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Regulatory agencies encourage computer modeling and simulation to reduce the time

and cost of clinical trials. Although still not classified in formal guidelines, system

biology-based models represent a powerful tool for generating hypotheses with great

molecular detail. Herein, we have applied a mechanistic head-to-head in silico clinical

trial (ISCT) between two treatments for attention-deficit/hyperactivity disorder, to wit

lisdexamfetamine (LDX) and methylphenidate (MPH). The ISCT was generated through

three phases comprising (i) the molecular characterization of drugs and pathologies, (ii)

the generation of adult and children virtual populations (vPOPs) totaling 2,600 individuals

and the creation of physiologically based pharmacokinetic (PBPK) and quantitative

systems pharmacology (QSP) models, and (iii) data analysis with artificial intelligence

methods. The characteristics of our vPOPs were in close agreement with real reference

populations extracted from clinical trials, as did our PBPKmodels with in vivo parameters.

The mechanisms of action of LDX and MPH were obtained from QSP models combining

PBPK modeling of dosing schemes and systems biology-based modeling technology,

i.e., therapeutic performance mapping system. The step-by-step process described

here to undertake a head-to-head ISCT would allow obtaining mechanistic conclusions

that could be extrapolated or used for predictions to a certain extent at the clinical

level. Altogether, these computational techniques are proven an excellent tool for

hypothesis-generation and would help reach a personalized medicine.
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INTRODUCTION

To reduce clinical trials time and cost and to improve their
outcomes’ conclusiveness, regulatory agencies encourage the use
of computer modeling and simulation (CM&S) approaches to
optimize randomized clinical trials (1). CM&S approaches are
based on the analysis of existing data and experience, including
real-world data studies, pharmacometrics modeling or, more
recently, in silico clinical trials (ISCT). Although the concept
emerged in the early 2000s (2–4), the term and proper definition
of ISCT was widely established and accepted during the 2010
decade with the foundation of specific organizations to promote
the implementation of these approaches, such as the VPH
Institute in 2011 or the Avicenna Alliance, founded by the
European Commission, to create the research roadmap for ISCT
(5). In addition to its economic advantages, ISCT allow the
exploration of drugs and diseases inmany settings, thus, reducing
risks for patients and the use of animal models to test hypotheses.
CM&S and artificial intelligence-based approaches are crucial to
achieving personalized, preventive, predictive, participative, and
precise—the so-called 5P—medicine and healthcare (6).

Systems Biology and MID3 Guidelines
One of the most promising computational tools encompassing
these concepts is systems biology or systems medicine (5, 7–9).
During the last 20 years, the US and Europeanmedicines agencies
(FDA and EMA), in collaboration with the pharmaceutical
industry, have been developing the guidelines and good
practices to which these computational approaches should
adhere. One of these guidelines is MID3, which describes the
quantitative framework for predicting and extrapolating models’
conclusions (10, 11). Establishing three categories based on
the relevance of the conclusions, MID3 is meant to guide
industry decision-making (12) or regulatory assessment (13).
Accordingly, models can be classified as (i) “LOW” impact, when
information obtained from them cannot be directly used to
make clinical or commercial decisions [e.g., physiologically based
pharmacokinetic (PBPK)] models; (ii) “MEDIUM” impact, for
models providing helpful information for strategic conditioning
of future trial data [e.g., studies to determine optimal dosing,
target population, sample size, design of future trials, or
study of mechanisms of action (MoA) of compounds]; and
(iii) “HIGH” impact, for cases where conclusions support
decision-making without the need for additional experimental
or trial studies (e.g., simulations replacing direct clinical
trial data in children or oncologic patients that provide
evidence on efficacy and safety to uphold regulatory submission
package and labeling). While pharmacometric models are under
evaluation for acceptance as HIGH impact models, systems
biology-based models are still in debate (14). However, they
possess an undeniable great potential in providing molecular
detail, generating hypotheses, and suggesting specific molecular
solutions to complex pathophysiological problems.

Proof-of-Concept: ADHD
Attention-deficit/hyperactivity disorder (ADHD) is a complex
ailment with a prevalence in children ranging from 6 to

10% (15). Besides, ADHD exhibits an important long-term
persistence (15), affecting ∼5% of adults (16–18). Around 30–
50% of children with ADHD continue to manifest symptoms,
inattention in particular, in adulthood (19, 20). Comorbid
psychiatric disorders are present in up to 67% of ADHD
pediatric-adolescent patients (21) and almost 80% of adults
(22). These comorbidities can complicate ADHD diagnosis and
treatment (23, 24) and include depression, anxiety, bipolar
disorder, binge eating, tics, conduct disorder, personality disorder
and non-alcoholic substance abuse, among others (20, 25).
Recent findings suggest a direct relationship between ADHD
and the development of these comorbidities (24, 26, 27), likely
involving a genetic connection (28), although results on this
subject remain controversial.

ADHD management comprises pharmacologic and non-
pharmacologic treatments. Medications include stimulant
[amphetamines and methylphenidate (MPH)] and non-
stimulant drugs (atomoxetine, extended-release clonidine,
and guanfacine), with the former being recommended as
first-line treatment (29). Several modifications to improve
the characteristics of amphetamines have been performed,
among which the design of the prodrug lisdexamfetamine
(LDX, Vyvanse R© in the US and Elvanse R© in Europe) and
the development of extended-release formulations [such as
the osmotic release oral system (OROS) of MPH, Concerta R©

or Medikinet R© retard]. Although a pediatric clinical trial
analyzing LDX and MPH is currently ongoing (30, 31), there
are no explicitly designed head-to-head trials comparing these
treatments, neither on the pediatric nor adult population.

We present here the methods of the Therapeutic
Performance Mapping System (TPMS) technology, which
allow the generation of virtual patients and PBPK and systems
biology-based models with the purpose of performing ISCTs.
To demonstrate the applicability of the method, we used
as case-study a mechanistic head-to-head ISCT between
LDX and MPH (Elvanse R© vs. Concerta R© in the pediatric-
adolescent population and Elvanse R© vs. Medikinet R© retard
in the adult population) using a crossover–like design. The
objective of this ISCT was to model the efficacies of the
two drugs and compare them in a virtual head-to-head
setting. Additionally, we describe an approach to measure
and compare the output results in terms of efficacy of the
two medications, the molecular mechanisms triggered, and
the response to ADHD management in a diverse population
of virtual patients, including patients with the most common
psychiatric comorbidities.

METHODS

This methods study details the steps and modeling approaches
to carry out the ISCT (Figure 1). Before the study trial
(phase I), drugs and pathological conditions were molecularly
characterized and reference populations defined. In the
modeling stage (phase II), a series of virtual populations
and PBPK and quantitative systems pharmacology (QSP)
models were generated and embedded in the ISCT as a
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FIGURE 1 | In silico clinical trial protocol overview. The protocol is divided into three main stages: Phase I, including trial design and information compilation; Phase II,

comprising mathematical modeling; and Phase III, consisting of data analysis according to the trial design. ISCT, in silico clinical trial; PBPK, Physiologically based

pharmacokinetic; QSP, Quantitative systems biology.

means of virtual patient recruitment. At this step, the
models were optimized to reproduce known clinical
efficacy findings according to the primary outcome of
the study, i.e., the model-based clinical efficacy-related
measure herein proposed, based on modeled protein
activity over ADHD molecular definition. Finally, in the
analysis phase (phase III), the molecular variability among
patients was explored by analyzing all ADHD models, patient
by patient.

Population Definition—Virtual Patients
Two types of virtual populations (vPOPs) were generated:
adult (>18 years old) and pediatric-adolescent (6–17 years old)
vPOPs. As reference demographic and comorbidity parameters
to generate the VPOPs, the following studies were used:
NCT00730249 (32) (MPH) and NCT00337285 (33) (LDX)
for adults; and NCT00763971 study (30) (LDX and MPH)
for the pediatric-adolescent population. These clinical trials
presented standard inclusion and exclusion criteria for ADHD
evaluation, which were appropriate for the case-study herein
proposed and showed homogeneous demographic values when

compared to other clinical trials with equivalent inclusion and
exclusion criteria.

Additionally, standard population distribution data was used
to fill incomplete demographic parameters. For adults, ESS
Round 7 (34) was used, while data from the World Health
Organization (WHO) growth information (35) was retrieved for
the pediatric-adolescent population.

All virtual patients created had ADHD, and specific branches
for the different comorbidities were also generated, as previously
described (36). ADHD and comorbidities definitions were
obtained by thorough literature review of current molecular
knowledge on each condition (see Supplementary Methods
in Supplementary Material 1; Supplementary Tables A, B in
Supplementary Material 2).

Sample Size Calculation
Since data on treated and non-treated patients is not available,
we considered that a number of patients large enough to
discriminate among ADHD patients and healthy individuals
would also be large enough to detect efficacy-associated changes
for each drug. Therefore, to generate enough patients and ensure
having sufficient statistical power when performing data analyses,
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FIGURE 2 | Expected percentage of best accuracy as a function of sample size. Dotted blue and discontinuous green lines correspond to the mean % best accuracy

reached for each sample size at statistical power 95 and 99%, respectively, assuming a normal distribution of the accuracy variation and estimating the means and

the standard deviation for each sample size. The red line shows the 85% Max accuracy level.

the sample size approach described below was carried out.
Because TPMS’ drug efficacy outcomes are based on predicted
protein activity (i.e., tSignal, Equation 1—defined in section
Systems Biology Maps and Models), this methodology was based
on experimental measures that can relate to protein activity
variability, particularly gene expression.

First, gene expression data groups identified as control-
“healthy” and case- “disease” were retrieved from Gene
Expression Omnibus (GEO) experiments (37) and then treated
and normalized using R packages, parameters, and steps defined
by Law et al. (38). Afterwards, a protocol based on the
method introduced by Mukherjee et al. (39) and Figueroa et al.
(40) was followed to explore the variation in accuracy and
statistical power induced by changes in the sample size. To
that end, GEO patient-normalized gene expression datasets are
submitted to sampling-without-replacement combined with a
linear regression classification method (41). The latter allows the
identification of the best classifiers (proteins) to separate control-
healthy from case-disease patients, and these classifiers are used
to compute the highest possible accuracy (“Max accuracy”).
Progressive sampling is then applied to obtain subsets of balanced
samples from both cohorts (case-disease vs. control) in a 1:1
ratio. These subsets are tested for sample sizes ranging from
eight to the number of the smallest cohort performing 100

repetitions per sample size. Each subset is used to train a linear
classifier based on two features extracted by feature selection
procedures previously described (36). The accuracy achieved for
each classifier is estimated using k-fold cross-validation (k = 10)
(42). Finally, taking as reference theMax accuracy, the percentage
of max accuracy reached for each subset of samples and total
samples is calculated using the classifiers obtained for that subset.

For the present ADHD study-case, RNAseq records from
the entry GSE159104 (43) were selected, where two cohorts
of patients were already identified and labeled as control
(healthy) and ADHD (case-disease). The variability within the
genes or proteins involved in the ADHD molecular definition
(see Supplementary Methods in Supplementary Material 1;
Supplementary Tables A, B in Supplementary Material 2) was
evaluated for the 154 samples (78 control, 76 ADHD) included
in the GEO experiment. After finalizing the abovementioned
procedure, statistical powers of 95 and 99% were used, based on
classification errors (39), and a value of 85% of Max accuracy
was set as minimum valid threshold (Figure 2). Considering a
statistical power of 95%, we deemed 68 samples (34 control and
34 ADHD) to be enough to achieve the objectives of the analysis
in our simulation. Under these premises, 142 samples (71 control
and 71 ADHD) were adequate to reach the target accuracy with
99% power (although more RNAseq samples would be required
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FIGURE 3 | Comorbidities distribution and treatment allocation in the adult

virtual population. ADHD, Attention-deficit/hyperactivity disorder; LDX,

Lisdexamfetamine; MPH, Methylphenidate; QSP, Quantitative systems biology;

vPOP, Virtual population.

to ensure curve stabilization). Accordingly, at least 100 virtual
patients were built per each patient group (minimum sample size
of 200 samples per analysis).

Patient Distribution
The two populations, adult and pediatric-adolescent, were
segmented into nine arms each (a total of 18 arms) to facilitate
the simulation and the analysis. One arm accounted for ADHD
without any comorbidity, while the eight additional arms
contained patients with ADHD and one, or a combination, of
comorbid psychiatric conditions.

Each of the arms accounting for comorbidities had 100
patients, while arms related to ADHD alone consisted of 500
patients, with the aim of maximizing the number of patients with
different demographical characteristics. Consequently, a total of
2,600 patients were included in the simulation: 1,300 adults
(Figure 3) and 1,300 children-adolescents (Figure 4). All of them
were treated sequentially with LDX and MPH using the adequate
dosing scheme. According to the study’s in silico nature, the files

FIGURE 4 | Comorbidities distribution and treatment allocation in the

pediatric-adolescent virtual population. ADHD, Attention-deficit/hyperactivity

disorder; LDX, Lisdexamfetamine; MPH, Methylphenidate; QSP, Quantitative

systems biology; vPOP, Virtual population.

containing the models of each virtual patient could be cloned;
thus, no wash-out period was needed.

Intervention Definition
According to their population group, the patients included in
the ISCT were treated with different formulations and doses of
LDX and MPH in a two-period crossover-like study design. For
all patients, the same initial state was used at each period, hence
carryover effect was assumed zero. Dosage, molecular target
profile, and pharmacokinetic information were needed for the
QSP modeling herein proposed.

Dosage
Dosage schemes were simulated differently in the pediatric-
adolescent and adult populations according to usual clinical
practices. Adults were treated with LDX (Elvanse R©) 70mg and
children with LDX 50mg. Different doses and types of modified
release systems for MPH were considered in the simulation,
corresponding to different commercial formulations: (i) for
adults, Medikinet R© 60mg with modified-release (also known as
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TABLE 1 | Identified protein targets for lisdexamfetamine and methylphenidate.

Gene name Protein name Effect* Reference of LDX

target

Reference of MPH

target

TAAR1 Trace amine-associated receptor 1 1 (49) –

SLC18A2 Synaptic vesicular amine transporter (VMAT2) −1 (49, 50) –

SLC6A3 Sodium-dependent dopamine transporter (DAT) −1 (50–52) (53–55)

SLC6A2 Sodium-dependent noradrenaline transporter (NET) −1 (50, 52) (53–55)

SLC6A4 Sodium-dependent serotonin transporter (SERT) −1 (50) –

MAOA Amine oxidase (flavin-containing) A −1 (52, 56) –

MAOB Amine oxidase (flavin-containing) B −1 (52, 56) –

HTR1A 5-hydroxytryptamine receptor 1A 1 – (57, 58)

*Effect refers to the drug’s action on the protein, 1 denotes activation of protein function, −1 inhibition of protein function.

LDX, lisdexamfetamine; MPH, methylphenidate.

Medikinet R© XL or Medikinet R© Retard), based in multiarticular
beads that combine 50% immediate and 50% extended-release
(44); and (ii) for the pediatric-adolescent population, Concerta R©

36mg, an osmotic release system (OROS technology) with a
22% of the total amount available for immediate release (the
remaining 78% corresponding to the osmotically controlled
extended-release) (45).

Molecular Target Profile
The molecular target profile identification was performed
through a review of official regulatory sources [European
Medicines Agency—EMA, European Public Assessment
Report (EPAR)—and Food and Drug Administration—FDA,
Multidisciplinary and Chemistry reviews and Label], drug-
target–dedicated databases [DrugBank (46), STITCH (47),
SuperTarget (48)] and the scientific literature (the specific
searches performed can be found in Supplementary Methods in
Supplementary Material 1). This information was integrated
into the TPMS technology-based MoA models for each drug.
Table 1 contains the proteins defining the target profile of LDX
and MPH.

Pharmacokinetics Information
Bioavailability and drug’s information on main clearance
organ were retrieved from published studies and set for the
corresponding PBPK models (Table 2). Moreover, previous
PK studies were used to fit the generated PBPK models, to
parameterize absorption and drugs’ clearance ratios, and to
validate the models. The reference studies used were Krishnan
and Zhang (66) for LDX in adults, Boellner et al. (67) for
LDX in children, the EPAR (68) for Medikinet R© with modified-
release, andMaldonado (69) for Concerta R©. All three drugs were
administered orally and crossed the blood-brain barrier.

Modeling Methodology
TPMS ISCT is divided into three types of modeling approaches
(Figure 1). First, virtual patients are generated containing
demographic information and disease tags. Afterwards, PBPK
models are constructed using each patient’s demographic
variables, which are then used to infer inter-patient specific

TABLE 2 | Summary of pharmacometrics information used for PBPK modeling.

Drug % Bioavailability

(Ref.)

Main clearance

organ

Elvanse® 96.4 (59) Kidney (60)

Medikinet® with modified release 30 (61, 62) Kidney (63)

Concerta® 32 (64) Kidney (63, 65)

drug concentration-related knowledge. Finally, the patient-
specific drug concentration and disease-related data,
and protein mapping according to pathophysiological
information, are used for generating patient-specific
MoA-QSP models of the drugs under study, here MPH
and LDX.

Virtual Population Modeling
For the construction or recruitment of vPOPs, randomized
populational demographic characteristics are generated using
two types of data sources: (i) original or reference population
with demographic characteristics to be mimicked [age, weight,
height, and/or body mass index (BMI)]; and (ii) standard
population distributions, retrieved from populational studies.
For the present ADHD study-case, the recruitment of each vPOP
was based on the demographical parametric descriptors defined
in section Population Definition—Virtual Patients’ [reference
clinical trials (30, 32, 33), European standard population (34),
and WHO growth information (35)].

For adult population, an adapted version of the algorithm
proposed by Allen et al. (70) was used to generate the population
of individuals virtually recruited in the trial. As a first step, this
algorithm generates a multivariate normal distribution (MVND)
with the demographic means and standard deviations from
the original population. The standard population distribution
values are used to fill in the potential missing demographic
information. A simulated annealing strategy is then used to
minimize a cost function by using the patients generated in
the MVND as starting points (see Supplementary Methods in
Supplementary Material 1).
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In the pediatric-adolescent population, a modification of
the protocol used for adult population was applied to adjust
better the dependence of morphometric measures for ages 0–
17 years. First, the standard population distribution, taken from
the growth information published by the WHO (35), was used
to create a reference MVND. Then, a sampling strategy based
on a Metropolis-Hastings method (71) was applied to reach the
original population distributions (see Supplementary Methods in
Supplementary Material 1).

The final distribution values for adult and pediatric-adolescent
populations were statistically compared (one sample z-test) to
the original means and standard deviations; only populations not
significantly different from the original population (p-value >

0.05) were accepted and kept for posterior modeling steps. For
both population types, corresponding comorbidity-related tags
were assigned to the patients allocated to each of the 18 ISCT
arms (Figure 4).

Demographic parameters were used to obtain accurate and
individualized PBPK models of the drugs, while comorbidity
data, once translated into molecular information, influenced the
patients’ corresponding QSP models.

Systems Biology Maps and Models
TPMS technology (36) generates mathematical models
that use known biological, medical, and pharmacological
information as training data (see Supplementary Table C in
Supplementary Material 2) to simulate the behavior of drugs
and the pathophysiology of diseases in terms of changes in
protein activity. This methodology uses supervised machine
learning methods based on a human protein functional
network to infer information at the clinical and protein
levels. Here, TPMS was used to build the mathematical
models to simulate the behavior of LDX and MPH over
ADHD by modeling the changes in proteins’ activity defining
the disease. While generating TPMS models, molecular
information relating to psychiatric comorbidities was
added to denote the different neurophysiological ADHD
patient types.

The resulting models allowed the extraction of several protein
activity measures. Therefore, the model-derived parameter
tSignal (Equation 1) (36), which ranges between 1 and −1,
applied to the molecular definition of clinical conditions (in this
case, ADHD molecular definition, as detailed in Supplementary
Table B in Supplementary Material 2) permitted access to
clinically relevant information at a model-patient level.

tSignal = −
1

n

∑n

i=1
viyi (1)

Where n is the number of proteins defining the protein set;
vi are the protein signs (active or inactive) according to each
disease/comorbidity definitions; and yi are the resulting modeled
signal values achieved by each protein “i” after stimulating the
model with the corresponding drug.

Physiologically Based Pharmacokinetic Models
A PBPK model per virtual patient was built to describe
the relationship between drug doses and drug concentration

in different organs within the human body. The PBPK
model structure used consists of 14 predefined compartments
representing the human body’s main organs and tissues, a
simplified version of a previously reported model (72) (Figure 5).
Blood acts as the central compartment by interconnecting the rest
of the system through blood flows, and the whole system can be
disturbed by administering a drug dose in any of the following
organs or compartments: gut (oral drugs), blood (intravenous
drugs), or skin (subcutaneous drugs). Similarly, clearance of
drugs and compounds is restricted to three compartments: gut,
liver, and kidneys. The equations associated with blood flow rates
and organ/tissue volumes are taken from Brochot and Quindroit
(73). These variables depend on cardiac frequency, age, BMI, and
gender and yield individualized models as described elsewhere
(74). Here, blood volume was readjusted to fit the volume of
distribution of each compound for optimized modeling.

Parameters related to the anatomy and physiology of each
specific patient’s human body were used to mathematically
describe drugs’ internal flow, i.e., drugs’ absorption, distribution,
metabolism, and excretion (ADME) processes (75). The drug’s
absorption and clearance constant parameters were calculated
by fitting the general model to existing real pharmacokinetics
data points for d-amphetamine (d-Amph, active compound
for LDX) and MPH (Table 2) (66–69). For other ADHD drugs
(see Supplementary Methods in Supplementary Material 1),
pharmacokinetics data used can be found in Supplementary
Table D in Supplementary Material 2. Regarding MPH,
as extended-release capsules are not easily simulated, an
approximation using repeated administration of lower doses was
used. This strategy had already been described for the two MPH
extended-release formulations used here, and resulted in similar
concentration dynamics: (i) for Medikinet R© with modified-
release, considered to have an equivalent MPH bioavailability to
Ritalin R© (56), a twice-a-day administration was simulated with
half the dosage for each simulated administration, and (ii) for
Concerta R©, three administrations were simulated with one-third
of the original dose for each administration (76).

The whole PBPK compartments model is implemented in
MATLABTM, and differential equations describing the kinetics of
the compounds and the fitting procedures are integrated by using
SimBiology Toolkit (77).

Quantitative Systems Pharmacology

Models—Quantitative Mechanism of Action
A QSP model enclosing PBPK model outputs and TPMS
model maps was generated for each patient of the vPOPs.
QSP models are generated following the TPMS methodology
previously described (36) but incorporating drug concentration
data at different timepoints in addition to molecular inputs,
which add patient-specific quantitative data. To this end, a
set of drug concentration timepoints in the target tissue—
brain in this study—can be associated with the modulation of
the drug’s target proteins. Additionally, by applying the EC50
equation definition and using clinical efficacy observations, the
drug’s effect on the disease-characterized proteins in the target
tissue can also be calculated (see Supplementary Methods in
Supplementary Material 1). Accordingly, the resulting MPH
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FIGURE 5 | Schematic representation of the multi-compartment model for physiologically based pharmacokinetic modeling.

and LDX drug’s target modulation-efficacy relationships were
used as extra parameters in the TPMS training set, resulting in
the final QSP models. The latter had the same output format as
the systems biology MoA models previously described (36), but
included quantitative information related to drug concentration.
Hence, these models were used to answer additional questions
related to individual differences among patients or treatment
comparisons. At least 50 mathematical solutions per patient were
computed during the QSP modeling to account for intra-patient
variability, with accuracies >85% with respect to the TPMS
training set (36).

Efficacy Outcomes and Measures
Definition and Optimization
Molecular Measures
Due to the systems-biology–based nature of the virtual patients’
resulting models, all measures were centered on protein activity.

As previously described (36), after modeling a drugMoA on each
patient, a protein activity value in the range (−1, 1) was obtained.
These values can be either analyzed individually or combined in
protein functional groups to evaluate biological concepts, such as
diseases or comorbidities.

Efficacy Outcome
As for any clinical trial, in which the primary outcome is usually
related to the drug’s efficacy, our primary case-study goal was
to identify and compare both drug’s efficacies. Accordingly,
a selection and conversion methodology were defined to
select the protein set within the ADHD definition that best
explained a chosen efficacy metric, and we transformed the
protein activities of that set into a model-derived measure that
correlated with an actual clinical measure. The clinical variable
used here was the ADHD Rating Scale IV (ADHD-RS IV,
change from baseline). Three steps were followed to convert
TPMS-model protein activities into ADHD-RS IV values: (i)
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select a model-derived activity measure (i.e., tSignal) that could
be used as a proxy for efficacy; (ii) carry out ADHD molecular
characterization, which consisted on a curated review of the
scientific literature available in the PubMed database to identify
proteins functionally involved in ADHD (see Supplementary
Methods in Supplementary Material 1; and Supplementary
Tables A, B in Supplementary Material 2; and (iii) optimize by
trimming the ADHDmolecular definition using real clinical trial
efficacy observations (using ADHD-RS IV). In the third step,
a series of eligible ADHD clinical trials meeting our inclusion
criteria and measuring ADHD-RS IV in relevant drugs (Table 3;
Supplementary Methods in Supplementary Material 1)
were compiled. The reported ADHD-RS IV values were
then used for ADHD molecular definition refinement
through Pearson’s correlation (Supplementary Methods in
Supplementary Material 1); the final ADHD definitions used
for outcome measurement are displayed in Supplementary Table
E in Supplementary Material 2.

Model-derived ADHD outcome measures were optimized
separately for adults’ and pediatric-adolescent’s clinical trials to
reduce noise on the molecular definition.

Data Analysis
For the analysis of the population demographic and PBPK
parameters, descriptive statistics were used (mean and standard
deviation, frequency tables, or pie charts), and appropriate
parametric and non-parametric tests applied. The p-value was
taken as a measure of the significance of the fitting to the
reference population.

The data was analyzed employing MATLABTM functions
and Python or R packages to compare means and/or standard
deviation between data distributions. Analyses with <30 samples
were treated with non-parametric tests, while comparisons
involving more than 30 samples were performed assuming a
normal distribution and treated with parametric tests; in all
cases, the applied test was reported. The statistical significance
level was set at p < 0.05. False discovery rate (FDR) was
used to control type I errors by applying the Benjamini-
Hochberg (91) multi-test correction method, whenever relevant.
All analyses were performed according to the described
analytical strategy.

The accuracies of systems biology and QSP models were
calculated for each solution within each individual model
and expressed as the percentage of compliance of all drug-
pathophysiology relationships included in the training set (36).

To evaluate the sensitivity of systems biology models, a local
sensitivity analysis based in the SOBOL methodology (92) was
performed to explore whether the variation in the protein activity
(−1, 1) of the proteins in the models influenced the MoAmodels
response of the two drugs (ADHD, as defined in Supplementary
Tables A, B in Supplementary Material 2). According to the
SOBOL terminology, TPMS models could be redefined as:

tSignal(ADHD) = TPMS (X) for X = {X1,X2,X3, . . . ,Xn} (2)

Where Xi corresponds to each one of the parameters (here
protein nodes activity) used in the models. Then, the variation

of response model tSignal for each Xi parameter variation can be
expressed as:

dTPMS

d (Xi)
=

d(tSignal)

d (Xi)
(3)

The tSignal difference compared to the original model was
computed for all values in the range tested, and the mean for
each protein was calculated and evaluated as a percentage with
respect to the maximal possible tSignal variation, set as 2 [(−1, 1)
difference] minus the original tSignal.

An unsupervised clustering strategy was applied to obtain
groups of two to seven clusters of MoAs to evaluate the
molecular variability of the generated models. The two (adults
and children-adolescents) complete sets of 1,000 QSP ADHD
patient mechanistic models (500 for LDX and 500 for MPH)
were evaluated separately, taking into account the final activation
values of the ADHD protein effectors modulated by both
drugs. Clusters were obtained using K means algorithm (93).
The clustering analysis was performed using all features
(effector proteins) and principal component analysis (PCA)
dimensionality reduction with five dimensions (94). Four quality
indicators were used to select the optimal number of clusters:
Hopkins statistics (95) to measure the cluster tendency of a data
set; Silhouette index (96) to weigh the cohesion of the clusters and
Jaccard Bootstrap Index (97) to gauge the similarity and diversity
of sample sets. Clusters were also filtered by heavily unbalanced
groups, according to the Silhouette index ratio (96). Classification
analysis, as described elsewhere (36), were applied to molecularly
describe the identified clusters.

Ethics
Only aggregated patient data from published clinical trials were
used in the current project (30, 32, 33, 78–90, 98). Aggregated
patient data prevents individual patients’ identification and, thus,
avoids the need for approval from an ethics committee or
institutional review board.

Computational Availability
All simulations described in this project were executed in
the Anaxomics’ cloud computing, which integrates more than
800 computational threads in machines with 64 Gigabytes
of RAM. Software, databases, and tools are the property of
Anaxomics Biotech.

RESULTS

Demographic Characteristics
The characteristics of adult and pediatric-adolescent vPOPs
of ADHD patients were generated from the proportions of
demographic characteristics reported in the corresponding
clinical trials. Additionally, eight subpopulations with different
comorbidities (depression, anxiety, bipolar disorder, tics, and
binge eating disorder) were created using the same method for
both populations to evaluate the impact of comorbidities on the
drugs’ efficacy. The characteristics of our modeled vPOPs can be
found in Figure 6A for adults and Figure 6B for the pediatric-
adolescent population. The characteristics of the adult vPOP
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TABLE 3 | List of clinical trials used for attention-deficit/hyperactivity disorder model-derived efficacy measure optimization.

Clinical trial

number/PMID

Title References

Adult clinical trials

PMID: 17137560 Efficacy and safety of dexmethylphenidate extended-release capsules in adults with attention-deficit/hyperactivity disorder (78)

PMID: 20576091 Randomized, double-blind, placebo-controlled, crossover study of the efficacy and safety of lisdexamfetamine dimesylate in

adults with attention-deficit/hyperactivity disorder: novel findings using a simulated adult workplace environment design

(79)

NCT00337285 A long-term, open-label, and single-arm study of NRP104 30, 50, or 70mg per day in adults with attention deficit hyperactivity

disorder (ADHD)

(33)

NCT01270555 Efficacy of bupropion SR for attention deficit hyperactivity disorder (ADHD) in adults with recent past or current substance use

disorders

(80)

NCT01259492 A 40-week, randomized, double-blind, placebo-controlled, multicenter efficacy and safety study of methylphenidate HCl

extended release in the treatment of adult patients with childhood-onset ADHD

(81)

NCT02141113 Double-blind, randomized, placebo-controlled, single- center, dose optimization study evaluating efficacy and safety of

guanfacine hydrochloride in combination with Psychostimulants in adults aged 18–65 years with a diagnosis of ADHD

(82)

NCT02604407 A phase 3, randomized, double-blind, multicenter, placebo-controlled, forced-dose titration, safety and efficacy study of SHP465

in adults aged 18–55 years with attention-deficit/hyperactivity disorder (ADHD)

(83)

Pediatric-adolescent clinical trials

NCT00507065 A phase III, randomized, multicenter, double-blind, parallel-group, placebo-controlled safety and efficacy study of ADDERALL XR

with an open label extension, in the treatment of adolescents aged 13–17 with ADHD

(84)

PMID: 17577466 Efficacy and tolerability of lisdexamfetamine dimesylate (NRP-104) in children with attention-deficit/hyperactivity disorder: a phase

III, multicenter, randomized, double-blind, forced-dose, parallel-group study

(85)

NCT00447278 A study comparing the effect of atomoxetine vs. other standard care therapy on the long term functioning in

attention-deficit/hyperactivity disorder (ADHD) children and adolescents (ADHD LIFE)

(86)

NCT00393042 Sleep and tolerability of extended release dexmethylphenidate vs. mixed amphetamine salts: a double blind, placebo controlled

study (SAT STUDY)

(87)

PMID: 21241954 Clonidine extended-release tablets for pediatric patients with attention-deficit/hyperactivity disorder (88)

NCT00763971 A phase III, randomized, double-blind, multicentre, parallel-group, placebo- and active-controlled, dose-optimization safety and

efficacy study of lisdexamfetamine dimesylate (LDX) in children and adolescents aged 6–17 with attention-deficit/hyperactivity

disorder (ADHD)

(30)

NCT01244490 A phase 3, randomized, double-blind, multicentre, parallel-group, placebo- and active-reference, dose-optimization efficacy and

safety study of extended-release guanfacine hydrochloride in children and adolescents aged 6–17 years with

attention-deficit/hyperactivity disorder

(89)

NCT01328756 A phase 4, open-label, multicentre, safety study of lisdexamfetamine dimesylate in children and adolescents with

attention-deficit/hyperactivity disorder (ADHD)

(90)

showed no significant differences with real reference populations
extracted from clinical trials (Table 4). The same was true for the
pediatric-adolescent vPOP (Table 5).

Local Sensitivity Analysis of Systems
Biology-Based Models
TPMS-derived MoA models were subjected to sensitivity
SOBOL analysis to evaluate whether the variation of molecular
parameters would affect the models’ response and to identify
key molecules. The sensitivity evaluation was carried out for
a range of values (−1, 1) for each protein. Although these
models have about 5000 parameters, less than a third of
them showed a real impact (difference >15%) on the output,
which was less notorious in MPH (max difference ∼17%)
than in LDX (max difference ∼32%) (Supplementary Table F
in Supplementary Material 2). Interestingly, from the 30 most
sensitive proteins, some were shared between both mechanisms
(namely, NFKB1, PRKCA, PRKCZ, TRAF6, and PRKCB).

Physiologically Based Pharmacokinetic
Models
PBPK models simulating the available drug concentration in
blood over time were obtained for LDX and MPH and for the
two studied populations. Drug concentration models were fitted
to real data resulting in similar blood drug concentration levels
for a standard adult (male, 40 years old, 175 cm, 70 kg) and
child (male, 8 years old, 30 kg, 130 cm) (Figure 7). PBPK model
simulations complied with the observed in vivo curves, even for
the case of MPH in children and adults, where approximating
repeated administration of lower doses was required tomodel the
modified-release formulations.

Efficacy Outcomes and Measures
Definition and Optimization
After the process of optimizing by trimming, 83 proteins
(out of 86) were included in the pediatric-adolescent ADHD
definition (ρ = −0.81) and 66 proteins (out of 86) in the
adult ADHD definition (ρ = −0.79). The resulting molecular
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FIGURE 6 | Demographic characteristics (sex, age, BMI, height, and weight) of (A) the adult virtual population (N = 500) and (B) the pediatric-adolescent virtual

population (N = 500).

definitions found after optimizing the model-derived efficacy
measures for each conditions’ clinical efficacy can be found
in Supplementary Table G in Supplementary Material 2. The
subsequent regression lines, as well as the different study
points used, are represented in Supplementary Figures A, B in
Supplementary Material 1.

Quantitative Systems Pharmacology
Models in the Virtual Populations
The MoA of LDX and MPH in our populations of interest,
inferred from QSP models, were obtained by combining PBPK
models of the dosing schemes of these drugs and TPMS
technology, which modeled the MoA of both drugs in ADHD.
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TABLE 4 | Demographic characteristics of the adult virtual population and the

reference population.

Virtual population

(N = 500)

Reference population

(N = 511)

p-valuea

Sex (% females) 41.6 41.6 NA

Age (years) 36.98 ± 10.31 36.58 ± 10.10 0.37

Height (cm) 172.03 ± 9.98 171.7 ± 9.4 0.43

Weight (kg) 77.74 ± 16.95 78.75 ± 17.20 0.19

BMI (kg/m2 ) 26.51 ± 6.55 NAb NAb

Figures are mean ± standard deviation unless otherwise stated.

BMI, Body mass index; NA, not applicable.
aCalculated with the unpaired two-tailed T Student’s test.
bFor demographic data not provided in the reference clinical trial, European mean values

were used.

TABLE 5 | Demographic characteristics of the pediatric-adolescent virtual

population and the reference population.

Virtual population

(N = 500)

Reference population

(N = 111)

p-valuea

Sex (% females) 20.0 20.0 NA

Age (years) 11.11 ± 2.73 10.90 ± 2.80 0.09

Height (cm) 147 ± 15.92 NAb NAb

Weight (kg) 42.41 ± 12.70 43.60 ± 15.10 0.08

BMI (kg/m2 ) 19.1 ± 2.7 19.1 ± 3.4 0.81

Figures are mean ± standard deviation unless otherwise stated.

BMI, Body mass index; NA, not applicable.
aCalculated with the unpaired two-tailed T Student’s test.
bFor demographic data not provided in the reference clinical trial, European mean values

were used.

The simulation analyzed the whole available data on pathologies,
drugs, and the population. The mean accuracy values obtained
in mechanistic models for ADHD virtual patients were: 91.63%
(adults treated with LDX), 91.71% (adults treated with MPH),
91.68% (children-adolescents treated with LDX), and 91.69%
(children-adolescents treated with MPH). Thus, for each patient,
activation/inhibition patterns of all proteins associated with the
MoA of LDX andMPH were obtained. Drugs’ efficacy on ADHD
measured over each virtual patient was exclusively estimated
using the above mentioned tSignal formula (Equation 1), which
summed up the activity values of ADHD effector proteins. The
tSignal formula was applied to the list of ADHD effector proteins
optimized to fit clinical observations and provided high accuracy
QSP models for the whole set of 1,300 patients comprising adults
and children.

The ADHD population was subjected to clustering analysis
to explore molecular variability within the LDX and MPH
mechanistic models. The optimal number of clusters for adults
was four different clusters, whereas three main clusters were
identified for children, according to Hopkins statistics (0.82 and
0.89, respectively), Silhouette index (0.31 and 0.33, respectively),
and Jaccard Bootstrap index (0.52 and 0.57, respectively). These
results reflected drug-independent patient intrinsic variability
since they clustered in a non–drug-dependent manner (Table 6).

Clusters were represented using the two main components
of PCA (Figure 8), which explained 66.7 and 12.4% of the
observed variability in adults, and 61.4 and 19.4% in children-
adolescents, respectively. The five most relevant proteins in the
PC1 (eigenvector 1) of each population were – IL4, AKT3,
NTRK2, IL5, and NTF3 for adults and – CRY1, AKT3, CRY2,
AKT1, and AKT2 for children-adolescents.

We also found that clustering was associated to differences in
treatment efficacy in adults (ANOVA p-value = 2.515e-08) and
children-adolescents (ANOVA p-value = 1.194e-09). In adults,
cluster 4 showed the highest mean tSignal (p-value = 2.263e-
09), while cluster 2 was the one presenting the lowest (p-value
= 6.835e-04). In children-adolescents, the tSignal of cluster
1 was significantly higher (p-value = 2.752e-05) and that of
cluster 3 was significantly lower (p-value = 7.397e-04) than the
rest (Student’s T-test). To further characterize the clusters, we
performed an ANOVA analysis to identify potential differences
on the demographic characteristics within the clusters. In the
overall analysis, only weight was significantly different (p-value
< 0.05) in adults (ANOVA p-value = 0.019), and no differences
were found in children-adolescents. When comparing each
cluster against the rest in adults, we found that BMI, weight, and
gender ratio were significantly lower in cluster 4, while weight
was slightly higher in cluster 2. In children- adolescents, BMI
and weight were significantly lower in cluster 1, while weight was
slightly higher in cluster 3 (Table 7).

DISCUSSION

Herein, the technology to create populations of virtual patients
and the subsequent ISCT is described in the case-study of LDX
and MPH head-to-head comparison in the context of ADHD
treatment. Adult and pediatric-adolescent vPOPs were obtained,
and PBPK and QSP models were generated successfully to
provide the basis for identifying mechanistic differences between
the two drugs, patient cohort differences, inter- and intra-patient
response variability.

Preliminary evaluation of the models revealed some insights
on the factors affecting MoA-related treatment efficacy. The
sensitivity analysis of systems biology MoA models provided a
list of common proteins that might affect both drugs’ efficacy:
proteins involved in the NF-κB signaling pathway (NFKB1
and TRAF6) and PKC (alpha, beta, and zeta types). The
pleiotropic nature of these proteins and their involvement in
several signaling processes could explain their potential impact
in the sensitivity of mechanistic models. However, a detailed
evaluation of each drug mechanistic model should provide
further knowledge on the key proteins involved.

QSP model clustering analysis indicated the presence of
several response patterns, not clearly defined by drug treatment.
The protein activity-based unsupervised clustering was somehow
associated to response level, and PCA analysis revealed some
relevant proteins that could be exerting this effect, including:
dopamine signaling-related AKT proteins (99), neurotrophins
related to neural viability and dopamine regulation in ADHD
(100–103), circadian rhythm proteins related to ADHD and
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FIGURE 7 | Blood d-Amph and MPH concentration comparison between real datapoints and the curve resulting from the PBPK model. (A) Generated for a standard

adult patient after a single 70mg dose of LDX, real datapoints obtained from Krishnan et al. (66); (B) generated for a standard adult patient after two 10mg doses of

MPH every 4 h, real datapoints obtained from BfArM (68); (C) generated for a standard pediatric patient after a single 50mg dose of LDX, real datapoints obtained

from Boellner et al. (67); and (D) model generated for a standard pediatric patient after three 5mg doses of MPH every 4 h, real datapoints obtained from Maldonado

et al. (69). d-Amph, d-Amphetamine; LDX, Lisdexamfetamine; MPH, Methylphenidate; PBPK, Physiologically based pharmacokinetic.

comorbidities–associated sleep disturbances (104–106), and
cytokines related to neuroinflammation and Th2 response and
ADHD (107–110). Regarding clinical characteristics, a possible
correlation was found between lower weight, female gender,
and lower BMI, with a higher tSignal or better efficacy in
adult population. Similar results were found in the children-
adolescent population, were higher tSignals were found in the
group with lower weight and BMI. In this sense, previous reports
had already suggested a relationship between drug efficacy and
BMI (111).

Related Work
Virtual populations have been generated in the past to assist in
solving complex medical issues. The FDA has accepted a type
1 diabetes simulator to replace animal testing in pre-clinical
trials (112). Besides, in silico cloning of data from individual
type 1 diabetes patients to improve algorithms for closed-loop
insulin delivery systems has been reported in 12 and 47 virtual
patients in studies that aimed to tackle the challenging problem
of inter- and intra-subject variability (113, 114). Likewise, a
virtual population of 50 individuals has been generated to test in
silico drug cardiotoxicity and account for inter-subject variability
in clinical studies with toxicological endpoints (115). Such
approaches were warranted considering the high variability of the

evaluated pharmacokinetic parameters in a short time. However,
they were limited in the number of virtual patients that could be
generated accurately. Therefore, considering that ADHD is not as
varying in brief periods and that such pharmacokinetic detail was
unnecessary, a higher number of patients could be generated in
our study. On the other hand, a multi-compartment model with
a large virtual population size has been published on trauma-
induced critical illness that showed how the molecular and
cellular events taken as a whole could manifest heterogeneously
on individuals (116). These results were in agreement with ours,
which showed different clusters of patients that could correspond
to different response profiles to a certain point, independent from
drug treatment.

Virtual populations combined with PBPKmodeling have been
used successfully to predict the pharmacokinetic profile of a
drug and evaluate potential drug-drug interactions for a specific
ethnicity (117). In addition, a PBPK model combined with
systems-biology techniques has been reported and validated as an
efficient tool for assessing risk exposure to certain volatile organic
compounds (118). Furthermore, multi-compartment QSP has
been used to model immunotherapies in breast cancer (119).
When associated with pharmacokinetics and pharmacodynamics
data, it has been reported in an in silico virtual clinical trial to
analyze predictive biomarkers in certain breast cancers (120).
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TABLE 6 | Distribution of LDX and MPH mechanistic models in the generated

clusters.

Drug Cluster 1

(Red)

Cluster 2

(Green)

Cluster 3

(Blue)

Cluster 4

(Purple)

Adult models clustering

LDX 122 123 150 105

MPH 98 154 106 142

Drug Cluster 1

(Red)

Cluster 2

(Green)

Cluster 3

(Blue)

Pediatric-adolescent models clustering

LDX 230 179 91

MPH 215 118 167

LDX, Lisdexamfetamine; MPH, Methylphenidate.

Hence, PBPK and QSP models have been established as powerful
computational tools for in silico simulations.

Finally, only a few in silico head-to-head trials have been
published. A recent study compared two insulin therapies for
type 1 diabetes treatment by using the abovementioned FDA-
approved simulator and pharmacokinetics models to compare
two designs, crossover and parallel (121). The parallel design was
justified because it would likely be preferred in a real setting for
practical reasons, which is not necessarily true in the case of
our study on ADHD. Another head-to-head mechanistic study
comparing two lung cancer treatments has been reported by our
group, whereby a similar approach to the one here described was
undertaken (122). However, our previous study did not require
generating virtual populations nor used PBPK or QSP models to
reach its conclusions.

These examples of application of in silico modeling
approaches in different therapeutic areas bear witness to an
increasing tendency to use newly available high performance
computing technologies in the field of biomedicine. The
use of these technologies will help advancing toward
the implementation of precision medicine pipelines and
personalizing the healthcare provided to patients.

Strengths and Limitations
TPMS models are constructed considering the whole human
protein network and a wide range of drug-pathology
relationships, not only limited to ADHD or psychiatric
ailments, which, in part, attenuates the potential bias on
information regarding drugs or disease of interest. As defined
by Jorba et al. (36), only MoA models with accuracies above
85% against the training set were used to ensure good quality
and general extrapolation of results. This systems biology-based
methodology has been reported to be successful, with results
validated by in vitro and/or in vivomodels (123–125).

Only limited by computational power, ISCT allows enrolling a
large number of patients with several neurophysiological ADHD
subtypes, which can be difficult, costly, and even not feasible in
a conventional clinical trial setting. Virtual patients generated
in our study were defined by the drugs’ molecular mechanisms,

allowing the exploration of the complete clinical and molecular
landscape of each patient. Furthermore, our ISCT design had a
large enough sample size and considered pools of mathematical
solutions for each patient—instead of a single mathematical
model per patient—which ensured that the simulations were
robust and appropriate for data analysis.

However, our study presented some limitations. Firstly,
our models depended on the current knowledge of human
physiology, particularly on the drugs and disease under
investigation, as well as protein interactions and pathways
described and involved in the MoA. Therefore, our models
could have been susceptible to missing data, errors, and bias,
and some aspects could have been overlooked. For instance,
unknown targets or yet undescribed pathophysiological ADHD
processes might play a role in the MoA of the evaluated
drugs. ADHD and its associated comorbid psychiatric disorders
present a high genetic and signaling overlap (126, 127), which
could act as confounding factors at the clinical and molecular
levels. Accordingly, the molecular characterizations used for
modeling could be biased; prospective data could expand the
knowledge on these diseases and, therefore, improve our model-
derived conclusions.

Secondly, our approach considered only the impact of
demographic characteristics on the PBPK modeling (i.e.,
drugs’ absorption, distribution, metabolism, and excretion).
However, other consequences of these characteristics at
the ADHD pathophysiology level were not considered,
because of the absence of (i) clear molecular information
to include in the ADHD definitions for each patient profile,
and (ii) reliable sources of information to properly model
these characteristics at the molecular level. This limitation
could prevent the modeling and detection of relevant
results regarding these characteristics, such as age-related
neurodevelopment (128, 129), differences between children,
adolescent and adults (130, 131) or the potential role of
sex-dependent differences (132–134). Future data on large
sets of patients, or specific research on the impact of those
characteristics on ADHD, might allow to improve our models
and derived conclusions.

Thirdly, all mathematical models are subjected to the
limitation of not being able to fit 100% the training data
information. In our approach, while we obtained a pediatric
virtual population with demographic values non-significantly
different from the reference clinical trial population, the obtained
p-values for age and weight were close to the significance
threshold. These parameters proved to be more difficult to fit in
pediatric than in adult virtual populations. While clinical trials
only report average weight and age, general pediatric population
weight distributions obtained from growth information (35)
are age-dependent. Accordingly, setting a higher threshold of
significance (p > 0.1 or even p > 0.2) during the randomization
procedure might ensure obtaining a fitter population, especially
regarding the pediatric case. In this specific scenario, as the
case-study objective for the generation of the ISCT was a
head-to-head between LDX and MPH using the exact same
population, this bias was not expected to significantly affect
the results. TPMS-based models are not an exception either
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FIGURE 8 | PCA representation, based on the modulation of ADHD effectors, of LDX and MPH mechanisms of action in (A) ADHD adult patients and (B) ADHD

children-adolescent patients. ADHD, Attention-deficit/hyperactivity disorder; LDX, Lisdexamfetamine; MPH, Methylphenidate; PCA, Principal component analysis.

Frontiers in Psychiatry | www.frontiersin.org 15 November 2021 | Volume 12 | Article 741170

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Gutiérrez-Casares et al. ADHD ISCT: Lisdexamfetamine vs. Methylphenidate

TABLE 7 | Results of the comparison analysis between demographic characteristics within the clusters.

ID Age, years Height, cm Weight, kg BMI, kg/m2 Gender,

M:F ratio

Adults

1 36.49 ± 9.96

(0.424)

172.19 ± 10.62

(0.797)

78.79 ± 17.67

(0.297)

26.85 ± 6.82

(0.387)

0.63 (0.141)

2 37.16 ± 10.73

(0.739)

172.02 ± 9.94

(0.979)

79.58 ± 16.95

(0.034)

27.02 ± 6.04

(0.131)

0.60 (0.454)

3 36.20 ± 9.75

(0.158)

171.80 ± 9.92

(0.659)

77.33 ± 15.73

(0.651)

26.53 ± 6.67

(0.953)

0.59 (0.826)

4 38.04 ± 10.73

(0.064)

172.16 ± 10.01

(0.820)

75.17 ± 17.23

(0.006)

25.62 ± 6.67

(0.014)

0.52 (0.016)

Children-adolescents

1 10.95 ± 2.82

(0.095)

145.96 ± 16.13

(0.064)

41.42 ± 12.60

(0.026)

18.93 ± 2.69

(0.031)

0.81 (0.634)

2 11.22 ± 2.57

(0.431)

147.44 ± 14.53

(0.568)

42.70 ± 12.00

(0.646)

19.25 ± 2.71

(0.400)

0.76 (0.067)

3 11.27 ± 2.75

(0.283)

148.29 ± 16.96

(0.131)

43.80 ± 13.51

(0.041)

19.36 ± 2.68

(0.118)

0.83 (0.170)

Figures are mean ± standard deviation (and p-values*).

*T-student-test: each cluster vs. rest of clusters.

ANOVA, Analysis of variance; BMI, Body mass index; ID, Cluster ID; M:F ratio, Male to female ratio.

p-values in bold are those considered significant (p < 0.05).

(36). Each virtual patient was constructed with at least 50
solutions, and a population sample size larger than the
minimum calculated was used to dampen this effect. TPMS
models present an inherent variability, rendering them useful
to explore molecular variability within human physiology (36);
through an adequate management of the model’s variability and
considering an appropriate sample size, the best solutions could
be obtained.

Finally, our study’s primary outcome was generated with
information from literature on the drugs used for ADHD
treatment and their measured clinical effect. The values used
for the training process were the average values reported in
those publications (Table 3). However, a great dispersion was
observed. For instance, while the mean ADHD-RS IV value
associated with amphetamine was −18.1, the authors report a
range of response between −4.68 and −31.52, representing a
74% deviation from the mean, clearly higher than the dispersion
values generated with our models (Supplementary Figure A in
Supplementary Material 1). The dispersion identified in clinical
trials was probably due to demographic andmetabolic differences
between patient cohorts and how the principal variable was
measured. This effect appeared in all analyzed drugs, and we
estimated an average dispersion of 57% for all of them. The
dispersion in the efficacy measured from the clinical trials cannot
be mathematically treated without accessing patient data, which
is not available; at this point, we had to resort to a naïve pooled
approach, risking its associated limitations. In such cases, the
best approach to obtain a drug efficacy value is to compute the
mean of the values reported by different authors. Selection bias
can also induce errors when using external data. To attenuate
its effect, clinical trials assessing a wide range of drugs were
used in our study. On the other hand, another limitation

associated to the outcome measure used would be of clinical
nature; ADHD symptom scales are based on questionnaires to
the patient or the physician, that comprise several aspects of a
complex psychiatric disease. These clinical measures might not
be as directly associated to molecular or biologically measurable
factors (such as blood pressure when studying hypertension).
To minimize both technical and clinical limitations of the
outcome measure used, we selected the ADHD-RS IV scale
as this was the scale with the largest amount of clinical trial
information for different mechanisms of action, so the model
efficacy measures could be properly optimized to fit clinical data.
Our approach tried to compile the largest amount of available
information around patients, disease, and treatments at the
molecular and clinical level and provided benchmarks to validate
the different steps of the study. Nonetheless, a corroboration
of the herein described procedure to infer new actual clinical
results with independent (existent or new) experiments is
called for.

In our ISCT, most of these sources of error could translate
into an error in the estimation of the principal variable,
evaluated by the Pearson correlation coefficient (Supplementary
Figures A, B in Supplementary Material 1). Interestingly, the
Pearson correlation coefficients obtained after lineal regression
adjustment for the adult and pediatric-adolescent populations
were high given the large dispersion shown in values from
clinical practice for the same drugs (Supplementary Table E in
Supplementary Material 2).

CONCLUSION

The methods here illustrated described the step-by-step process
for creating a virtual population of patients treated with two
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drugs for ADHD management, LDX and MPH, with the aim of
designing an ISCT for their comparison head-to-head. Our study
provided adult and pediatric-adolescent vPOPs and generated
QSP models to infer, after analysis, the MoA of these two drugs.
This theoretical model, and its use for a head-to-head analysis,
would allow obtaining conclusions classified asMEDIUM impact
according to MID3 guidelines. Although experimental and
clinical assays are warranted to validate or refute these potential
results before translation into clinical practice, the mechanistic-
driven modeling techniques used here should be accepted as
hypothesis-generation solid tools with a remarkable ability to
provide molecular detail. Besides, from a scientific evidence
point of view, complementing meta-analyses with theoretical
models, such as the ones here presented, can palliate the
lack of costly, though necessary, head-to-head clinical trials.
Altogether, in silico techniques can contribute to advancing the
understanding of diseases’ pathophysiology and the molecular
MoA of available therapies, with the ultimate goal of reaching
personalized medicine.
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