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Our current understanding of melancholic depression is shaped by its position in the

depression spectrum. The lack of consensus on how it should be treated—whether

as a subtype of depression, or as a distinct disorder altogethe—interferes with the

recovery of suffering patients. In this study, we analyzed brain state energy landscape

models of melancholic depression, in contrast to healthy and non-melancholic energy

landscapes. Our analyses showed significant group differences on basin energy, basin

frequency, and transition dynamics in several functional brain networks such as basal

ganglia, dorsal default mode, and left executive control networks. Furthermore, we

found evidences suggesting the connection between energy landscape characteristics

(basin characteristics) and depressive symptom scores (BDI-II and SHAPS). These

results indicate that melancholic depression is distinguishable from its non-melancholic

counterpart, not only in terms of depression severity, but also in brain dynamics.

Keywords: depression, melancholia, energy landscape analysis, resting state fMRI, functional brain network

1. INTRODUCTION

Depression andmelancholia are synonymous terms in common speech, but have different technical
meanings in psychiatry (1). While depression is associated with “deepened or prolonged sadness
in everyday life,” melancholia is predominantly marked by “loss of pleasure or interest” (or
anhedonia), along with many other depressive symptoms (1, 2). In the Diagnostic and Statistical
Manual of Mental Disorders, third edition (DSM-III), depression and melancholia were clumped
together into a single disorder: the major depressive disorder (MDD) (3). However, this has been
rectified in DSM-IV, albeit not entirely, by recognizing melancholia as a specifier for depression
(4). The recognition has attracted research on melancholic depression as a distinct subtype of
depression, which has been neglected before in clinical assessment and treatment (2, 5, 6).

Since then, there has been significant thrust on classifying melancholic depression. Because of
the overlapping symptoms between depression and melancholia, researchers have been focusing
on distinguishing the two. This distinction is important for both diagnosis and treatment, since
melancholic patients (i.e., MDD with melancholic features) may have different responses to
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treatment (2). For example, they respond better to tricyclic
antidepressants (TCAS) than to selective serotonin reuptake
inhibitors (SSRIs) (7). On the contrary, they do not respond
well with psychotherapy and placebo, as compared to non-
melancholic patients (8). Thus clearly, correct diagnosis
of melancholic depression is the first step toward the
right treatment.

In the recent years, computational and statistical models
have been used to differentiate melancholic from non-
melancholic depression (9). The complexity and design of
these models range from fundamental statistical analysis
(10–13) to machine learning models (14–16). In most of
these studies, they analyzed neuroimaging data to identify
the brain activities involved in melancholic depression (11–
16). In particular, they extracted functional connections
from resting state functional MRI (rs-fMRI) data (13–16).
Functional connectivity analysis (FCA) provides insights on
which brain regions are temporally correlated, and is useful
for studying brain networks and neural circuit dynamics
(14). However, FCA-based models assume that pairwise
interactions between brain regions are independent of each
other, and thus, may disregard information about higher-order
interactions (17).

Our research further explores the brain dynamics of
melancholic depression. Several neuropsychiatric disorders are
rooted in cognitive dysfunctions caused by disruptions in the
dynamics of functional brain networks (18, 19). Evidences from
previous FCA studies show that functional disconnections are
prevalent in melancholic depression (13, 14). Here, we use energy
landscape analysis (ELA) as an alternative to FCA. Embedded in
ELA is the pairwise maximum entropy model (P-MEM), which
estimates both individual activities and pairwise interactions of
brain regions (17). Compared to FCA, P-MEM has been shown
to be more physiologically informative since it infers global
activity patterns instead of independent pairwise interactions.
Furthermore, ELA accurately models the structure of multistable
brain networks by reflecting both anatomical and functional
connections in rs-fMRI data (17).

In ELA, the brain is characterized as a dynamic system that
switches to multiple stable states (20). Each state is defined
by its energy, which is inversely proportional to its probability
of occurrence; thus, states with lower energy have higher
probability. And since the states will vary in energy level, the
energy landscape of these states can be portrayed by “peaks”
(unstable) and “basins” (stable states), such that the brain has the
tendency to “roll” down the basins. It would be interesting to see
if this imagery of the brain being mired in a basin translates to the
depressive feeling of being in a stuck state (21).

This study examines the energy landscapes of melancholic
depression. Here, we show that melancholic depression exhibits
a distinct energy landscape, in which its switching dynamics
will be different from that of non-melancholic and healthy
brain networks. By building an energy landscape model for
melancholic depression, we further delineate the boundary
between melancholia and depression; not necessarily to set
them apart, but rather to clear the obfuscations that currently
entangle them.

2. MATERIALS AND METHODS

2.1. Study Participants
This study is a secondary analysis of rs-fMRI data of healthy
and depressed volunteers recruited starting in 2012 from four
medical institutions in Hiroshima, Japan (15). Prior to the
administration of any experimental procedure, written informed
consent was obtained from all participants. The experiments
were carried out in accordance with relevant guidelines and
regulations, and all our experimental protocols were approved
by the Ethics Committee of Hiroshima University. The
mental condition of the volunteers were evaluated using Mini
International Neuropsychiatric Interview (M.I.N.I) according
to the Diagnostic and Statistical Manual of Mental Disorders,
4th ed. (DSM-IV) criteria (22). Initial screening resulted to
281 healthy participants with no history of any mental or
neurological disorder, and 281 diagnosed with major depressive
disorder (MDD).

Additional screening of participants was performed to
emphasize the boundary between groups in the data set. First,
the participants were screened based on their Beck Depression
Inventory-II scores (BDI-II; healthy ≤ 13; depressed ≥ 20) (23).
Second, participants were removed if they have incomplete data
during interview or excessive head movements during fMRI
recording. Third, healthy female participants were randomly
sampled to match the number of healthy males. Last, the
depressed participants were categorized into the melancholic
group if they exhibited melancholic features (M.I.N.I, DSM-
IV criteria) (22). Otherwise, they are categorized into the
non-melancholic group.

In the end, a total of 142 healthy (71 F / 71 M) and
120 depressed (60 F / 60 M) participants were screened and
selected for analysis. Within the depressed group, there were 89
melancholic (44 F / 45 M) and 31 non-melancholic (16 F / 15 M)
participants. Details on their demographic data are summarized
in Table 1.

2.2. Data Acquisition and Preprocessing
We recorded resting-state functional Magnetic Resonance
Imaging (rs-fMRI) data of the participants using gradient
echo planar imaging (EPI) sequences. The imaging device and
parameters differ depending on the recording site (15). During
recording, participants were instructed to focus on a cross mark
displayed on a monitor, and to avoid thinking of anything
or falling asleep. The fMRI recording lasted for 5–10 min,
depending on the recording site (Table 2).

Data preprocessing for the rs-fMRI data was performed using
SPM8 (Wellcome Trust Centre for Neuroimaging, University
College London, UK) on Matlab (Mathworks inc., USA).
The preprocessing procedure included slice-timing correction,
mean image realignment, normalization and resampling through
segmentation of structural image aligned with the mean
functional image, and smoothing with an isotropic 6 mm
full-width half-maximum Gaussian kernel (24). The potential
confounding effects (i.e., the temporal fluctuations of the white
matter, cerebrospinal fluid, and the global signal, as well as
six head motion parameters) were linearly regressed out from
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TABLE 1 | Demographic data of healthy and depressed participants.

Depressed

Healthy Non-melancholic Melancholic P-value

No. of participants 142 31 89

Sex (female/male)a 71 / 71 16 / 15 44 / 45

Age (years)b 42.62 ± 14.33 41.48 ± 9.46 43.37 ± 11.65

BDI-IIb 5.34 ± 3.76 29.13 ± 6.08 32.40 ± 7.88 (*)(***)

Anhedonia (SHAPS)b 23.27 ± 0.66 34.21 ± 1.15 37.72 ± 0.66 (*)(***)

IQ (JART)b 110.92 ± 8.813 114.09 ± 9.57 111.61 ± 9.30

Site participants (HUH/HRC/HKH/COI)a 44 / 32 / 20 / 46 10 / 6 / 7 / 8 48 / 7 / 13 / 21 (**)

Time samples per participant 161.90 ± 45.51 156.68 ± 50.34 155.39 ± 40.89

BDI-II, Beck Depression Inventory-II; JART, Japanese Adult Reading Test.

Recruitment sites: Hiroshima University Hospital (HUH), Hiroshima Rehabilitation Center (HRC), Hiroshima Kajikawa Hospital (HKH), Center of Innovation in Hiroshima University (COI).
aMultiple group comparison using pairwise Chi-squared tests.
bMultiple group comparison using one-way ANOVA with Bonferroni correction.

(*) p < 0.05 between Non-melancholic and Melancholic groups.

(**) p < 0.01 between Healthy and Melancholic groups.

(***) p < 0.005 between Healthy and Non-melancholic groups, and between Healthy and Melancholic groups.

TABLE 2 | Imaging protocols for different fMRI recording sites in Hiroshima.

HUH HRC HKH COI

MRI scanner GE SignaHD x t GE SignaHD x t Siemens Spectra Siemens Verio

Magnetic field strength (T) 3.0 3.0 3.0 3.0

Channels per coil 8 8 12 12

Field of view (mm) 256 x 256 256 x 256 192 x 192 212 x 212

Matrix 64 x 64 64 x 64 64 x 64 64 x 64

Number of slices 32 32 38 40

Number of volumes 143 143 107 240

In-plane resolution (mm) 4.0 x 4.0 4.0 x 4.0 3.0 x 3.0 3.3125 x 3.3125

Slice thickness (mm) 4.0 4.0 3.0 3.2

Slice gap (mm) 0.0 0.0 0.0 0.8

TR (ms) 2.0 2.0 2.7 2.5

TE (ms) 27.0 27.0 31.0 30.0

Total scan time (min) 5 5 5 10

Flip angle (deg) 90 90 90 80

Slice acquisition order Ascending (interleaved) Ascending (interleaved) Ascending (interleaved) Ascending

HUH, Hiroshima University Hospital; HRC, Hiroshima Rehabilitation Center; HKH, Hiroshima Kajikawa Hospital; COI, Center of Innovation in Hiroshima University.

the fMRI time series to remove the physiological noise and
motion artifacts (25, 26). These components were determined
by the T1 images, which were simultaneously recorded with
the rs-fMRI data. Finally, head motion artifacts were scrubbed
from the functional images based on the relative changes (i.e.,
translational displacements along X, Y, and Z axes, and rotational
displacements of pitch, yaw, and roll) between the image frames
through time, with a frame-wise displacement (FD) threshold =

0.5 mm (27).

2.3. Functional Brain Networks
When selecting the regions of interest (ROIs) for analysis,
we considered functional brain networks that were associated
with depression. Time series data were extracted from 74 ROIs

according to the 90-ROI Shirer Brain Atlas (28). Some ROIs
were excluded due to either unreliable images during recording
(e.g., in cerebellum area) (29), or insufficient number of ROIs
of corresponding functional network (e.g., primary and higher
visual networks). When extracting the time series data, the
global mean and confounding effects of both cerebrospinal fluid
(CSF) and white matter were linearly regressed out as part of
the preprocessing step. A total of 12 distinct functional brain
networks were analyzed in this study. For the brevity of this
paper, we highlightedmost of the results for threemain networks:
basal ganglia network (BGN), dorsal default mode network
(DDMN), and left executive control network (LECN). These
networks have been associated with melancholic depression
(14, 30), and melancholic symptoms such as anhedonia (31)
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and rumination (32). The list of anatomical ROIs for all of
the analyzed networks networks are listed in Table 3 and
Supplementary Table 1.

2.4. Pairwise Maximum Entropy Model
To compare the brain dynamics of melancholic and non-
melancholic participants, we implemented the Energy Landscape
Analysis (ELA) method which utilizes the Pairwise Maximum
Entropy Model (P-MEM) (Figure 1) (36). In this study, ELA
was conducted separately for each of the 12 distinct functional
networks (see Supplementary Table 1).

In ELA, we began by combining the rs-fMRI data of
all participants in a group (healthy, non-melancholic,
melancholic) to create group-level dynamics model. In each
group, the concatenated time series data were extracted from
the corresponding ROIs of the chosen functional network
(Figures 1A,B). Then, the time series data were converted to
binarized signals, using the average signal value as the threshold
(Figure 1C). At any time point, binarized signals were either 1
(active) or 0 (inactive). The threshold value was computed for
each ROI across the combined data of the group participants.

Binarizing the signals allowed us to encode the time signals
into brain state sequences, wherein a brain state was defined by
the activity pattern, i.e., active and inactive ROIs, at a given time
(Figures 1C,D). Given brain network with n ROIs, there are 2n

possible states. For each brain state σ , we computed the empirical
probability p(σ ),

p(σ ) =
nσ

T
(1)

where nσ is the number of occurrences that the state σ appeared
in the time series, and T is the total length of the time series
(Figure 1D).

From the brain state probabilities, we defined the state energy
using Boltzmann distribution (37),

P(σ |h, J) =
exp[−E(σ |h, J)]∑

σ ′ [−E(σ ′|h, J)]
(2)

where the sum in denominator is taken over all 2n possible states
(each state is denoted by σ ′). In P-MEM, the state energy E(σ ) in
Equation 2 was restricted in the quadratic form, and expressed as:

E(σ |h, J) = −

n∑

i=1

hiσi −
1

2

n∑

i=1

n∑

j=1
j 6=i

Ji,jσiσj (3)

with h = [hi]
n
i=1 and J = [Ji,j]

n
i,j=1 corresponding to the

individual ROI activity and the pairwise ROI interaction,
respectively. As implied by these equations, more active ROIs
correspond to higher h and J, which leads to lower (more
negative) energy (Equation 3), and higher occurrence probability
(Equation 2) (36).

We then built the P-MEM from the model parameters h & J
by maximizing their likelihood, as defined by

(h, J) = argmax
h,J

L(h, J) (4)

L(h, J) =

T∏

t=1

P(σ (t)|h, J) (5)

for the entire time series of length T.

2.5. Energy Landscapes Analysis
With the P-MEMs for healthy, non-melancholic and melancholic
groups, we analyzed the energy landscapes and transition
dynamics of heterogeneous depressed brain networks
(Figure 1E). The ELA features analyzed in this study are
summarized in Supplementary Table 2.

To start with, basin state dendrograms were constructed by
finding the basin states and their clusters. Basin states (or basins)
are states with the lowest energy relative to their neighboring
states. States are said to be neighbors if they differ in only
one active/inactive region. If neighboring states have lower
energy barriers relative to other states, they become part of
the closest basin cluster (38). Basins are the core of energy
landscapes since these states are presumed to be the most stable.
Djikstra’s algorithm was performed to search for the basins, and
construct the leaves (basins) and branches (energy barriers) of
the dendrogram. In Figure 1E: Energy Barriers, the energy barrier
between states a and b are highlighted (red: a → b; blue: b → a).
Here, a → b has higher barrier, and thus has lower probability of
occurring (38).

Energy landscapes were then constructed to depict the energy
level and cluster size of the basins. In Figure 1E: Energy
Landscape Analysis, a 3D schematic diagram depicts the basins
in an arbitrary state space. Here, basin clusters are plotted
as concentric circles, where the basin is at the center, and
neighboring states are on circles with radius equivalent to
the their distance to the basin (i.e., a state that differs in
one region with the basin has distance of 1, state the differs
in two regions has distance of 2, etc.). Thus, each circle
represented the states that were equidistant to the basin. Then
for each circle (including the center), its depth was equivalent
to the energy of the state with lowest energy (Equation 3) in
that circle.

Since energy landscapes modeled only the group-level brain
dynamics, we opted to analyze the brain dynamics of individual
participants by computing the occurrence frequency of basins
f (A) on individual fMRI time series. The occurrence frequencies
of all basins (major and minor) are then summed for each group
and for each network.

We also analyzed the transition dynamics on the energy
landscapes. For each network, we selected two major basins as
the basins with the lowest energy, A1 and A2; with P1 as clustered
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TABLE 3 | Functional brain networks associated with melancholic depression symptoms.

Network Anatomical locations of functional ROIs Depressive symptoms

Basal ganglia network (BGN) (1) Left thalamus, caudate Anhedonia (31)

(2) Right thalamus, putamen

(3) Left inferior frontal gyrus

(4) Right inferior frontal gyrus

(5) Pons

Dorsal default mode network (DDMN) (1) Medial prefrontal cortex, anterior cingulate cortex,

orbitofrontal cortex

Anhedonia (33)

Rumination (34)

(2) Left angular gyrus

(3) Right superior frontal gyrus

(4) Posterior cingulate cortex, precuneus

(5) Midcingulate cortex

(6) Right angular gyrus

(7) Left and right thalamus

(8) Left hippocampus

(9) Right hippocampus

Left executive control network (LECN) (1) Left middle frontal gyrus, superior frontal gyrus Rumination (32)

Impaired cognitive reappraisal (14, 35)

(2) Left inferior frontal gyrus, orbitofrontal gyrus

(3) Left superior parietal gyrus, inferior parietal gyrus,

precuneus, angular gyrus

(4) Left inferior temporal gyrus, middle temporal gyrus

(5) Left thalamus

Three primary functional networks referenced throughout this main paper. For full list of networks, see Supplementary Table 1.

states for A1, P2 for A2. Then we computed the following
participant-level transition rates,

TR(A → A′) =
n(A1 → A2)+ n(A2 → A1)

T
(6)

TR(P → P′) =
n(P1 → P2)+ n(P2 → P1)

T
(7)

where n(U → V) is the number of times the participant’s time
series entered state U and arrived at state V ; TR(A → A′) is
the major transition rate for major basins; TR(P → P′) is the
peripheral transition rate for clusters of major basins. Moreover,
we computed the staying rates of the states,

SR(A → A′) =
n(A1 → A1)+ n(A2 → A2)

T
(8)

SR(P → P′) =
n(P1 → P1)+ n(P2 → P2)

T
(9)

where this time we counted the number of times the participant’s
brain activity stayed on the major basins (SR(A → A′)), or
the periphery (SR(P → P′)). The transition rates were used
to define the Traveling Score, which measured the amount of
times the brain successfully traveled from one major basin to
another (Equation 10, Figure 5A). Similarly, the staying rates
were used to define the Lingering Score, which measured the

amount of times the brain lingered on a basin or along its
periphery (Equation 11, Figure 5A),

Traveling Score =
TR(A → A′)

TR(P → P′)
(10)

Linger Score = SR(A → A′)+ SR(P → P′) (11)

Note that the traveling score (Equation 10) is also known as
efficiency score, which is the index of ease of transitions (38).

2.6. Statistical Group Differences
One-way Analysis of Variance (ANOVA) was performed to
find significant group differences (healthy vs. non-melancholic
vs. melancholic) in participants’ age, IQ, BDI-II and SHAPS
(Snaith-Hamilton Pleasure Scale) scores. Bonferroni correction
was applied to compensate for multiple group comparisons.
Similarly, Chi-squared test was performed for group differences
in sex. Group differences are presumed to be statistically
significant at p < 0.05 for both types of statistical analyses. One-
way ANOVA with Bonferroni correction was also applied to test
for statistical significance of results when comparing individual-
and group-level differences in energy landscape characteristics
such as basin frequency and transition rates. These results were
also verified by Kruskal-Wallis test to cope with non-normally
distributed data as well.

2.7. Depressive Symptoms Correlation
Finally, we investigated the correlation between depressive
symptoms and basin characteristics. Two criteria were used for

Frontiers in Psychiatry | www.frontiersin.org 5 November 2021 | Volume 12 | Article 780997

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Regonia et al. Modeling Melancholic Depression Using ELA

FIGURE 1 | Methodology for energy landscape analysis. (a) Selection of ROI based on functional brain networks associated with depression. (b1) Extraction of fMRI

BOLD signals from each ROI. (b2) All signals from subjects within group (healthy, melancholic, non-melancholic) are combined. (c) Binarization of each signal using

the mean BOLD value for each ROI. (d) Estimation of the state energy based on the emprical state frequency/probability. (e) Energy landscape analysis, which

includes analyses of state energy levels, basin state landscape, and state transition dynamics. Note that as the energy of a state increases, its probability of

occurrence decreases.

analyzing depressive symptoms: BDI-II for depression diagnosis
(23), and SHAPS for assessing anhedonia (39). Multivariate
linear regression model were fitted on the data, with p <

0.05 deemed as statistically significant relationship between
the variables.

3. RESULTS

3.1. Depressive Symptom Severity
We found significant differences between healthy, non-
melancholic, and melancholic groups in terms of BDI-II and
SHAPS score (Table 1). For both criteria, the melancholic group
had higher average scores (p < 0.05,Healthy vs. Melancholic;
p < 0.001,Non − melancholic vs. Melancholic), followed by
non-melancholic group (p < 0.001,H vs. N). The results were
consistent with many previous reports (40–42).

In terms of other demographical factors, we found no
significant group differences in sex distribution, age, and IQ levels
of the participants. However, there was significant difference
between the number of melancholic and non-melancholic
participants recruited on four different sites (Table 1).

3.2. Basins and Energy Barriers
The basin dendrograms of each group for all network revealed
differences in major basins and energy levels. The dendrograms
for Basal Ganglia Network (BGN), Dorsal DMN (DDMN), and
Left ECN (LECN) are shown in Figure 2. Here, the major basins
(purple) were deeper (i.e., had relatively lower energy) than the
minor basins (green).

In both BGN and LECN, the non-melancholic and
melancholic groups had deeper major basins than the healthy
group. Remarkably, a different pattern can be observed in the
DDMN, where the non-melancholic group had shallower major
basins than the healthy and melancholic groups.

Furthermore, some major basins were unique to specific
groups. For example, non-melancholic group had a unique major
basin in DDMN, where the left and right angular gyri (LAG,
RAG), posterior cingulate cortex (PCC), and precuneus regions
were activated. Similarly on LECN, the non-melancholic group
also had a unique major basin, where left inferior frontal gyrus
(LIFG), orbitofrontal gyrus (OFG), left inferior temporal gyrus
(LITG), middle temporal gyrus (MTG), and left thalamus regions
were activated. Complete results for basin energies are reported
in Supplementary Table 3.

Frontiers in Psychiatry | www.frontiersin.org 6 November 2021 | Volume 12 | Article 780997

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Regonia et al. Modeling Melancholic Depression Using ELA

FIGURE 2 | Major and minor basin states. Major basin states (purple) and minor basin states (green) for Healthy, Non-Melancholic, and Melancholic groups on BGN,

DDMN, and LECN. For each state, colored boxes correspond to activated regions, while white boxes are inactive. Energies of the deepest major basins for each

group are also indicated (see Supplementary Table 3 for summary of all major basin energies).

Lastly, the major basin pairs had antisynchronized activations
(Figure 2). In BGN, the Left and Right Inferior Frontal Gyrus
(LIFG, RIFG) were antisynchronized with the Left and Right
Thalamus, Caudate, Putamen and Pons. In DDMN, the Left
and Right Angular Gyrus (LAG, RAG), Right Superior Frontal
Gyrus (RSFG), Posterior Cingulate Cortex (PCC) and Precuneus
were synchronized with each other. A similar pattern can be
observed in LECN, where the Left Inferior Temporal Gyrus
(LITG), Middle Temporal Gyrus (MTG) and Left Thalamus
were synchronized.

3.3. Basin Size and Energy Landscapes
Energy landscapes are then constructed based on the basin
information. In Figure 3, different energy landscapes can be
observed from each group in DDMN. The melancholic group
has the most number of basins (n = 6), followed by healthy
group (n = 5), then non-melancholic group (n = 4). Because
of this shortage of basins, the non-melancholic has relatively
larger major basins (sA = 98.6%), compared to healthy (sA =

92.0%) and melancholic groups (sA = 89.4%). Note that, as
mentioned previously, the non-melancholic group has a unique
major basin (A2). Also, there is a hill on basin cluster B2 of the
non-melancholic group, whichmay be inferred as highly unstable
cluster of states. This hill state cluster is absent in the other
groups. We compared the basin sizes (number of states clustered
to the basin) of each group for each network but found only
minimal differences (e.g., p = 0.08, N vs. M, DDMN). Complete

results for basin sizes are reported in Supplementary Figure 1

and Supplementary Table 3.

3.4. Basin Frequency
Significant group differences were found on the basin frequencies
across all selected networks. The most notable results are
summarized in Figure 4. In some networks, there was a natural
decreasing trend from healthy to melancholic group (e.g., p <

0.005; H vs. M, N vs. M; Auditory Network). In other networks,
an opposite, increasing trend appeared (e.g., p < 0.005; H vs.
N, H vs. M, N vs. M; Anterior Salience Network, DDMN). And
for the rest, the non-melancholic group had either the lowest
(e.g., p < 0.005; H vs. N, H vs. M, N vs. M; BGN, LECN)
or highest frequency (e.g., p < 0.005; H vs. N, H vs. M, N
vs. M; Posterior Salience Network). Similar results for the other
functional networks are summarized in Supplementary Table 4.

3.5. Brain State Transition Dynamics
Depression heterogeneity was also evident when comparing the
transition dynamics in some networks. As shown in Figure 5B,
there were significant differences between non-melancholic and
melancholic groups in traveling scores (p < 0.05; N vs. M;
DDMN), and lingering scores (p < 0.01; N vs. M; DDMN,
LECN) of individual participants. There was also significant
group differences in the lingering scores between healthy and
non-melancholic (p < 0.01; H vs. N; DDMN), and healthy
and melancholic groups (p < 0.01; H vs. M; DDMN, LECN).
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FIGURE 3 | Energy landscapes of healthy, non-melancholic and melancholic groups. Schematic diagram of energy landscapes for Healthy, Non-melancholic, and

Melancholic groups on DDMN. States are clustered to the their nearest basin state (Section 2.5). States A1 (S279) and A2 (S232) are the common major basins among

the groups, while B1 (S340) and B2 (S419) are the common minor basins (Supplementary Table 3).

FIGURE 4 | Basin states frequency. Occurrence frequency of basins for Healthy, Non-melancholic, and Melancholic groups on various brain networks. (***) p < 0.005;

between-group, pairwise comparison of basin frequencies using one-way ANOVA with Bonferroni correction.

Furthermore, there is significant increase in lingering scores
of melancholic group in LECN (Lingering = 0.61 ± 0.06) as
compared to non-melancholic (Lingering = 0.55 ± 0.06; p <

0.005) and healthy groups (Lingering = 0.53 ± 0.06; p <

0.005). Results for other functional networks are summarized in
Supplementary Table 5.

4. DISCUSSION

In this study, we characterized the brain dynamics of melancholic
depression by analyzing the energy landscapemodels constructed
from temporal rs-fMRI signals. The distinguishing energy
landscape features of melancholic depression included major
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FIGURE 5 | Brain state transition dynamics. (A) Schematic diagram illustrating the transition dynamics for traveling score (basin-to-basin; Equation 10) and lingering

score (within-basin or within-peripheral; Equation 11). (B) Traveling and lingering scores for Healthy, Non-melancholic, and Melancholic groups on BGN, DDMN, and

LECN. (*)p < 0.05, (**)p < 0.01, and (***)p < 0.005; between-group, pairwise comparison of traveling/lingering scores using one-way ANOVA with Bonferroni

correction.

basin energy barriers, basin frequency, and state transition
dynamics. Statistical results were consistent across our analyses
on 12 functional brain networks, which indicates the robustness
and discriminative power of our model. Moreover, these results
agree with existing studies on melancholic features, such as
depression severity (33, 40, 43), anhedonia (33, 44), and
rumination (45, 46).

4.1. Confirmation of Depression
Heterogeneity
Our first goal was to show heterogeneity in our depressed
participants. Depression heterogeneity has plagued research
advancement on the diagnosis and treatment of the disorder
(47–49). Considerable efforts has been made toward drawing
boundaries within the currently accepted definition of major
depressive disorder (47, 48), suggesting that investigations on
individual depressive symptoms and their interactions may lead
to new discoveries (49).

Melancholia is recognized as a specifier for MDD,
characterized by symptoms that overlap with MDD such as
anhedonia, excessive guilt, psychomotor disturbance, cognitive
impairment, weight loss, and worse mood in the morning (2, 50).

Although melancholic depression is not anymore considered
as a depression subtype by DSM-5 (which instead uses the
technical term depression with melancholic features) (50, 51), its
clinical characteristics distinguishes it from non-melancholic
and atypical depression (43). Our analysis results confirm
such distinctions, as observed from significant differences
between melancholic and non-melancholic groups in BDI-
II and anhedonia scores (Table 1); basin frequencies on 12
networks (Supplementary Table 4); and transition dynamics
scores in DDMN, LECN, PSN, RECN, VDMN, and VSPN
(Supplementary Table 5).

4.2. Melancholia and Depression Severity
Next, we sought meaningful relationship between energy
landscape signatures and depression severity. Melancholic
depression is associated with greater symptom severity in
comparison to depression with non-melancholic features (40,
43). This association was evident in our participant-level
analysis of BDI-II scores, where the melancholic group scored
significantly higher than the other groups (Table 1).

Readers may wonder if energy landscape features can be a
proxy to evaluate some symptoms associated with melancholic
features. To check this possibility, we performed regression
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analysis on basin frequencies and depression severity score (BDI-
II). But despite having clear boundaries among the groups,
no significant correlation were found in any of the networks
(Supplementary Figure 2A).

The order of increasing severity from healthy, to non-
melancholic, to melancholic depression may seem intuitive.
However, some studies argue against the severity-based
categorization of melancholic depression (52, 53), and do not
identify melancholia as a “more severe” form of depression (52).
This is evident in Supplementary Figure 2A, where the BDI-II
scores for non-melancholic and melancholic groups coincide.
In fact, we can even argue that the basin frequency of our
energy landscape model were better than the depressive scores in
discriminating melancholic depression (Figure 4).

4.3. Melancholia and Anhedonia
Following depression severity, we then tested if the correlation
with basin frequency would also hold true for anhedonia.
Anhedonia is one of the overlapping symptoms for both
melancholia and depression (2, 42). This effect was observed
from the statistical analysis of the subject demographics, where
melancholic group has significantly higher SHAPS score for
anhedonia (Table 1).

Similar to BDI-II scores, there were no significant
correlation between SHAPS scores and basin frequencies
(Supplementary Figure 2B). However, a closer inspection of
results in the DDMN reveals a plausible connection between
these features. Studies report that the decrease in functional
connectivity of dorsomedial prefrontal cortex (dmPFC) with
posterior cingulate cortex / precuneus (PCC/PCUN) is related to
depression severity and anhedonia (33, 44).

Looking at the major basins found by our model in
DDMN (Figure 2), the major basin pairs for all groups
have antisynchronized activations of mPFC and PCUN
(S279 :{mPFC = 1, PCC/PCUN = 0}, H, N, M; S232 :{mPFC =

0, PCC/PCUN = 1}, H, M; S168 :{mPFC = 1, PCC/PCUN = 0},
N). This decoupling between mPFC and PCC/PCUN may be
attributed to impaired reward anticipation, which is a key
feature of anhedonia (44). Although current research has
not yet established the direct connection between dynamic
functional connectivity and energy landscape model (38), our
results provide insight to the potential connection between
these models.

4.4. Melancholia and Ruminative State
Lastly, we investigated the possible presence of ruminative
states in the energy landscapes. Rumination is the tendency to
dwell on the same, usually negative, thoughts for prolonged
periods of time. Currently, rumination is not recognized a
diagnostic feature for melancholic depression. However, since
past studies have noted the significant correlation of rumination
to both melancholy (45) and depression (54), we explored the
energy landscape characteristics to provide more evidences on
this correlations. Ruminative thinking is marked by increased
connectivity in DMN (55), and decreased activity in left
dorsolateral prefrontal cortex (left dlPFC; equivalent to LECN)
(46). In terms of our energy landscape model, we define dynamic

activity as being able to transition from one basin to another. This
is in contrast to static activity, which tends to stay at the same
basin. We derived two measures for brain activity: traveling score
(Equation 10) for dynamic activity, and lingering score (Equation
11) for static activity. Thus, high traveling score and low lingering
score would imply a more active network.

The significant increase of lingering scores of the melancholic
group in LECN (Figure 5) could imply that the melancholic
group has greater tendency to be “stuck” in a basin, or within
its cluster. This may be related to the decreased activity in left
dlPFC found in rumination (46). On the contrary, in the dorsal
part of DMN (DDMN), the lingering scores of melancholic group
(Lingering = 0.55 ± 0.07) are significantly lower than healthy
(Lingering = 0.58 ± 0.06; p < 0.01) and non-melancholic
groups (Lingering = 0.63 ± 0.05; p < 0.005). Although this
may support previous studies showing increased connectivity in
DMN during ruminative thinking, analyzing the lingering scores
in ventral part of DMN (VDMN) leads to contradicting results
(55). Nevertheless, the traveling scores in DDMNare significantly
higher in melancholic group (Traveling = 0.10 ± 0.09) than in
non-melancholic group (Traveling = 0.05 ± 0.06; p < 0.05).
For LECN and VDMN, there were no significant differences in
traveling scores between groups.

4.5. Limitations and Future Directions
Unlike typical functional connectivity (FC) models that are
based on correlation between two regions (i.e., using Pearson’s
correlation coefficient), the ELA model does not assume that
pairwise interactions of regions are independent from each other
(17). This allows our model to more accurately capture the global
activity patterns that may possibly be overlooked by FC-based
models (17). Some FC-based models try to work around this
limitation by using a different FC metric (such as precision
matrix), or by introducing a sliding window in the analysis (also
known as dynamic FCA) (56).

Hidden Markov Model (HMM) is another common brain
dynamics model for resting-state fMRI. In comparison to ELA
which utilizes pairwise MEM, HMM is more complex, and may
be more expressive (57). Thus, in the future, our ELA results
can serve as a baseline for deeper analysis on brain dynamics of
melancholic depression using models such as HMM.

Furthermore, our present study have other limitations. ELA
assumes a memoryless process, such that predicting the next
state only depends on the current state, and not the past states
(38). This saves us memory space and processing time (58),
but this only works on systems at equilibrium, which typically
requires huge amount of data (59). To address this problem,
first, we decided to use resting-state fMRI data since these are
expected as equilibrium states (60). Then, we combined the
fMRI time signals of all participants in a group, to essentially
produce “long” temporal data. Since there are substantially
more healthy participants, it is possible that the model for the
healthy group has converged closer to equilibrium than the two
depressed subgroups.

Although concatenation of individual fMRI data should only
have minimal effect to our analysis due to the memorylessness
aspect of ELA (61), it should be noted that combining
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participants fMRI data could still potentially introduce bias due
to BOLD signal differences across participants. We addressed
this by using individual subjects’ mean fMRI BOLD signals as
threshold for binarizing the signals. However, it is recommended
to further investigate the implications of data concatenation, and
the ways to mitigate the intensity differences in individual fMRI.

Our selection of ROIs relies on the parcellationmethod [Shirer
Atlas, (28)] and availability of data. As such, we removed some
ROIs due to unreliable or insufficient data. Inclusion of these
ROIs might affect the results. Choosing a different parcellation
method might also produce different results. Thus, testing the
robustness and consistency of our model on complete sets
of ROIs or with different parcellation methods would be a
reasonable step in the future.

It is often pointed out that the site difference could
be a potential confounding factor for the observed BOLD
signals (62). In fact, when we applied two-way ANOVA
considering two factors of participant groups and site ID
to basin frequencies, all main effects and their interaction
were statistically significant (Supplementary Table 4). While this
still supports that basin frequencies across different networks
could differentiate participants suffering from melancholic and
non-melancholic MDD in a population level, its reliability as
a biomarker for the personalized medicine should never be
overestimated. Thus, the potential site bias is a limitation in the
present study and we should address the issue in our future work.

Even though we hypothesized a priori that the energy
landscape of melancholic depression will be different from non-
melancholic due to depression heterogeneity, our analyses and
interpretations of the results were done post-hoc. For statistical
analyses, we applied Bonferroni correction to compensate for
multiple comparison tests that would increase the risk of Type
1 error (63).

Our discussion on the relation between melancholia and
rumination is more suggestive than conclusive since we lack
rumination quantifiers to analyze with our models. In the
future, it would be crucial to record ruminative tendencies of
participants using standardized measures such as Ruminative
Response Scale (RRS) (64).

Finally, we would like to emphasize that melancholia, in
itself, is also heterogeneous (50). It is characterized by multiple
symptoms, and thus its severity and symptoms may vary from
one person to another. Current biomarker models focus on the
distinguishing features of melancholic depression on a group
level (9, 10, 14). ELA allows us to study not only the group-wide
brain dynamics ofmelancholic depression, but also the individual
nuances in brain states and functional region interactions. In the
future, it would be beneficial to study more of these individual
differences so we can directly confront the issue of heterogeneity.

4.6. Conclusion
Melancholic depression is a debilitating disorder that robs a
person the pleasure and excitement from activities they used to
enjoy. In this study, we developed an energy landscape model to
better understand the brain dynamics involved in melancholic
depression. Relative to healthy and non-melancholic groups,
the melancholic group showed significant differences on basin
energy, basin frequency, and transition dynamics in several

functional networks. Moreover, possible connections were traced
between major basins and depressive symptom scores such as
depression severity and anhedonia. Taken together, these results
suggest that melancholic depression is a distinct disorder, and
thus should be diagnosed and treated with utmost precision
and care.
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57. Savin C, Tkačik G. Maximum entropy models as a

tool for building precise neural controls. Curr Opin

Neurobiol. (2017) 46:120–6. doi: 10.1016/j.conb.2017.08.

001

58. Painsky A, Rosset S, Feder M. Memoryless representation of Markov

processes. In: 2013 IEEE International Symposium on Information Theory.

Istanbul: IEEE (2013).

59. Gu S, Cieslak M, Baird B, Muldoon SF, Grafton ST, Pasqualetti F, et al. The

energy landscape of neurophysiological activity implicit in brain network

structure. Sci Rep. (2018) 8:2507. doi: 10.1038/s41598-018-20123-8

60. Deco G, Jirsa VK. Ongoing cortical activity at rest: criticality,

multistability, and ghost attractors. J Neurosci. (2012) 32:3366–75.

doi: 10.1523/JNEUROSCI.2523-11.2012

61. Watanabe T, Masuda N, Megumi F, Kanai R, Rees G. Energy landscape and

dynamics of brain activity during human bistable perception. Nat Commun.

(2014) 5:4765. doi: 10.1038/ncomms5765

62. Dansereau C, Benhajali Y, Risterucci C, Pich EM, Orban P, Arnold

D, et al. Statistical Power and prediction accuracy in multisite

resting-state fmri connectivity. Neuroimage. (2017) 149:220–32.

doi: 10.1016/j.neuroimage.2017.01.072

63. Miller RG. Simultaneous Statistical Inference. New York, NY: McGraw-Hill

(1966).

64. Treynor W, Gonzalez R, Nolen-Hoeksema S. Rumination reconsidered:

A psychometric analysis. Cognit Ther Res. (2003) 27:247–59.

doi: 10.1023/A:1023910315561

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Regonia, Takamura, Nakano, Ichikawa, Fermin, Okada,

Okamoto, Yamawaki, Ikeda and Yoshimoto. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychiatry | www.frontiersin.org 13 November 2021 | Volume 12 | Article 780997

https://doi.org/10.1371/journal.pone.0048200
https://doi.org/10.1016/j.jad.2016.08.042
https://doi.org/10.1016/0165-0327(85)90008-4
https://doi.org/10.3758/s13415-016-0456-x
https://doi.org/10.1111/j.1600-0447.2011.01744.x
https://doi.org/10.1177/0963721414568342
https://doi.org/10.1080/14737175.2017.1307737
https://doi.org/10.1016/S2215-0366(20)30169-3
https://doi.org/10.1016/j.jad.2009.10.001
https://doi.org/10.1177/070674371305800402
https://doi.org/10.3389/fnhum.2015.00269
https://doi.org/10.1093/scan/nsq080
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1016/j.conb.2017.08.001
https://doi.org/10.1038/s41598-018-20123-8
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.1038/ncomms5765
https://doi.org/10.1016/j.neuroimage.2017.01.072
https://doi.org/10.1023/A:1023910315561
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles

	Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis
	1. Introduction
	2. Materials and Methods
	2.1. Study Participants
	2.2. Data Acquisition and Preprocessing
	2.3. Functional Brain Networks
	2.4. Pairwise Maximum Entropy Model
	2.5. Energy Landscapes Analysis
	2.6. Statistical Group Differences
	2.7. Depressive Symptoms Correlation

	3. Results
	3.1. Depressive Symptom Severity
	3.2. Basins and Energy Barriers
	3.3. Basin Size and Energy Landscapes
	3.4. Basin Frequency
	3.5. Brain State Transition Dynamics

	4. Discussion
	4.1. Confirmation of Depression Heterogeneity
	4.2. Melancholia and Depression Severity
	4.3. Melancholia and Anhedonia
	4.4. Melancholia and Ruminative State
	4.5. Limitations and Future Directions
	4.6. Conclusion

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


