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In this study, the extent to which different emotions of pregnant women can be

predicted based on heart rate-relevant information as indicators of autonomic nervous

system functioning was explored using various machine learning algorithms. Nine heart

rate-relevant autonomic system indicators, including the coefficient of variation R-R

interval (CVRR), standard deviation of all NN intervals (SDNN), and square root of the

mean squared differences of successive NN intervals (RMSSD), were measured using a

heart rate monitor (MyBeat) and four different emotions including “happy,” as a positive

emotion and “anxiety,” “sad,” “frustrated,” as negative emotions were self-recorded on a

smartphone application, during 1 week starting from 23rd to 32nd weeks of pregnancy

from 85 pregnant women. The k-nearest neighbor (k-NN), support vector machine (SVM),

logistic regression (LR), random forest (RF), naïve bayes (NB), decision tree (DT), gradient

boosting trees (GBT), stochastic gradient descent (SGD), extreme gradient boosting

(XGBoost), and artificial neural network (ANN) machine learning methods were applied to

predict the four different emotions based on the heart rate-relevant information. To predict

four different emotions, RF also showed a modest area under the receiver operating

characteristic curve (AUC-ROC) of 0.70. CVRR, RMSSD, SDNN, high frequency (HF),

and low frequency (LF) mostly contributed to the predictions. GBT displayed the second
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highest AUC (0.69). Comprehensive analyses revealed the benefits of the prediction

accuracy of the RF and GBT methods and were beneficial to establish models to predict

emotions based on autonomic nervous system indicators. The results implicated SDNN,

RMSSD, CVRR, LF, and HF as important parameters for the predictions.

Keywords: pregnancy, emotion, heart rate variability, autonomic system, machine learning, ensemble learning,

random forest, gradient boosting trees

INTRODUCTION

Heart rate variability (HRV) is often used to characterize the
function of autonomic nervous system activity by analyzing
time and frequency domains based on normal-to-normal (NN)
intervals (1). Time domain features include the coefficient of
variation R-R interval (CVRR), standard deviation of all NN
intervals (SDNN), square root of the mean squared differences
of successive NN intervals (RMSSD), the number of interval
differences of successive RR-intervals >50ms (NN50), and
proportion derived by dividing NN50 by the total number
of RR-intervals (pNN50). Frequency domain features include
low frequency from 0.04 to 0.15Hz (LF), high frequency from
0.15 to 0.4Hz (HF), and the ratio of low frequency to high
frequency (LF/HF).

HRV reflects many physiological and psychological factors,
including emotions. Emotions affect our daily lives. However,
emotions can also reflect mental conditions and significantly
correlate with physical health (2). Negative emotions induce
physiological arousal in a manner specific to the type of emotion
(3). Physiological arousal can be measured as the change in
HRV. Many researchers have focused on the effects of different
emotions and HRV. For example, Xiu et al. (4) indicated that the
HF reflects emotion and used HF to assess the effect of working
memory training on emotion regulation. Rakshit et al. (5) used
HRV features to classify different types of emotions, including
happy and sad and neutral or null emotions. Goldstein et al.
(6) suggested that HRV can be used as a marker to recognize
different emotions.

Many researchers have combined AI to establish a prediction
model to predict changes in emotion based on HRV. However,
the previous studies applied only a limited number of machine
learning algorithms among many widely used algorithms. For
example, Li et al. (7) provided a comprehensive overview of
physiological signal-based emotion recognition. In this study,
the authors enumerated various studies on physiological signal
types and various machine learning algorithms for emotion
recognition. The diverse algorithms include support vector
machine (SVM), k-nearest neighbor (k-NN), decision tree (DT),
and random forest (RF). Among them, several studies addressed
emotion classifiers (8–11). SVM has been implicated as an
appropriate method to discriminate among different emotions
(5, 12–15). Two studies reported that logistic regression (LR) is
an appropriate method to distinguish emotions (16, 17). Two
other studies demonstrated that k-NN can be used as an emotion
classifier (18, 19). Naïve Bayes (NB) is a proper method to
predict emotions (20–22). RF can solve the problem of emotion

recognition with a higher accuracy than that of a few other
methods (23–25). Lee et al. (26) utilized an artificial neural
network (ANN) to distinguish different emotions. Besides the
seven algorithmsmentioned above, several newmachine learning
algorithms have been developed. These include stochastic
gradient descent (SGD), gradient boosting trees (GBT), and
extreme gradient boosting (XGBoost). The application of these
algorithms can be beneficial to more efficiently predict mood
based on HRV.

While HRV-based prediction of mood can contribute to early
detection or objective assessment of mood disorders, caution is
needed. Specific populations may have particular characteristics
in mood. For example, perinatal women have prominent
biological and psychosocial factors that affect mood, and are
susceptible to mood disorders, including “maternity blues” and
postpartum depression. However, HRV-based prediction for
perinatal women has not been adequately addressed.

A common help-seeking barrier regarding postpartum
depression was suggested to be women’s inability to disclose
their feelings (27). The previous study indicated that over
90% of women affected postpartum depression recognized
there was something wrong, but only one-third believed they
were suffering from postpartum depression, and over 80%
had not reported their symptoms to any health professional
(28). Cognitive behavioral interventions adapted for non-clinic
settings during the perinatal period have effectively prevented
postpartum depression (29). These suggest that perinatal women
tend to fail to be aware of their emotions, and facilitating
self-awareness of emotional conditions may be beneficial to
prevent postpartum depression. During the perinatal period,
most women experience sadness, anxiety, and frustration as
representative negative emotions, which can be related to the
physical and mental conditions resulting in mood disorders. It
would be beneficial if emotions could be predicted based on
HRV as an objective physiological marker. This would make it
easier to record continuous alterations in daily life than using
other biological indicators, such as body temperature, sweat, or
blood pressure.

There have been several obstacles to predicting pregnant
women’s emotions based on HRV. Firstly, there has been
no device that sufficiently records pregnant women’s HRV in
their daily life. Secondly, it has been controversial whether
machine learning algorithms sufficiently predict emotions based
on HRV, as previously described. To solve the first issue, we
developed a system to record the HRV of pregnant women by
attaching a small heart rate sensor to underwear for pregnant
women. Using this device, we accumulated HRV of pregnant
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FIGURE 1 | The design of this study. The design of this study was plotted. CVRR, coefficient of variation R-R interval; SDNN, standard deviation of all NN intervals;

RMSSD, square root of the mean squared differences of successive NN intervals; NN50, number of interval differences of successive RR-intervals >50ms; pNN50,

the proportion derived by dividing NN50 by the total number of RR-intervals; LF, frequency domain features include low frequency; HF, high frequency; LF/HF, the ratio

of low frequency to high frequency; SVM, support vector machine; k-NN, k-nearest neighbor; SGD, stochastic gradient descent; LR, logistic regression; DT, decision

tree; NB, naïve Bayes; RF, random forest; GBT, gradient boosting trees; XGBoost, extreme gradient boosting; ANN, artificial neural network.

women along with simultaneous self-monitoring of four types
of emotions: happiness, sadness, anxiety, and frustration. To
solve the second issue, we conducted comprehensive evaluations
of prediction accuracy of major currently available machine
learning algorithms; the k-NN, SVM, LR, NB, SGD, DT, RF,
GBT, XGBoost, and ANN, using the accumulated dataset. Thus,
the purpose of this study was to (1) explore the algorithms that
are most efficient in distinguishing and predicting the different
emotional conditions of pregnant women and (2) evaluate
the HRV features that are important in predicting different
emotional conditions.

MATERIALS AND METHODS

Figure 1 showed the design of this study included the materials
(samples, HRV, and emotions) and methods (machine learning
algorithms, feature contributions, and others). As shown in the
figure, 10 algorithms were tested independently, and RF was
indicated to produce the highest prediction accuracy.

Data Collection
Participants
Participants were recruited from women who registered to
a three-generation cohort of Tohoku Medical Megabank
Organization during pregnancy. In the follow-up after delivery, a
flier was distributed to notify women that they could participate
in the current project when they became pregnant. From May
2018 to November 2019, 85 pregnant women, 25–44-years old,
enrolled and completed the project. These women recorded their
emotions for a collective total of 227.3 h (2.7 h per subject on
average) during the period of observation frommid-pregnancy to

2 months after delivery. Emotional information was not available
for 32 of the 85 perinatal women. Eleven participants recorded
their emotions for <1 h, 25 for 1–3 h, five for 3–5 h, five for 5–
8 h, and seven persons for over 8 h. Subjects were enrolled during
week 23 of pregnancy (n= 4), week 24 (n= 4), week 25 (n= 14),
week 26 (n = 17), week 27 (n = 15), week 28 (n = 12), week 29
(n = 6), week 30 (n = 2), week 31 (n = 3), and week 32 (n = 3).
Forty-one of the 85 pregnant women gave birth to a baby girl and
43 to a baby boy, with no information for the remaining woman.
Sixty-four deliveries were vaginal, and 20 delivered via Cesarean
section. Two of the 85 women fed their babies with milk, 63
breast-fed, and 17 fed with a mixture of breast-feeding and
milk. Thirty-four women were employed, 35 were unemployed,
and 16 did not provide employment information. The study
was approved by the Ethics Committee of Tohoku University
(approval number: 2021-1-266). All women provided written
informed consent.

Measures

Different Emotions
Participants reported their feelings via the application installed
on their smartphones when they felt happy, anxious, sad, or
frustrated by selecting their respective icons.

HRV
HRV data were obtained using a wearable heart rate monitor,
MyBeat (UNIONTOOL, Tokyo), attached to the pregnant
women’s underwear (TOYOBO, OSAKA). The measured
HRVs were the CVRR, SDNN, RMSSD, NN50, pNN50, LF,
HF, and LF/HF. Supplementary Table 1 summarizes HRV
descriptive information.

Frontiers in Psychiatry | www.frontiersin.org 3 January 2022 | Volume 12 | Article 799029

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Li et al. HRV-Based Perinatal Woman’s Emotion Prediction

Machine Learning Predictions of the Four
Types of Emotions
The k-NN, SVM, LR, NB, SGD, DT, RF, GBT, XGBoost, and
ANN machine learning algorithms (14, 18, 30–41) were applied
to predict the four types of emotions based on HRV data.
Summary explanations of the 10 algorithms are provided in
Supplementary Text 2. The parameters of the models are listed
in Supplementary Table 2. For the test set, we used the trained
models to test and compare their prediction of emotions with real
data (42, 43). The explanation of accuracy, precision, sensitivity,
specificity, F1 score, and area under the receiver operating
characteristic curve (AUC) is provided in Supplementary Text 3.

Evaluations of Feature Contributions
RF was used to evaluate feature contributions to predicting
four types of emotions. Feature analysis evaluated all features
and observed the important features that had significant
correlations with the different types of emotions based on feature
contributions. Thus, as used in the previous studies, RF was
used as a classifier (44–46) and a method to evaluate feature
contributions (44, 47, 48).

Validation of the Analyses
Alternative Applications for Machine Learning

Predictions
Waikato Environment for Knowledge Analysis, University of
Waikato, New Zealand (WEKA) and JMP statistical software
(SAS Institute, Cary, NC, USA) were used to analyze the same
dataset and prediction models.

Alternative Calculations of HRV Indicators
We primarily used the HRV indicators calculated using the
program installed in the MyBeat device. The source codes of
the algorithms used to calculate the HRV indicators in the
device are proprietary. To validate the HRV indicators provided
by the device, we calculated HRV indicators in python using
open-source codes. The multiple formulae used to calculate time
domain features included CVRR, SDNN, RMSSD, NN50, and
pNN50, and frequency domain features that included LF and
HF. The formula used to calculate the remaining HRV indicators
is summarized in Supplementary Text 1 (49–54). The HRV
indicators given by MyBeat were compared with those calculated
using python to ensure consistency between the two.

Cross-Validations of Models for Hyper-Parameter

Search
To validate the aforementioned machine learning algorithms
to construct prediction models of the different emotions,
samples were randomly split into two groups to generate
the training dataset and the test dataset (55–57) and
subjected to cross-validation. To select the most appropriate
cross-validation method, k-fold cross-validation (KCV) (58–
60) (test size = 0, k = 5), GridSearch Cross-validation
(GridSearchCV) (61–63), and RandomizedSearch Cross-
validation (RandomizedSearchCV) (64–66) were tested in
a preliminary study. RandomizedSearchCV provided the

TABLE 1 | Model evaluation indices of the 10 machine learning prediction of the

four selected emotions.

Items SVM k-NN SGD LR DT NB RF GBT XGBoost ANN

Accuracy 0.72 0.73 0.72 0.73 0.73 0.61 0.74 0.73 0.72 0.74

Precision 0.66 0.68 0.66 0.67 0.67 0.67 0.69 0.67 0.66 0.68

Sensitivity 0.72 0.73 0.72 0.73 0.73 0.61 0.74 0.73 0.72 0.74

F1 score 0.66 0.68 0.66 0.66 0.68 0.63 0.69 0.68 0.68 0.68

AUC 0.65 0.61 0.64 0.65 0.65 0.52 0.70 0.69 0.66 0.68

The model evaluation indices of the 10 machine learning predictions of the four emotions

used the test dataset (5-fold cross-validation) independent of the training dataset.

SVM, support vector machine; k-NN, k-nearest neighbor; SGD, stochastic gradient

descent; LR, logistic regression; DT, decision tree; NB, naïve Bayes; RF, random forest;

GBT, gradient boosting trees; XGBoost, extreme gradient boosting; ANN, artificial neural

network; AUC, area under the curve.

highest accuracy with the fastest calculation time. The optimal
parameters are listed in Supplementary Table 2.

RESULTS

Profiles of Collected Data
Among the 85 perinatal women, 32 did not input any emotion
information on the smartphone application. The remaining 53
perinatal women recorded one of the four types of emotions
when they felt that emotion during the 1 week in the observation
periodwhen their heart rates weremonitored. On average, during
the week, each subject recorded “happy” for 1.92 h, “frustrated”
for 1.59 h, “anxious” for 0.47 h, and “sad” for 0.31 h.

Machine Learning Predictions of the Four
Types of Emotions
Among the 10 machine learning algorithms applied to predict
four types of emotions based on HRV indicators. RF showed
the highest AUC of 0.70, followed by GBT (0.69), ANN
(0.68), XGBoost (0.66), SVM (0.65), LR (0.65), DT (0.65), SGD
(0.64), k-NN (0.61), and NB (0.52). The accuracy, precision,
sensitivity, F1 score, and AUC of the 10 machine learning
algorithms are summarized in Table 1. ROC curve of Random
Forest is shown in Supplementary Figure 1, and the accuracy
of training and test dataset with Random Forest is shown in
Supplementary Figure 2.

Runtime Efficiency of Each Machine
Learning Algorithm
The runtime efficiency was measured for each prediction model.
All themodels were completed within 3–12 s. NB took 3 s, RF and
LR took 4 s, k-NN took 6 s, SVM took 7 s, DT took 8 s, SGD took
9 s, GBT, XGBoost, and ANN took 12 s.

Evaluations of Each Feature
Feature evaluation of the nine HRV indicators using RF revealed
that CVRR showed the highest important score in the prediction
of emotions, followed by RMSSD, SDNN, HF, LF/(LF+HF),
pNN50, LF/HF, and NN50 showed the lowest contribution to the
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FIGURE 2 | Importance of each heart rate variability indicator. The importance scores of each feature in the prediction of emotions based on the nine heart rate

variability indicators using random forest are plotted. CVRR, coefficient of variation R-R interval; SDNN, standard deviation of all NN intervals; RMSSD, square root of

the mean squared differences of successive NN intervals; NN50, number of interval differences of successive RR-intervals >50ms; pNN50, the proportion derived by

dividing NN50 by the total number of RR-intervals; LF, frequency domain features include low frequency; HF, high frequency; LF/HF, the ratio of low frequency to high

frequency.

FIGURE 3 | Numbers of features and cross-validation scores of random forest-based prediction of emotions. Cross-validation scores for each number of features

used in the prediction of emotions are plotted. As more features are included in the prediction, cross-validation scores increase. A plateau is reached when five

features are included.

prediction (Figure 2). Cross-validation scores were plotted with
the number of features used to predict emotions. When features
with higher contributions were added to the predictions one by
one, the cross-validation scores increased as more features were
included in the prediction up to five features. After more than
five features were included, the prediction accuracy reached the
plateau, as shown in Figure 3.

Validation of Analyses
WEKA and JMP analyses of the same dataset produced the
same results regarding the AUC of the predictions using the 10
algorithms. In addition, predictions of emotions using the source
codes of algorithms to calculate HRV indicators provided the
same results of predictions using the HRV indicators produced
by the program installed in the MyBeat device. The results of
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TABLE 2 | Optimal parameters.

Machine

learning

algorithm

Important parameters

SVM C = 1.0, kernel = “rbf,” penalty = “l2”

KNN n_neighbors = 8, p = 2

LR penalty = “l2,” “class_weight”: None

NB var_smoothing = 1e-09

SGD penalty = “l2,” alpha = 0.001

GBT n_estimators = 100, criterion = “friedman_mse”

XGBoost max_depth = 13, gamma = 2, objective = “multi:softmax”

DT max_depth = 10, criterion = “gini,” splitter = “random,”

RF n_estimators = 200, criterion = “gini,” max_features = 5

ANN hidden_layer_sizes = (100,), alpha = 0.001, max_iter = 200

SVM, support vector machine; k-NN, k-nearest neighbor; SGD, stochastic gradient

descent; LR, logistic regression; DT, decision tree; NB, naïve Bayes; RF, random forest;

GBT, gradient boosting trees; XGBoost, extreme gradient boosting; ANN, artificial neural

network; AUC, area under the curve.

other applications are provided in Supplementary Tables 3, 4

and Supplementary Figure 3.
To validate the ability of the aforementioned machine

learning algorithms in building predictionmodels of the different
emotions, KCV, GridSearchCV, and RandomizedSearchCV
were tested in a preliminary study. As explained in section
Cross-Validations of Models for Hyper-Parameter Search,
RandomizedSearchCV was selected. The optimal parameters are
listed in Table 2.

DISCUSSION

Unlike the previous studies, which applied a limited number of
machine learning algorithms to predict emotions based on HRV
indicators, the current study firstly conducted comprehensive
evaluations of widely used algorithms. Among the python-based
predictions of the happy, anxious, sad, and frustrated emotions
using 10 machine learning algorithms, RF provided the highest
AUC, followed closely by GBT. Their AUC values were higher
than those of the remaining eight algorithms (SVM, k-NN,
NB, ANN, DT, XGBoost, SGD, and LR), as summarized in
Supplementary Table 5 along with their characteristics.

There are some discrepancies between the results of previous
studies and the present study. Table 3 summarizes the validation
designs of the previous studies and the algorithms that showed
the best prediction accuracies. Previous studies reported the
superiority of SVM (5, 12–15), k-NN (18, 19), LR (16, 17),
and ANN (26). There are several possible reasons for these
discrepancies. First, SVM has parameters that include C and
gamma. Setting a higher value of gamma can cause overfitting
problems (i.e., high accuracy in the training dataset and low
accuracy in the test dataset). While datasets independent from
training datasets should be used as test datasets to validate
the accuracy of algorithms, some previous studies did not
detail whether the validation was properly performed using

independent datasets. Second, SVM is a proper method to
recognize two types of emotions, positive emotions and negative
emotions (12). The present study intended to differentiate four
selected types of emotions. Third, the sample sizes of some
of the prior studies were relatively small, which resulted in
lower reliability. Fourth, we tested multiple methods and selected
RandomizedSearchCV for cross-validations, which provided
the best prediction accuracies for each algorithm. Whether
the previous studies used proper cross-validations for their
algorithms is unclear, because some of the studies did not
describe how to conduct cross-validations.

It is noteworthy that SVM, k-NN, LR, ANN, and NB belong
to the classifier type of machine learning algorithms, whereas
RF and GBT belong to the ensemble type of machine learning
algorithms. Whether classifier (7) or ensemble is suitable for
physiological signal-based emotion recognition is contentious.
While most of the previous studies claimed that their proposed
method was superior compared with other competitive methods,
drawbacks of some studies included the aforementioned small
sample sizes and lack of proper cross-validations. Ensemble
algorithms, such as RF and GBT, analyze high-dimensional data
and solve a variety of problems to achieve high accuracy (24).
This contrasts with simple classifiers, such as SVM and k-NN,
which are suitable for small sample sizes.

In the present study, the RF and GBT ensemble learning
algorithms displayed the best AUCs predicting the selected
emotions. This is probably because these algorithms can solve
and deal with overfitting problems to achieve the best balance
between generalization and regularization (25, 67–70).

The strengths of other algorithms are listed in
Supplementary Table 5. These algorithms may have
shortcomings in the prediction of four types of emotions
based on HRV in the present study. For example, LR and SVM
are appropriate methods to predict binary information but are
not suitable to predict more than two types of information,
such as four types of emotions considered in our research. In
addition, LR, SVM, k-NN, and DT have difficulty analyzing
large amounts of data, especially because they include many
characteristic numbers and unbalanced data distribution. NB
and DT are based on the assumption of the independence of
sample attributes and so are not suitable for data in which
sample attributes are related to one another, such as our data.
In addition, LR, NB, and SGD generally have low accuracy and
a high error rate of classification decisions (71). ANN generally
has many parameters, such as the network topology, weights,
and thresholds, which are difficult to regulate. In addition, the
output results are difficult to explain, which affects the credibility
and acceptability of the results.

The run time of RF was relatively shorter than other
algorithms. Considering the high AUC and short runtime may
suggest the usability of RF in the simultaneous prediction of
emotions in daily activities.

Concerning cross-validation methods, GridSearchCV can
ensure that the accuracy of the parameters is within the specified
parameter range by traversing all possible combinations of
parameters. This is very time-consuming in the case of large
datasets and multiple parameters. Randomized SearchCV
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TABLE 3 | Previous machine learning studies to predict emotions based on heart rate variabilities.

First author (reference

citation)

Year of

publication

Training dataset (n) Test dataset (n) Method of cross-validation Total sample size (n)

Rakshit et al. (5) 2016 33 N.A. Leave-one-out cross-validation 33

Cheng et al. (12) 2017 N.A N.A N.A N.A

Jang et al. (13) 2012 N.A N.A N.A 200

Guo et al. (14) 2016 N.A N.A N.A. 25

Domínguez-Jiménez et al. (15) 2020 80% of total number of subjects 20% of total number of subjects N.A. 37

Chueh et al. (16) 2012 10 2 Leave-one-out cross-validation 12

Shu et al. (17) 2020 25 N.A. Leave-one-out cross-validation 25

Zheng et al. (18) 2012 20 10-fold cross-validation 10-fold cross-validation 20

Ferdinando et al. (19) 2016 80% of total number of subjects 20% of total number of subjects N.A 512

Jang et al. (20) 2014 70% of total number of subjects 30% of total number of subjects N.A. 300

Subramanian et al. (21) 2016 N.A N.A. A leave-one-out cross-validation 58

Nikolova et al. (22) 2019 N.A N.A N.A 25

Colomer Granero et al. (23) 2016 47 N.A. 10-fold cross-validation 47

Ayata et al. (24) 2018 32 N.A. 10-fold cross-validation 32

Su et al. (25) 2020 369,289 records 41,033 records N.A 25

Lee et al. (26) 2005 N.A N.A N.A 6

First author (reference

citation)

SVM k-NN LR SGD NB DT RF GBT XGBoost ANN

Rakshit et al. (5) * - - - - - - - - -

Cheng et al. (12) * o - - - o o o - -

Jang et al. (13) * - - - - o - - - -

Guo et al. (14) * - - - - - - - - -

Domínguez-Jiménez et al. (15) * o o - o o o - o -

Chueh et al. (16) o o * - o o - - - -

Shu et al. (17) - - * - - - - - - o

Zheng et al. (18) - * - - - - - - - -

Ferdinando et al. (19) - * - - - - - - - -

Jang et al. (20) o - - - * o - - - -

Subramanian et al. (21) o - - - * - - - - -

Nikolova et al. (22) o - - - * - - - - o

Colomer Granero et al. (23) o - o - o - * - - o

Ayata et al. (24) o o - - - o * - - -

Su et al. (25) - o - - - o * * - -

Lee et al. (26) - - - - - - - - - *

o, machine learning algorithm tested in the study; -, machine learning algorithm not tested in the study; *machine learning algorithm with the highest prediction accuracy in the study.

SVM, support vector machine; k-NN, k-nearest neighbor; SGD, stochastic gradient descent; LR, logistic regression; DT, decision tree; NB, naïve Bayes; RF, random forest; GBT, gradient

boosting trees; XGBoost, extreme gradient boosting; ANN, artificial neural network.

has supplanted GridSearchCV by random sampling in the
parameter space. For parameters with continuous variables,
RandomizedSearchCV samples them as a distribution,
whose search ability depends on the n_iter set parameter.
Bergstra et al. (72) proved empirically and theoretically that
RandomizedSearchCV is more effective than grid search in
hyper-parameter optimization.

RF was used to evaluate the important features to predict the
four types of emotions. Feature analysis based on RF indicated
that CVRR, RMSSD, SDNN, HF, and LF, among the nine HRV
indicators, were important features to predict emotions. HRV has

been considered as a marker of emotional response as per many
theories, among which the polyvagal theory and the model of
neurovisceral integration are the main supporting theories (73).
The nine indicators of HRV used in this study were previously
analyzed in the context of numerous psychological and physical
health concerns. Through these studies, these indicators were
proposed as biomarkers of capacity for the self-regulation
of physiological, emotional, and cognitive responses and for
effective adaptation to environmental stress and demands. Wang
et al. found that SDNN, CVRR, and LF of subjects who had
negative emotions (fear, stress, and anxiety) were higher than
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those who had positive emotions. The study also showed that
HF of those with negative emotions was lower than that of
those who had positive emotions (74). Simplicio et al. found
that decreased HF was correlated with a loss of flexibility in
the parasympathetic cardiovascular tone and emotion regulation.
RMSSD reflects parasympathetic nerve activity (75). Godfrey
et al. (3) reported that RMSSD decreased under mental stress.
Zhu et al. reported that SDNN, RMSSD, LF, and HF are related to
emotions (76). Thus, all of these five HRV indicators have been
suggested to reflect emotions (77–80), which was confirmed in
the present study.

The present data indicated that other features (NN50, pNN50,
and LF/HF) were not as important as the five HRV indicators to
predict the four types of emotions. Themechanical interpretation
of the findings is difficult. Firstly, RR-intervals are affected by
multiple control mechanisms, including autonomic modulation
at the sinoatrial node, dynamic regulation of the vasculature,
and endocrine/paracrine, endothelial, and mechanical factors.
Additionally, complex control mechanisms, including baroreflex
and respiratory sinus arrhythmia, can also drive changes in these
parameters. While various studies have revealed CVRR, SDNN,
and RMSSD as indicators responsive to different emotions,
NN50 has been studied or proven not to be correlated with
autonomic nervous function (6, 75, 81). In addition, while
many studies suggest that LF and HF reflect other mechanisms
that exert regulatory control over the cardiac cycle, such as
baroreflex activity in response to vasomotor tone (82, 83). The
findings that LF/HF may be an indicator to reflect the balance
of the sympathetic and parasympathetic nerves (84) has become
controversial. For example, a recent analysis of this metric cast
doubt on its interpretation (85).

We simultaneously tested different applications (JMP and
WEKA) to analyze the data with algorithms, because the
different applications provided slightly different results owing to
variability in parameter regulations. In addition, we used Welch’s
method in python to extract the HRV based on RR-intervals.
These alternative analyses provided the consistent finding that RF
was the most appropriate method among the tested algorithms,
which confirmed the best prediction accuracy of RF.

LIMITATIONS

This study has several limitations. First, the sample size was
still relatively small (n = 85), although it was more extensive
than previous studies. In addition, the observations of sadness
and anxiety were less frequent than those of the other two
emotions. Further investigation using more data will be needed
to verify the accuracy of the model. Second, there was a
potential selection bias. For example, perinatal women who had
a more vital interest in maintaining their health conditions
might have tended to enroll in the study. Third, there might be
variability in self-recording of emotions among the participants
regarding sensitivity to the alterations in their mood or diligence
to record their emotions. Finally, the traditional methods for
machine learning and optimization were used in the current
study. Deep learning algorithms were not applicable due to the

small number of observations of sadness and anxiety. After
collecting more data, advanced methods such as deep learning
algorithms (86–90) and Bayesian optimization (86) would be
applicable in the future to optimize prediction models and
the parameters.

CONCLUSIONS

Comprehensive analyses of 10 machine learning algorithms
indicated that RF and GBT provided the highest prediction
accuracy and suggested the usability of the algorithms to predict
emotions based on autonomic nervous system indicators of
pregnant women. The results also implicated SDNN, RMSSD,
CVRR, LF, and HF as important parameters for the predictions.
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