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The tremendous public health problem created by substance use disorders (SUDs)

presents amajor opportunity for mouse genetics. Inbredmouse strains exhibit substantial

and heritable differences in their responses to drugs of abuse (DOA) and in many

of the behaviors associated with susceptibility to SUD. Therefore, genetic discoveries

emerging from analysis of murine genetic models can provide critically needed insight

into the neurobiological effects of DOA, and they can reveal how genetic factors affect

susceptibility drug addiction. There are already indications, emerging from our prior

analyses of murine genetic models of responses related to SUDs that mouse genetic

models of SUD can provide actionable information, which can lead to new approaches

for alleviating SUDs. Lastly, we consider the features of murine genetic models that

enable causative genetic factors to be successfully identified; and the methodologies

that facilitate genetic discovery.

Keywords: mouse genetic models, substance use disorder, neurobiologic basis, computational genetics, opiate

addiction

WHY STUDY MURINE GENETIC MODELS OF SUD?

We believe that the relationship between murine models and human diseases (or biomedical
traits) resembles that between a small Cessna airplane and a large 787 jet plane. You can learn
most of what you need to know about the fundamental principles of aviation by studying the
Cessna, but this will not enable you to pilot the 787. The 787 has many more capabilities, much
more complex and computer-controlled systems, and multiple redundancies that are essential for
its function than are contained within a Cessna. Nevertheless, you wouldn’t be able to pilot a
787 without knowing the aviation principals that are learned by studying the Cessna. Similarly,
studying the mouse has revealed the basic principles underlying many areas of human physiology
and pathobiology. Within the neurobiology realm, many of the mechanisms and circuits utilized
for learning, memory, cognition, and the effects that drugs have on these processes have been
uncovered through analysis of mouse models. However, since laboratory mice function within
a very limited behavioral domain and lack some of the neural pathways that regulate human
behavior, many of the complex factors mediating human psychiatric diseases cannot be understood
by analyzing rodent models. The aviation analogy is quite appropriate for SUDs. Rodent models are
ideal for understanding DOA neurobiology and for providing information about how drug seeking
behaviors are generated; but they provide a very poor substrate for investigating the impact of that
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socioeconomic and psychosocial factors have on triggering
relapse. This is an important limitation since human drug
addiction proceeds through a three-stage cycle whose intensity
increases over time, and each stage results from DOA-
induced changes in brain circuits (1–3). The first stage
(binge/intoxication) is mediated by DOA-induced reward
sensations in the brain. The second stage (withdrawal/negative
affect) is characterized by an increased threshold for experiencing
the reward sensation, and a withdrawal state develops when
the DOA cannot be obtained. The third stage (preoccupation-
relapse) is characterized by chronic relapse, which is triggered
by environmental and emotional cues. Chronic DOA ingestion
induces neurochemical changes that lessen the reward sensation
that was experienced after DOA ingestion during the initial
stage, which increases the stress and compulsivity associated
with chronic drug addiction (2, 3). Mouse models are ideal for
analyzing the first two stages of the addiction cycle, which are
mediated by neurobiological changes that develop after acute
(1st stage) or repeated (2nd stage) exposure to a DOA. In
contrast, mice provide a less optimal model for analyzing 3rd
stage phenomena, which involves responses to environmental
triggers and farmore complex DOA-induced changes that impact
a wider range of neural circuits. Most current research and
treatment efforts focus on the later stages of drug addiction (3),
which are associated with drug craving and relapse in individuals
with SUD of long duration. It could be more productive to
increase the research effort devoted to developing prevention
strategies, which target the early stage of drug addiction (4).
To do this, we must develop a deeper understanding of DOA-
induced changes at the synaptic level. In other words, to fly
the jet plane (i.e., develop effective prevention or treatment
methods for SUDs) we must use murine genetic models of SUD
to understand the underlying principles of aviation (i.e., the
mechanisms mediating SUDs).

Here, we examine what we have learned from our prior
analyses of murine genetic models of responses related to SUD.
First, we discuss a murine genetic model of a drug-induced
toxicity to indicate the different types of genetic factors that can
be identified. We then we review the genetic factors identified
from our prior analyses of murine genetic models of opiate
responses. Lastly, we consider the features of murine models that
enable causative genetic factors to be successfully identified; and
the methodologies that can facilitate genetic discovery.

AN ILLUSTRATIVE EXAMPLE

Analysis of a murine genetic model of a drug-induced
(haloperidol) CNS toxicity illustrates the potential outcomes
that could emerge when evaluating murine genetic models
of SUD because drug addiction (in many ways) is a toxicity

Abbreviations: CSA, cocaine self-administration; DOA, drugs of abuse; GWAS,

genome wide association study; HBCGM, haplotype based computational

genetic mapping; HIT, haloperidol induced toxicity; mCPP, morphine-

induced conditioned place preference; NPOW, naloxone precipitated opiate

withdrawal; NAc, nucleus accumbens; SUD, substance use disorder; VTA, ventral

tegmental area.

caused by DOAs. Although haloperidol is an effective anti-
psychotic agent, it causes a treatment-limiting side effect in
most treated subjects, which is very debilitating Parkinsonian-
like extrapyramidal symptoms. When we began our studies
of haloperidol induced toxicity (HIT), genetic susceptibility
factors for this toxicity were completely unknown. Therefore,
we analyzed a murine genetic model of HIT where the inbred
strains exhibited very large and reproducible differences in
susceptibility to HIT. Our analysis revealed that susceptibility
was quantitatively determined by two distinct genetic loci:
one encoded a pharmacokinetic factor and the other a
pharmacodynamic factor. The pharmacokinetic factor was allelic
variation within a murine ABC-drug efflux transporter (Abcb5)
that caused susceptible strains to have higher brain haloperidol
levels; and a genetic association study in a haloperidol-treated
human cohort identified human ABCB5 alleles as susceptibility
determinants for HIT (5). The pharmacodynamic susceptibility
factor was allelic variation within pantetheinase genes (Vnn1,
Vnn3) that impaired the biosynthesis of a protective metabolite
(cysteamine) (6).While discovery of themurine pharmacokinetic
factor led to the identification of a pharmacogenetic susceptibility
factor for human HIT (5); characterization of the murine
pharmacodynamic factor led to a potential new treatment (co-
administration of a cysteamine metabolite) that could completely
prevent haloperidol’s treatment-limiting toxicity (6). Thus,
analysis of a murine model generated information that produced
a potential new method for preventing this toxicity.

MURINE SUD MODELS

Like haloperidol, murine opiate response models hold great
promise for genetic discovery. The inbred strains exhibit very
large and heritable differences in their responses to opiates,
which include the development of opioid analgesia, tolerance,
dependence, and hyperalgesia (7–10). We provide a brief
description of several rodent SUDmodels here, but more detailed
information can be obtained from recent reviews covering
rodent models for CPP (11), opioid (12, 13) and cocaine
relapse (14), and opioid abstinence (15). The genetic models
of SUD discussed here are ones where various responses are
measured after DOAs are administered to panels of inbredmouse
strains. For example, physical dependence is a key measure
of addiction that is modeled by the jumping behavior that is
displayed by opiate-dependent mice after administration of a
potent opioid receptor antagonist (naloxone). This response
is a highly heritable trait among inbred mouse strains (16)
that is independent of differences in the method or duration
of opiate administration (17, 18) (Figure 1). Of importance,
naloxone-precipitated opiate withdrawal (NPOW) has also been
used to quantify opioid dependence in human volunteers (19).
In addition to their analgesic action, opioids also induce a
paradoxical hypersensitivity to painful stimuli during opioid
withdrawal (opiate-induced hyperalgesia, OIH); and there are
large and heritable differences in the extent of OIH that
develops among the inbred strains (7, 20). Drug seeking
behavior is observed when abstaining addicts are confronted
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FIGURE 1 | Analysis of a murine genetic model of naloxone precipitated opiate withdrawal (NPOW). (Top) Eighteen strains (eight mice per strain) were treated for four

days with morphine to establish physical dependence. On the 5th day, the number of jumps made during the 15-min period after naloxone injection was measured to

indicate the degree of opioid dependence. (Middle) The data represent the mean number of jumps for each indicated strain. (Bottom) The NPOW data (mean

number of jumps for each strain) was analyzed by haplotype based computational genetic mapping. The 10 most strongly correlated haplotype blocks are shown. For

each block, the chromosomal location, number of SNPs within a block and its gene symbol are listed. For each gene, the haplotypes are represented by a colored

block, and the blocks are presented in the same rank order as the phenotypic data. Strains sharing the same haplotype have the same-colored block. The calculated

p-value measures the probability that the strain groupings within a block would have the same degree of association with the phenotypic data by random chance. The

genetic effect indicates the fraction of the inter-strain variance that is potentially attributable to the haplotype.

with environmental stimuli associated with their drug-taking
behavior. Some features of the behavior of human opiate addicts
can bemodeled inmice using themorphine-induced conditioned
place preference (mCPP) test (21–24). In the mCPP paradigm,
morphine administration is paired with a particular spatial
environment, and then amouse’s preference for this environment
is measured to evaluate the rewarding properties of morphine.
The OIH, NPOW and mCPP models measure phenomena in
mice that are associated with the 2nd stage of the addiction
cycle. OIH and withdrawal symptoms can serve as driving forces
that promote relapse or escalation of drug intake. As such, the
genetic factors identified from analysis of these models are ones
that influence susceptibility to an SUD. Behavioral sensitization
paradigms, which measure an increase in drug-induced behavior
that gradually develops after a period of repeated DOA exposure,
can also be used to study cross-sensitization amongst different
DOA. Cross-sensitization studies using behavioral sensitization
paradigms has identified the neural mechanisms and pathways
that are shared by different types of DOA (25, 26). However, since
these models are based on non-contingent (i.e., experimenter-
initiated) drug administration, they lack face validity, which is the
degree to which themodel measures what it claims to. This aspect

of addiction could be better studied using contingent models
that assess the motivation for drug-taking or the reinstatement
of drug-seeking behaviors (27).

Inbred strains also exhibit substantial and heritable differences
in their cocaine responses, which include the extent of
cocaine-induced locomotor activation (28, 29), cocaine self-
administration (CSA) (30–33); and SUD risk-related behaviors
that include impulsivity, and sensitivity to drug reward (33).
Of the various addiction-related phenotypes studied in mice,
the gold standard is operant self-administration (34, 35), where
the subjects voluntarily and actively seek and consume drugs
with rewarding properties. Rodents, like humans, experience
the rewarding effects of a DOA, and they will engage in
behaviors to procure them. To measure CSA, mice are fitted
with an indwelling jugular catheter and placed in an operant
conditioning box where they must depress a lever to trigger
cocaine infusions. The rate of CSA reflects the reinforcing
potential of cocaine (36). The substantial differences in CSA
among the inbred strains (30–33) reflects their different
propensities to abuse cocaine (37–39). There are obvious benefits
from using a contingent model like CSA, since it more accurately
recapitulates the drug-taking and drug-seeking behaviors of

Frontiers in Psychiatry | www.frontiersin.org 3 January 2022 | Volume 12 | Article 793961

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Peltz and Tan Murine Models of SUD

humans. The motivation (the reinforcing properties of the drug
reward) as well as the specificity (drug vs. alternative reward)
for drug-taking behaviors can also be evaluated in addition to
measuring the quantity and frequency of drug administration
(27, 40, 41). Thus, just as in the human population, inbred mouse
strains exhibit substantial differences in their DOA responses;
and characterization of the genetic basis for these differences
will help us to understand the neurobiological effects of DOA
and will enable us to understand how they generate addiction-
related behaviors.

LESSONS LEARNED FROM
CHARACTERIZING MURINE OPIATE
RESPONSE FACTORS

As with HIT, multiple studies indicate that differences in
the various types of opiate responses exhibited by inbred
strains are determined by genetic factors that alter opiate
pharmacokinetics and by pharmacodynamic factors that alter the
host response to opiates.When amurine geneticmodel of opioid-
induced hyperalgesia (OIH) was analyzed, we discovered that
genetic variation within the P-glycoprotein transporter (Abcb1b)
contributed to inter-strain differences in this opiate response
(8). Analysis of the effect of pharmacologic inhibitors and
of Abcb1a/1b knockout mice confirmed that P-glycoprotein
function modulates narcotic-induced pain sensitization, as well
as the tolerance and physical dependence that develops during
opiate treatment. The brain morphine level correlated with
the extent of OIH, which indicated a murine pharmacokinetic
factor influenced multiple opiate pharmacodynamic responses
by altering brain opiate levels. While pharmacokinetic factors
are important, characterization of genetic factors affecting
opiate pharmacodynamic responses are more likely to generate
new approaches for preventing opiate addiction. For example,
we analyzed another murine genetic model for OIH and
identified the beta-2 adrenergic receptor (Adrb2) as a genetic
locus contributing to the inter-strain response difference. This
response was markedly diminished in Adrb2 knockout mice
and was reversed by administration of a commonly used Adrb2
antagonist, which suggested a novel strategy for reducing OIH
(7). We also found that genetic variation within genes encoding
the Netrin-1 receptor (Dcc) (42) and multi-PDZ-domain protein
(Mpdz that encodes MUPP1) (20) also contributed to inter-strain
differences in the extent of tolerance, dependence and OIH that
develops after repeated opiate exposure.

The latter two genetic findings indicate that opiate-induced
changes at the synaptic level influence opiate responses. For
example, dcc encodes a receptor for an axonal guidance protein
(netrin-1) that plays a role in synaptic plasticity in the adult brain
(43–46); and dcc itself plays a role in axonal differentiation and
synaptogenesis in the developing brain (44, 46–48). Similarly,
MUPP1 expression is localized to CNS synapses (49). Genetic
variation within Mpdz has been associated with alcohol and
sedative dependence in both mice and humans, which suggest
that it may regulate responses to multiple DOA (50–52).

MUPP1 may enhance the efficiency of neuronal signaling by
bringing key intracellular signaling molecules into proximity
with cell surface receptors (NMDA receptor) at the post-synaptic
membrane (53). By this mechanism, NMDA receptor activation
can trigger a MUPP1-facilitated cascade that leads to membrane
insertion of AMPA receptor/channels, and persistent facilitation
of glutamate signaling. This pathway may contribute to long-
term potentiation (LTP) or alternative forms of enhanced AMPA
receptor mediated activity (54). Pharmacological blockade of
NMDA receptors and genetic deletion of NMDA receptor
subunits has been shown to limit tolerance and OIH in mice
and rats (55, 56); and the NR2B subunits of NMDA receptors
mediate opiate tolerance (57, 58). The dcc andMpdz findings also
demonstrate that even when an identified causative genetic factor
is not a pharmaceutic target, interacting proteins or proteins
within an effected pathway may provide new therapeutic targets
for SUD.

TRANSLATION OF A MOUSE GENETIC
DISCOVERY

Our most impactful discovery to date emerged from analysis
of a murine genetic model that measured the naloxone-
precipitated opiate withdrawal (NPOW) response after 4 days
of morphine administration in 18 inbred strains (9). Allelic
variation within the Htr3a gene encoding the 5HT3AR was
most highly correlated with the severity of the NPOW
response (Figure 1). Consistent with this result, Htr3a mRNA
and protein expression was significantly reduced in a strain-
specific manner after morphine administration. Moreover,
administration of a selective 5HT3AR antagonist (ondansetron)
reduced NPOW [and opioid-induced hyperalgesia (OIH)] in
a dose-dependent fashion; and ondansetron co-administration
with morphine impaired the mCPP response, which indicated
that ondansetron eliminated the reinforcing effects of morphine
(9). Thus, ondansetron also shows promise for preventing opiate
dependence. The murine finding was tested in humans by
measuring the effect of ondansetron on experimentally induced
NPOW in healthy male volunteers. Ondansetron pre-treatment
caused a 76% decrease (p= 0.03) in the NPOW in the volunteers,
and it decreased all 11 of the measured manifestations of
opiate withdrawal. Since the ondansetron effect observed in mice
translated to humans, it is likely of fundamental importance. In
a separate study (59), we demonstrated that another 5HT3AR
antagonist (palonosetron) also prevented NPOW symptoms
in normal human subjects and that a pretreatment that
combined palonosetron with a commonly used antihistamine
(hydroxyzine) caused a 95% reduction (p= 0.014) in withdrawal
manifestations. The effect of the combination pretreatment was
significant even when compared with that of palonosetron
alone (p = 0.012) (59). These results demonstrated that a
5HT3AR antagonist can be combined with another agent to
further reduce opioid withdrawal severity. Ondansetron is a
widely used medication with a well-established safety record.
After characterizing its pharmacokinetic properties in pregnant
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women and in their neonates (60), we are now performing
a placebo-controlled clinical trial investigating whether a brief
period of ondansetron treatment can prevent the development
of opiate withdrawal symptoms in infants with prenatal opioid
exposure (61, 62). This study, which has involved seven medical
centers, currently represents the only attempt to develop a
preventative treatment for a severe condition that effects the
infants of mothers with SUD.

GENETIC ANALYSIS METHODS

Identification of the genetic factors responsible for DOA
response differences among the inbred strains is an essential
step for obtaining critically needed information about the
neurobiological mechanisms underlying addiction. Only after
a genetic factor is identified can the involved pathways be
examined, which is required for identifying potential targets for
new treatments for SUD. We have found that two inter-related
features of a murine genetic model facilitate genetic discovery
when genome wide association study (GWAS) methods are used
for their analysis. (i) The DOA response must be measured
across a large number (preferably > 15) of inbred strains. When
a small number of strains are evaluated, the actual extent of
the phenotypic variation present in the mouse population is
under-estimated (63, 64). There are>450 available inbred strains
(65); and usually only a few strains will exhibit an outlier
phenotype for most responses. Unfortunately, the vast majority
of murine GWAS performed to date analyze a relatively small
number of strains (66). (ii) Since a key factor for successful
genetic discovery is when strains that exhibit outlier responses
are included in the analysis, the genetic analysis should not
begin until after inbred strains that exhibit extreme DOA
responses (i.e., top or bottom 10% and are >3-fold above
(or below) the mean response of the other strains) have
been identified. Preferably, the strain panel should include at
least two strains that exhibit an extreme phenotypic response.
Other investigators have used one or more of the various
recombinant inbred (RI) strain panels for genetic mapping
studies, which include: the Hybrid Mouse Diversity Panel (30
founder strains) (67, 68); the Diversity Outbred (69) and
Collaborative Cross (70) panels (eight strains); and the BXD
RI panel (71) (two strains). While these RI panels have proven
to be useful for genetic mapping, they have a limitation. We
do not know in advance which strains will exhibit outlier
responses to current (or future) DOA that contribute to 21st
century addiction-related public health problems, and the strains
exhibiting outlier responses may not be among the founder
strains for the existing RI panels. To use another disease as an
example, Type 2 Diabetes Mellitus (T2DM), and its principal
risk factor (obesity) have become a major 21st century public
health problem (72); but the TallyHo strain is not among
the founder strains used to construct any of the current
RI panels. Nevertheless, TallyHo provides a valuable murine
model for T2DM and obesity because it spontaneously develops
hyperlipidemia, hyperglycemia, insulin resistance, and glucose
intolerance (73, 74). A genetic analysis of diabetes—related

traits among the inbred strains would miss important disease-
causing genetic variants if the TallyHo strain was not included
in the analysis.

While many different methods can be used to analyze GWAS
data obtained from inbred stains, we have successfully used
haplotype based computational genetic mapping (HBCGM)
to identify murine genetic factors underlying 22 biomedical
traits (5–9, 18, 20, 42, 64, 75–90). In an HBCGM experiment,
a property of interest is measured in a panel of available
mouse strains whose genomes have been sequenced; and then
genetic factors are computationally predicted by identifying
genomic regions (haplotype blocks) where the pattern of within-
block genetic variation correlates with the distribution of the
phenotypic responses among the strains (63, 64, 75) (Figure 1).
However, a major barrier to genetic discovery is caused by the fact
that HBCGM analyses generate many false positive associations,
which appear along with the causative genomic region, for the
trait response difference. This can make it difficult to identify
the true causative genetic factor for a biomedical trait difference.
Because of the ancestral relatedness of the inbred strains, some of
the false positives are within genomic regions that are commonly
inherited (a property referred to as “population structure”).
Statistical methods have been developed to reduce the false
discovery rate in GWAS studies by correcting for the population
structure that exists that exists in humans (91, 92), plants (93),
and mice (94). While these correction methods have substantial
utility for analyzing human GWAS results, we have recently
shown that population structure correction methods are less
useful when analyzing murine GWAS results; and moreover,
their use could increase the chance that a true causative genetic
factor will be discarded (95). In brief, even though multiple
genomic regions have a shared ancestral inheritance, one of them
may be responsible for a phenotypic difference. To overcome
this problem, we use filtering methods to identify the true
causative factor from among the many correlated genomic
regions. We have previously identified causative genetic factors
from among the many genes with correlated allelic patterns by
applying orthogonal criteria (64), which include gene expression,
metabolomic (78), or curated biologic data (96), or by examining
candidates within previously identified genomic regions (76,
77). This approach can provide results that are superior to
that of a typical GWAS, which only uses a single highly
stringent criterion to identify candidates. We recently analyzed
8,462 publicly available datasets of biomedical responses (1.52M
individual datapoints) measured in panels of inbred mouse
strains. We found that our ability to identify the genetic basis
for the biomedical trait differences among the inbred strains
was enhanced when structured automated methods were used
for filtering the genes output by HBCGM analyses (66). In that
study, we selected correlated genes that were expressed in the
target organ for the biomedical trait, had high impact SNP alleles,
and where the published literature indicated that the gene had
a functional relationship with the analyzed trait. Although we
are in the early stage of using automated methods for assessing
genetic results, we believe that the results from that study (66)
provide an early indication of how “augmented intelligence” can
be used to facilitate genetic discovery. For analysis of mouse
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genetic models for SUD, DOA-induced gene expression changes
occurring in brain regions, which are known to be important
sites for DOA responses (NAc, VTA, mPFC), can be analyzed to
facilitate identification of causative genetic factors.

FUTURE DIRECTIONS

We believe that genetic factors affecting DOA responses will be
sharedwith those impacting learning andmemory pathways (97).
Multiple lines of evidence indicate that DOA “hijack” the neural
circuits used for learning and memory (98–100). An organism’s
ability to learn and form memories is mediated by changes
within neurons and brain circuits that are produced by changes
in neuronal gene expression patterns, which are activated in
response to stimuli (101). Synaptic plasticity, which are activity-
based changes in synaptic transmission in neuronal networks, is
a major component of learning and memory (102). Changes in
presynaptic glutamate release as well as postsynaptic ionotropic
glutamate receptor expression and subunit composition are
associated with DOA-induced changes in neuroplasticity (103).
Rapidly occurring changes in synaptic plasticity mediate DOA-
induced behavioral effects, and they contribute to the acquisition
of instrumental learning. By this mechanism, DOA-induced
changes in synaptic plasticity can produce abnormally strong
addiction-related memories. The effect of DOA on long-term
potentiation (LTP) and long-term depression (LTD) has been
well-studied in VTA dopaminergic neurons (104–106). For
instance, cocaine exposure increases the AMPA/NMDA receptor
ratio, alters GluA2-containing AMPARs, and decreases NMDA
receptor functionality in VTA dopaminergic neurons (107–
109). Structural plasticity, which is the formation of new

synaptic boutons and dendritic spines, is also observed after
DOA exposure (110). Increased dendritic spine density in the
NAc and PFC are commonly observed changes in synaptic
connections that contribute to the sequela of drug use (111–113).
Circuit remodeling also occurs with DOA-induced dopamine-
mediated responses. Specifically, DOA act on the mesolimbic
dopaminergic pathway, which include the ventral tegmental
area (VTA), nucleus accumbens (NAc) and associated limbic
regions (114). The medial prefrontal cortex (mPFC), which
exerts top-down excitatory glutamatergic control over the NAc
and other downstream subcortical regions, might contribute
to maladaptive behaviors (115). Different subregions of the
mPFC (i.e., dorsal, and ventral infralimbic subregions) can
both drive and inhibit drug seeking behaviors depending on
the drug history and behavioral context (116). Dysfunction in
these regions, such as hypoactivity or selective strengthening
of the PFC-striatal pathway, could contribute to compulsion in
drug addiction models (116, 117). Therefore, studying DOA-
induced effects on synaptic and structural plasticity, as well
as characterizing changes in neuronal circuitries, could greatly
increase our understanding of DOA responses. Moreover, given
the overlap between the neural circuits used for learning and
those impacted by DOA, it is likely that there will be some
degree of overlap between the genetic factors affecting responses
to different types of abused drugs. Hence, it is also important to
characterize the impact that genetic factors identified by analysis
of mouse genetic models have on responses to different types
of DOAs.

In addition to the transcriptional changes associated with
neuronal plasticity, chromatin modifications are a major part of
learning and memory processes (118–121). Much correlational
evidence links changes in histones (predominantly acetylation)

FIGURE 2 | Image depicting how a mouse genetic model of a response related to a SUD can be analyzed to identify the genetic factors, epigenetic changes and the

alterations in neurocircuits caused by a DOA. This diagram was created using BioRender.com software.
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with short and long-term memory generation (121–123). Since
the addiction state persists long after the period of DOA
ingestion, DOA-induced epigenetic modifications are highly
likely to be key contributors to addiction. Hence, DOA-induced
chromatin structure changes in specific brain regions should be
characterized along with DOA-induced transcriptional changes.
The combined characterization of transcriptional and chromatin
structure changes in the developing human brain has provided
new insight into the mechanisms regulating brain development,
and possibly into the pathobiology of psychiatric diseases
(124). The methodology for simultaneously characterizing DOA-
induced epigenetic and transcriptional changes in brain is
now readily available (124). Characterization of DOA-induced
chromatin structure changes in specific brain regions will
provide the orthogonal information, which will facilitate the
identification of genetic factors affecting addiction susceptibility.
To do this, chromosomal regions with DOA-induced epigenetic
changes can be examined to determine if they overlap with
haplotype blocks that contain alleles that correlate with the
pattern of DOA responses among the inbred strains. Also, linking
genetic and epigenetic mechanisms with changes in synaptic
circuit plasticity could lead to a deeper understanding of DOA-
induced neuroadaptations (115) (Figure 2). For instance, DOA

exposure produces region-specific epigenetic changes, which
include an increase in global histone acetylation in the NAc, while
this is reduced in the VTA (125, 126). Studying transcriptional
and epigenetic changes in specific neuronal subpopulations
is also important for understanding neural mechanisms and
identifying novel therapeutic targets for prevention of addiction
(127, 128). Thus, we believe that murine genetic models can
be used to simultaneously characterize DOA-induced epigenetic
and transcriptional changes, and for identifying genetic factors
that alter DOA responses. Thus, murine models can provide
the critically needed information that is required for successfully
landing the airplanes whose flight path has been adversely
affected by SUDs.
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