version: 4.0.3).
Means, standard deviations (SD), kurtosis, and skewness of
all PHQ-9 items were calculated. The informativeness of each
symptom was estimated by means of SDs and possible item
redundancy was checked using the R package networktools
(22, 37, 38). Following previous studies (22, 37), for any
two individual depressive symptoms, e.g., symptoms “A” and
“B,” a correlation difference test was performed between the
“A” correlation matrix (the correlations between symptom “A”
and the remaining symptoms) and “B” correlation matrix
(the correlations between symptom “B” and the remaining
symptoms). If the proportion of significant differences between
the “A” correlation matrix and “B” correlation matrix was <25%
for all correlations, then symptoms “A” and “B” were classified
as redundant.

All PHQ-9 item score distributions were skewed. Hence,
following previous studies (38, 39), an Ising model was used to
estimate the network. In the Ising model, all PHQ-9 items were
dichotomized, with “0” and “1” representing the absence and
presence of depressive symptoms, respectively. All item scores
of “0” were considered to indicate the absence of a depressive
symptom, while “1,” “2,” and “3” scores were considered to reflect
the presence of a depressive symptom.

Network models consist of nodes and edges. Specifically,
individual symptoms measured by the PHQ-9 represent “nodes,”
whereas connections between nodes are “edges.” The Isingmodel
assesses network structures after controlling for all the other
associations between nodes in the network. Specifically, the
Isling model identified relationships between nodes based on
a Goodness-of-Fit measure, i.e., the least absolute shrinkage
and selection operator (LASSO) with the extended Bayesian
Information Criterion (EBIC) (eLASSO) (39, 40). This procedure
can shrink weak connections to zero, and then reduce spurious
associations, making the network interpretable (40). The R
package qgraphwas used for network visualization; the width and
saturation of edges indicated the strength of association between
each pair of nodes, while different colors indicated the direction
of these correlations (i.e., the color green indicated positive
correlations while the color red indicated negative correlations
between each pair of nodes) (41).

Given controversies in the optimal method of modeling
trichotomous items (21), we followed a recent published study
(22) by adopting the EBIC graphical LASSO (EBICglasso) model
to estimate the network (42). Similar to Ising models, EBICglasso
models estimate partial polychoric correlations between any
two given nodes. The network model was regularized using
graphical LASSO based on EBIC, resulting in an interpretable
network. Previous studies found that age, gender, marital status
and education are often associated with depression (43–46).
Therefore, as recommended by Dalege et al. (47), we re-estimated
the initial networkmodel after controlling for age, gender, marital
status and education using R packagemgm.

Node Centralities
Three centrality indices (i.e., strength, betweenness and
closeness) are often used to identify which symptoms are the
most critical nodes (48, 49). Nevertheless, increasing evidence
indicates that neither betweenness nor closeness is reliable in NA
(50, 51). Hence, only strength (i.e., the sum values of absolute
edge weights of a given node to all the other nodes) (25, 48), the
most straightforward and frequently used centrality index (48),
was calculated in this study. All analyses were performed using R
package bootnet and qgraph.

Network Accuracy and Stability
To examine the robustness of the estimated network, we assessed
the accuracy of edge weights and node strength stability (42). The
accuracy of edge weights was tested by constructing confidence
intervals (CIs) with a 95% probability using non-parametric
1,000 times bootstrapping (25). Smaller and larger CIs signified
more and less accurate edge weights, respectively.

Stability was assessed by using a case-dropping bootstrap
method. Next, centrality indexes (i.e., strengths) in the subset
sample (i.e., after removing certain cases) were compared
with those from the overall sample (42, 52). Specifically, the
correlation stability coefficient (CS-coefficient) was used to
measure strength stability based on the maximum proportion of
cases that can be dropped while maintaining the correlation of
the ranking between original and subset networks at 0.7 with a
95% probability (42). The CS-coefficient is preferentially above
0.5, with a minimum requirement of 0.25 (42).

To test node strength or edge-weight differences, non-
parametric bootstrapped difference tests were performed.
Specifically, 1,000 bootstrapped CIs were constructed for the true
node strength or edge-weight difference. If zero was included in
the 95%CIs, there was no significant difference between two node
or edge-weight strengths. All procedures were conducted using R
package bootnet and qgraph (42).

Associations Between Symptom Mean
Levels, Variabilities, and Centralities
Spearman’s rank-order correlations between symptom strengths
and mean values were performed to examine whether the most
central depressive symptoms were themost severe symptoms (23,
38). Then, Spearman’s rank-order correlations between symptom
centralities and SDs were performed to examine associations
between strengths of depressive symptoms and their variabilities
(22, 38).

Gender Differences in Depressive
Symptom Networks
To examine gender differences in depressive symptom networks
(i.e., structure, edge strength, and global strength), a network
comparison test (NCT) based on a 1000 permutation test was
performed using the R packageNetworkComparisonTest (39, 53).
Edge-weight distributions of female and male networks were
estimated for the comparison of the two network structures.
Global strengths (i.e., the absolute sum of all edges of the
networks) were also compared between female and male
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TABLE 1 | The socio-demographic information of all included samples.

Variables Total (N = 2,515) Female (N = 1,870) Male (N = 645)

Mean/N SD/% Mean/N SD/% Mean/N SD/%

Age (years) 35.4 10.9 34.6 10.7 37.5 11.2

Education Junior high school 35 1.4 25 1.3 10 1.6

High school 181 7.2 112 6.0 69 10.7

Undergraduate/College 1926 76.6 1468 78.5 458 71.0

Master/PHD 373 14.8 265 14.2 108 16.7

Marital status Unmarried 820 32.6 629 33.6 191 29.6

Married 1580 62.8 1153 61.7 427 66.2

Divorced 102 4.1 77 4.1 25 3.9

Widowed 9 0.4 7 0.4 3 0.3

Others 4 0.2 4 0.2 0 0

Mean/N, mean or sample number; SD, Standard deviation; SD/%, SD or percentage.

TABLE 2 | Mean, standard deviation, minimum, maximum, skewness, kurtosis, and frequency of the PHQ-9 Symptoms (N = 2,515).

PHQ-9 symptoms Mean SD Min Max Skewness Kurtosis Absense (0) % Presence (1–3) %

1. Anhedonia 0.40 0.49 0 1 0.41 −1.83 0.40 0.60

2. Sad mood 0.48 0.50 0 1 0.06 −2.00 0.48 0.52

3. Sleep 0.45 0.50 0 1 0.22 −1.95 0.45 0.55

4. Fatigue 0.33 0.47 0 1 0.72 −1.48 0.33 0.67

5. Appetite 0.58 0.49 0 1 −0.33 −1.89 0.58 0.42

6. Guilt 0.60 0.49 0 1 −0.40 −1.84 0.60 0.40

7. Concentration 0.61 0.49 0 1 −0.44 −1.80 0.61 0.39

8. Motor 0.74 0.44 0 1 −1.12 −0.74 0.75 0.25

9. Suicide 0.90 0.30 0 1 −2.65 5.05 0.90 0.10

SD, Standard deviation.

The reviewer JL declared a shared affiliation, with no collaboration, with the author TC at the time of the review.

networks. Differences of each specific edge between female and
male networks were estimated using Bonferroni corrections (53).

RESULTS

Basic Demographic Characteristics
A total of 2,614 participants were invited to participate in this
survey, of whom, 2.515 met inclusion criteria, and were included
for analyses (women: 74.4%, 34.6 ± 10.7 years; men: 25.6%,
37.5 ± 11.2 years). A majority of participants completed post-
secondary high education (i.e., Undergraduate/College or higher:
91.4%) and were married (62.8%) (Table 1).

Descriptive statistics for all depressive symptomsmeasured by
the PHQ-9 are presented in Table 2. The mean and SD of the
PHQ-9 item scores were 0.57 and 0.46, respectively. Suicide (P9)
andMotor (P8) symptoms had the highest mean scores (0.90 and
0.74), while Fatigue (P4) and Anhedonia (P1) symptoms had the
lowest mean ratings (0.33 and 0.40).

Network Estimation and Strength
Centrality
No item scores were lower than the 2.5 SD below the mean
informativeness threshold (MSD =0.47±0.13) that indicated

poor informativeness (38). Further, no item was found to be
redundant with other items (37). Thus, all individual depressive
symptoms were included for analysis.

The estimated symptom network based on the Ising model
is displayed in Figure 1. Individual symptoms including Fatigue
(P4), Sad mood (P2), and Guilt (P6) were significantly connected
to the other symptoms. In addition, all depressive symptoms had
positive correlations with each other (Supplementary Materials

and Supplementary Table 1). Strengths of depressive symptoms
are shown in Figure 2. Fatigue (P4) and Sad mood (P2) were the
most central symptoms with the highest strengths, followed by
Guilt (P6) and Motor disturbances (P8), while Sleep problems
(P3) and Suicide (P9) symptoms had the lowest strength
centrality (Figure 2).

Network Accuracy and Stability
Accuracies of edges between pair nodes based on
mean non-parametric bootstrapped CIs are shown in
Supplementary Figure 1. Generally, observed edges in the
network were consistent with the mean bootstrapped CIs.
Larger edges displayed narrower CIs indicating more accuracy.
This finding suggested the network was stable and robust
(Supplementary Figure 2).
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FIGURE 1 | The estimated network structure of dichotomized PHQ-9

symptoms.

Analyses of strength centrality reflected high stability
(Figure 3). The CS-coefficient [CS (Cor = 0.7)] was 0.67 and
indicated that the correlation coefficient between observed
strength centrality of the subsets and that of the original sample
still remained above 0.7 even after removing 67% of the cases.

As shown in Figure 4, Fatigue (P4) and Sad mood (P2)
symptoms had the highest strength centrality difference. In
contrast, Sleep problems (P3) and Suicide (P9) symptoms had the
lowest strength centrality difference. For the edge differences (see
Supplementary Figure 2), a majority of edges, including those
of Anhedonia (P2)-Fatigue (P4), Impaired concentration (P7)-
Motor disturbances (P8), and Anhedonia (P1)-Sad mood (P2),
were significantly different from the other edges.

Associations Between Variabilities and
Centralities
Of depressive symptoms, Suicide (P9), Impaired concentration
(P7), Motor difficulties (P8), and Guilt (P6) symptoms had
the highest mean values. However, mean values of individual
depressive symptoms were not correlated with symptom
strengths (rs = −0.30, p = 0.43), or symptom variabilities (rs
= −0.47, p = 0.21); this pattern suggested that the centrality
of depressive symptoms was not correlated with mean symptom
levels and variabilities within the whole sample.

Gender Comparisons of Depressive
Symptom Networks
Descriptive statistics for individual depression symptoms of
women and men are presented in Supplementary Table 2.
Figure 5 shows the estimated female (n = 1,870) and male
(n = 645) networks. The two networks did not have
significant differences in either network structure (maximum

FIGURE 2 | The node strength centrality in the PHQ-9 network.

difference=0.11, p = 0.44) or network centralities (global
strength difference=0.04, female vs. male: 3.78 vs. 3.83, p =

0.51). In analyses of gender differences in individual edge levels
based on Bonferroni-Holm corrections, a majority of the edges
did not differ significantly between women and men. However,
there were two exceptions: (1) Anhedonia (P1)- Impaired
concentration (P7) (female vs. male: 0.59 vs. 1.29, the difference p
= 0.039), and (2) Sad mood (P2)-Motor difficulties (P8) (female
vs. male: 0.49 vs. 1.44, the difference p = 0.002), both of which
suggest that different treatment priorities should be considered
due to different clinical features between women and men.
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FIGURE 3 | Stability of strength centrality (the average correlation with original sample) estimated by case dropping subset bootstrapped method.

Estimated Depressive Symptom Network
Using the EBICglasso Model
As the optimal approach modeling the trichotomous items is still
in debate (23), we also performed a network estimation
using EBICglasso model to evaluate the robustness of
network results. As shown in Supplementary Figure 4,
findings for strength were similar to those observed using
the Ising model (r = 0.93, 95%CI: 0.99–0.71) and edges
(r = 0.93, 95%CI: 0.89–0.95).

Depressive Symptom Network After
Controlling for Age, Gender, Marital Status,
and Education
We re-estimated the model using the mgm model
after controlling for age, gender, marital status, and
education. Results were consistent with the primary
results based on the Ising model with no covariates
(Supplementary Figure 5). Consistencies for both strengths
and edges were very high (r = 0.92, 95%CI: 0.65–0.98;
r = 0.92, 95% CI: 0.88–0.95).

DISCUSSION

This was the first study to explore the structure of the depression
symptom network among Wuhan residents shortly after the
COVID-19 epidemic peak. Fatigue had the highest centrality,
followed by Sad mood, Guilt and Motor difficulties. Fatigue,
usually defined as a loss of energy (54, 55), feeling tired (56),
or exhaustion (57), is particularly relevant to anhedonia in
depression and other psychiatric disorders (58, 59). As expected,
Sad mood also emerged as one of the most central symptoms,
replicating previous findings (60), and underscoring its role as a
hallmark symptom of depression.

Guilt (i.e., regret, feeling like a disappointment to oneself
or others based on the PHQ-9) (34, 35), refers to personal
negative assessment of one’s behaviors, and usually evolves from
caring, cooperative, and harm avoidance motives (61, 62). In
this network analysis of depression, Guilt was strongly associated
with not only Sad mood, but also with Suicide ideation, which
is consistent with previous findings (63, 64). For instance,
one study (63) found that persons who experienced serious
trauma with feeling of worthlessness were more likely to attempt
suicide. Similarly, Wakefield and Schmitz (64) found that guilt
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FIGURE 4 | Non-parametric bootstrapped difference test for the node strength.

was the only significant predictor of increased risk of post
remission suicide attempts among depressive symptoms. In
addition, a more recent network analysis (65) revealed that
self-worthlessness was the most central symptom in depression
model. In the context of living at the epicenter of China’s
pandemic, we speculate that depressive experiences of Wuhan
residents are characterized more strongly by feelings of guilt
related to witnessing illness or death from the COVID-19
outbreak or, possibly, from surviving the epidemic while others
have perished as a result of its spread (1, 66, 67).

Motor difficulties were another central symptom in this
depression network model, which confirms the notion that
psychomotor problems are among the most important individual
symptoms in depression (68–72). This could be partly attributed
to disrupted structural and functional coupling between different
brain networks (73, 74). For example, Ge and colleagues
found an attenuated positive correlation between the right
ventral-posterior insular structural covariance and motor and
psychomotor performance among depressed patients compared
to healthy controls (73). Further, compared with healthy controls,
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FIGURE 5 | (A,B) The estimated dichotomized depressive network model for female and male participants.

both lower within-putamen functional connectivity (75) and
decreased cerebral blood flow of right primary motor cortex
(76) are associated with more severe psychomotor retardation
in depressed patients (75, 76). Additionally, certain public health
measures including lockdown and social distancing during the
COVID-19 pandemic could contribute to reduced activities (71,
77), which, in turn, exacerbated psychomotor retardation (1).
Furthermore, we also found a stronger edge between Motor
difficulties and Suicide ideation, which is consistent with an
earlier finding Malhi et al. (78) that both difficulties in initiating
activities and suicidal ideation are the strongest predictors of
severe depression.

There was no correlation between mean values of individual
depressive symptoms and their strength centrality and variability.
For example, similar to previous findings (60), Suicide ideation
had the lowest centrality strength in the network model, but
also had the highest mean level among individual depressive
symptoms. Fear of infection, social isolation, uncertainty and
economic loss associated with COVID-19 could lead to various
psychological problems, which finally increased suicide ideation,
especially for individuals who reside inWuhan, the epicenter and
those whose familymembers or friends died or were infected with
COVID-19 during the pandemic (8, 79–82). This overall pattern
is consistent with findings from clinical research. A previous
study found that imipramine and Mindfulness-Based Cognitive
Therapy both significantly improved mean levels of depressive
symptoms but failed to change the dynamic depressive symptom
network structure over time (83). In contrast, psychosocial
inventions targeting central depressive symptoms (i.e., the
symptoms with high strength centrality) may be much more
effective; these interventions improve the severity of central
symptoms themselves in addition to reducing the severity of
other symptoms in the network that have connections with
central symptoms (26). Thus, apart from the treatments targeting
specific individual symptoms with high mean levels such as
suicide ideation, interventions targeting central symptoms, i.e.,
Fatigue, Sad mood, Guilt and Motor difficulties, should be
considered to reduce overall depression severity and increase
treatment efficacy based on findings from network analysis.

Gender comparisons of depressive symptom networks
indicated similar overall network structures and global strengths
between women and men, consistent with a recent finding
(84). However, in this study, male participants had higher edge
weights in Anhedonia (P1)-impaired concentration (P7), and
in Sad mood (P2)-Motor difficulties (P8) nodes compared to
women, findings that are potentially due to gender differences
in the psychopathology of depression (85–89). Previous studies
(88) found that men tended to be depressed with functional
limitations, and were more likely to handle depression by
increasing physical activities; in contrast, women tended to
handle it through emotional release or religion (86). However,
physical activities were greatly limited due to quarantine
measures during the COVID-19 pandemic, which might have
worsened sad mood in men. The gender differences were novel,
therefore replications are needed to determine whether these
results were specific to this sample or reflective of general
gender differences.

Strengths of this study included its large sample size, use of
different network analysis models (e.g., Ising and EBICglasso)
to assess consistency of overall results, and replications of
initial sample results even after statistically controlling for socio-
demographic correlates of depression. Several limitations should
be noted. First, due to the cross-sectional study design, causal
relationships between these depressive symptoms and dynamic
changes in symptom networks over time could not be established.
Second, this study was conducted at China’s epicenter shortly
after the COVID-19 epidemic peak. Therefore, network model
findings may not be generalized to different phrase of the
pandemic or sites that were relatively unaffected by COVID-19.
In addition, the education level of participants was skewed, as
majority received college education. However, after controlling
for education as well as age, gender, and marital status as
covariates, results did not change significantly. Finally, the study
sample was drawn from the general community which limits the
generalizability of findings to clinical samples.

In conclusion, the network analysis indicated that Fatigue,
Sad mood, Guilt and Motor impairments are central symptoms
in the depressive network of women and men in a community
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sample during the months that followed the COVID-19 peak
at the epicenter of China’s epidemic. As such, these symptoms
should be prioritized as the targets in treatment and prevention
interventions for depression among adult residents in Wuhan in
the later stage of the COVID-19 pandemic.
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