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Background: In mental health, comorbidities are the norm rather than the exception.

However, current meta-analytic methods for summarizing the neural correlates of mental

disorders do not consider comorbidities, reducing them to a source of noise and bias

rather than benefitting from their valuable information.

Objectives: We describe and validate a novel neuroimaging meta-analytic approach

that focuses on comorbidities. In addition, we present the protocol for a meta-analysis

of all major mental disorders and their comorbidities.

Methods: The novel approach consists of a modification of Seed-based d

Mapping—with Permutation of Subject Images (SDM-PSI) in which the linear models

have no intercept. As in previous SDM meta-analyses, the dependent variable is the

brain anatomical difference between patients and controls in a voxel. However, there is

no primary disorder, and the independent variables are the percentages of patients with

each disorder and each pair of potentially comorbid disorders. We use simulations to

validate and provide an example of this novel approach, which correctly disentangled

the abnormalities associated with each disorder and comorbidity. We then describe a

protocol for conducting the new meta-analysis of all major mental disorders and their

comorbidities. Specifically, we will include all voxel-based morphometry (VBM) studies

of mental disorders for which a meta-analysis has already been published, including at

least 10 studies. We will use the novel approach to analyze all included studies in two

separate single linear models, one for children/adolescents and one for adults.

Discussion: The novel approach is a valid method to focus on comorbidities. The

meta-analysis will yield a comprehensive atlas of the neuroanatomy of all major mental

disorders and their comorbidities, which we hopemight help develop potential diagnostic

and therapeutic tools.

Keywords: meta-analysis, magnetic resonance imaging (MRI), seed-based d mapping (SDM), gray matter (GM),

mental disorder, comorbidity, medication

INTRODUCTION

Authors have reported potential brain anatomical abnormalities
for different mental disorders since the 1980s (1). At present,
the neuroscientific community has enough data (thousands of

studies) to create an atlas of these abnormalities, but this is
not yet a reality due to the heterogeneity in the findings across
studies investigating the same disorder. For instance, a meta-
analysis of structural brain alterations of social anxiety disorder
(SAD) found that studies presented contradictory findings,
such as increases and decreases in gray matter (GM) volume
in the hippocampus and other brain regions (2). Similarly,
whereas several meta-analyses had reported significant SAD-
related abnormalities in GM in the amygdala-hippocampal,
prefrontal, and parietal regions (3–5), an ENIGMA study only
found a significant larger GM volume in the right putamen
(6). Another example could be the case of obsessive-compulsive

disorder (OCD) neuroanatomical findings, where although the
abnormalities of the corticostriatal-thalamocortical circuits have
been consistently reported (7–9), recent evidence has been
accumulating to other regions outside these circuits with less
agreement among meta- and mega-analysis reports (7, 10, 11).
Moreover, the exact direction of increases and decreases in
GM volume in certain areas, such as the orbitofrontal cortex
(OFC), has been unclear (12). For example, some reports show
reduced GM in bilateral (13) or right (14) OFC, whereas
there are also studies reporting increased bilateral (15) or left
(16) OFC.

The found heterogeneity may be partly related to the use
of magnetic resonance imaging (MRI) devices with varying
field strengths (17) and head coils (18) or to the techniques
or software used to process the images (18, 19). In addition,
several clinical parameters might moderate the findings, such
as the age at disease onset and the duration of disease (20, 21),
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the current age (22), symptom heterogeneity (23), the gender
distribution (24), the medication status (25, 26), or clinical
stage (27). For example, in a meta-analysis of attention-deficit
hyperactivity disorder (ADHD) (28), we found that samples with
more medicated patients showed less decreased GM volume in
the right caudate.

Another relevant but little explored source of heterogeneity
may be the varying presence of comorbidities, which are the rule
in psychiatry (29). About half of people with mental disorders
have more than one comorbid mental disorder (30, 31). Some
authors claim that “there are no patients without comorbidity”
(32).Wemust acknowledge that some studies exclude individuals
with specific comorbid mental disorders. Still, this exclusion
is frequently limited to very few entities such as psychosis
and substance use disorders. Similarly, we must acknowledge
that some comorbidities are conceptually impossible, e.g., a
patient with bipolar disorder (BD) cannot be diagnosed with
comorbid major depressive disorder (MDD), but again, the list
of impossible comorbidities is limited. Therefore, most patients
included in a study of a given mental disorder might also
have other mental disorders. For example, in a meta-analysis of
neuroimaging studies in OCD, patients had comorbid depression
or anxiety disorders in 65% of the studies. The percentage of
patients with comorbid disorders reached 50% (for depression)
and 85% (for anxiety disorders) in some included studies (33).
This common presence of abnormalities from other mental
disorders might thus confound the results of case-control studies.

Relevantly, previous studies have found that some brain
abnormalities associated with different mental disorders are non-
specific. For example, in several meta-analyses, we observed
similar decreases of GM volume in the anterior cingulate/medial
frontal cortex in disorders as different as psychosis, anxiety
disorders (AD), ADHD, and autism spectrum disorders (ASD)
(33–37). Similarly, an ENIGMA study reported a high similarity
of brain structural abnormalities between MDD, BD, OCD,
and schizophrenia (38, 39). We fully acknowledge that some
of these non-specific abnormalities may be transdiagnostic,
i.e., associated with two or more mental disorders. However,
there is also the possibility that some others are related to the
confounding effects of comorbidities.

This study aims to describe and validate a novel neuroimaging
meta-analytic approach that focuses on comorbidities and
presents the protocol for a meta-analysis of all major mental
disorders and their potential comorbidities. We exemplify
this protocol for voxel-based morphometry (VBM) studies
investigating GM volume differences between patients with
mental disorders and healthy controls. However, it could be
similarly applied to any neuroimaging modality compatible
with SDM (e.g., functional MRI or diffusion tensor imaging).
Specifically, we will meta-analyze brain abnormalities from
different disorders with different comorbidities, with a single
meta-linear model (though separately for children/adolescents
and adults). This analysis will yield an MRI-based atlas that
dissects the specific brain anatomical abnormalities of each
mental disorder and comorbidity. In complementary analyses
and depending on data availability reported in the studies, we
will explore the potentially confounding or moderating effects

of age, sex, medication, age of onset, duration of illness, and
symptom severity.

METHODS AND ANALYSIS

The Novel Approach
The new approach is conceptually novel, but it involves only a
minor modification of the “seed-based d mapping-permutation
of subject images” (SDM-PSI) (www.sdmproject.com) (11, 40–
42), an already validated and widely used brain imaging meta-
analytic method (43–51). The main advantage of this method
is that it directly tests whether there are differences between
patients and controls, rather than conducting indirect tests such
as whether peaks tend to converge in some regions more than in
others (52).

It first creates maps of the lower and upper bounds of
possible effect sizes for each study based on the available
statistical information and the anisotropic covariance between
adjacent voxels (53). Second, it uses maximum likelihood
estimation techniques to impute several effect sizes maps for
each study, assuming that the effect size follows a truncated
normal distribution within the lower and upper bounds. Third,
it fits a random-effects meta-analytic linear model separately
for each voxel. Fourth, it combines the meta-analytic maps
resulting from the different imputations using Rubin’s rules.
Finally, it conducts a permutation test to yield threshold-free
cluster enhancement (TFCE)-based (54) familywise error rates
(FWER, i.e., corrected p-values).

In this paper, we will first describe the new concept, then
report the small methodological changes, and finally report a
validation of the approach using simulations.

Description
Commonly, the primary (random-effects meta-analytic) linear
model of a meta-analysis is just a (weighted) mean:

Yi = β + εi

where Yi is the effect size of the ith study, β is the meta-analytic
effect size, and εi is the residual for the i

th study. It is important to
remember that this model is conducted separately for each voxel.

In some previous meta-analyses, we attempted to control for
comorbidity via meta-regression (covariation) by the percentage
of patients with a comorbid disorder:

Yi = βA + βAB−AXi,AB + εi

where the intercept βA is the effect size for patients with only
disorder A, the coefficient βAB−A is the difference between
patients with both disorders and patients with only the disorder
A, and Xi,AB is the proportion of patients with both disorders in
the ith study.

However, these attempts had two relevant limitations. First,
βAB−A (the difference between patients with both disorder A and
disorder B and patients with only disorder A) mixed the effects
of disorder B and the effects of the comorbidity AB. Thus, we
could not know which part of βAB−A was shared by any patient
with disorder B (with or without disorder A) and which part
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of βAB−A was specific to those patients with both disorder A
and disorder B. For instance, imagine that patients with only
disorder A show decreased amygdala, patients with only disorder
B show decreased cerebellum, and patients with both disorder
A and disorder B show decreased amygdala, cerebellum, and
prefrontal cortex. The decrease in the cerebellum is shared by
any patient with disorder B, and the reduction in the prefrontal
cortex is specific to those with both disorder A and disorder B,
but βAB−A would mix both abnormalities. Second, we could only
include studies on disorder A in which a variable proportion of
patients had disorder B. Conversely, we could not include studies
on disorder B in which a variable proportion of patients had the
disorder A, with the subsequent loss in precision.

Here, we propose to use the following model to study two
disorders A and B:

Yi = βAXiA + βBXiB + βABXiAB + εi

where βA is the effect size for patients with only disorder A, XiA

is the proportion of patients with disorder A in the ith study,
βB is the effect size for patients with only disorder B, XiB is the
proportion of patients with disorder B in the ith study, βAB is the
effect size of the comorbidity AB, and XiAB is the proportion of
patients with both disorders in the ith study.

This model overcomes the limitations of the previous attempts
because it separates the effects of disorder B and the effects of
the comorbidity AB and can accept both studies on disorder
A and studies on disorder B because it treats all disorders
equally. Indeed, we can extend the model to as many disorders
and comorbidities as wished. Still, considering the complexity
of the analysis and the likely poor reporting of co-occurring
comorbidities, we will only consider pairs of comorbid mental
disorders that are possible (e.g., anxiety andMDD) and have been
studied by at least ten studies.

Validation
To validate the novel approach, we simulated 64 studies on
disorder A, 64 on disorder B, and 64 on disorder C, with
varying levels of comorbidity, and then meta-analyzed them
using the novel approach. The reason to simulate 64 studies for
each disorder is that we simulated eight levels of comorbidity
(including no comorbidity) for each of the two comorbid
disorders, e.g., for disorder A, we simulated eight levels of
comorbid disorder B X 8 levels of comorbid disorder C.

Specifically, we first simulated for each study that a varying
proportion of the patients had one of the other disorders or both.
We then created the subjects’ gray matter maps as white noise
following a standard normal distribution. Still, for each patient,
we added or subtracted 0.5 in four brain regions depending
on the disorders he/she had and the rules in Figure 1. We
thus created abnormalities with a medium effect size (Cohen’s d
around 0.5). Finally, we conducted the voxelwise t-test between
patients and controls to derive the study t-map.

To meta-analyze the studies’ t-maps with the novel SDM-PSI
approach (with default values and defining statistical significance
as TFCE permutation-based FWER < 0.05), we modeled:

Yi = βAXiA + βBXiB + βCXiC + βABXiAB + βACXiAC + βBCXiBC

FIGURE 1 | Rules for creating the gray matter maps of a simulated patient.

After creating a map using white noise, we added or subtracted 0.5 in the

colored brain regions of interest (ROI) depending on the disorders he/she had.

For example, imagine that disorder A was OCD, disorder B was
MDD, and disorder C referred to anxiety disorders. Studies on
OCD would be coded as XiA = 1, XiAB = [proportion of patients
with comorbid MDD], and XiAC = [proportion of patients with
comorbid anxiety disorders]. Studies on MDD would be coded
as XiB = 1, XiAB = [proportion of patients with comorbid
OCD], andXiBC = [proportion of patients with comorbid anxiety
disorders]. Finally, studies on anxiety disorders would be coded
as XiC = 1, XiAC = [proportion of patients with comorbid
OCD], andXiBC = [proportion of patients with comorbidMDD].
Although studies seldom report the proportion of patients with
multiple comorbidities (e.g., in studies on OCD, the proportion
of patients with both comorbid MDD and anxiety disorders), our
new approach could easily account for them if reported. Meta-
analysts should add a regressor for each reported combination of
comorbid mental disorders.

For comparison purposes, we also conducted three meta-
regressions using the previous SDM-PSI approach (again, with
default values and defining statistical significance as TFCE
permutation-based FWER < 0.05):

Yi = βA + βAB−AXiAB + βAC−AXiAC

Yi = βB + βAB−BXiAB + βBC−BXiBC

Yi = βC + βAC−CXiAC + βBC−CXiBC

Results of the Validation
The novel SDM-PSI approach detected all the simulated
abnormalities with the correct effect size and did not yield any
falsely positive findings (Table 1, left column; and Figure 2).

The previous SDM-PSI reported a list of findings very similar
to the simulated factual data (Table 1, right columns; and
Figure 3). However, the results showed the two main limitations
we had expected. First, they mixed the abnormalities of the

Frontiers in Psychiatry | www.frontiersin.org 4 January 2022 | Volume 12 | Article 807839

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Fortea et al. Focusing on Comorbidity

TABLE 1 | Results of the novel approach validation.

Simulated

factual data

Novel SDM-PSI

approach

Previous SDM-PSI approach

Main disorder is A Main disorder is B Main disorder is C

Disorder A ROI 1, g +0.5 βA = ROI 1, g +0.5 βA = ROI 1, g +0.5

ROI 2, g +0.4

ROI 4, g +0.2

βAB−B = ROI 1, +0.5

ROI 4, +0.5

βAC−C = ROI 1, g +0.5

Comorbidity AB ROI 4, g +0.5 βAB = ROI 4, g +0.5 βAB−A = ROI 4, g +0.5

ROI 2, g +0.4

ROI 3, g +0.5

(Not studied)

Disorder B ROI 2, g +0.5

ROI 3, g +0.5

βB = ROI 2, g +0.5

ROI 3, g +0.5

βB = ROI 2, g +0.7

ROI 3, g +0.3

βBC−C = ROI 2, g +0.4

ROI 3, g +0.5

Comorbidity BC (None) βBC = (None) (Not studied) βBC−B = ROI 2, g +0.5

ROI 3, g −0.5

Disorder C ROI 2, g +0.5

ROI 3, g −0.5

βC = ROI 2, g +0.5

ROI 3, g −0.5

βAC−A = ROI 2, g +0.5

ROI 3, g −0.5

βC = ROI 2, g +0.7

ROI 3, g −0.3

Comorbidity AC (None) βAC = (None) (Not studied) (See Disorder A)

“g”, average Hedges’ g of the voxels within the cluster of statistical significance; ROI, region of interest.

FIGURE 2 | Regions showing statistically significant effects using the novel SDM-PSI approach. ROI, region of interest.

comorbid disorder and the comorbidity. For instance, in the
meta-regression using studies on disorder A, the coefficient
βAB−A mixes the anomalies simulated for disorder B and
comorbidity AB. We acknowledge that this limitation could
be potentially overcome by looking at the meta-regression
using studies on disorder B. However, this strategy would be

confusing in this example because we would still not know
whether abnormality in the region of interest (ROI) 4 is due
to disorder A or comorbidity AB. The second limitation was
a slight loss of accuracy, as shown by that some Hedges’ g are
slightly different from 0.5, and there are a few falsely positive
results.
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FIGURE 3 | Regions showing statistically significant effects using the previous SDM-PSI approach (separate results for meta-analysis of studies on disorder A,

meta-analysis of studies on disorder B, and meta-analysis of studies on disorder C). ROI, region of interest.

Therefore, while the novel SDM-PSI approach does not
invalidate the previous version, it better disentangles the specific
abnormalities of comorbid disorders.

Results were similar when we created the simulated data with
double error, thus expecting Cohen’s d around 0.25 (Table 2).
That said, one can expect poorer estimations with smaller effect
sizes or in meta-analyses with few studies. Thus, we would not
recommend the new approach when the number of studies for
each regressor is too small for the expected effect sizes.

Protocol for the -Meta-Analysis
We pre-registered this protocol to
PROSPERO (CRD42021245098).

Design
Meta-regression of case-control VBM studies of GM volume
abnormalities in all major mental disorders. The dependent
variable will be the brain anatomical differences between patients
and controls in a voxel. The independent variables will be the
percentages of patients with each mental disorder and each pair
of potentially comorbid mental disorders.

Systematic Search
With few exceptions (see below), we will include all whole-
brain VBM studies in any mental disorder listed in the mental,
behavioral, or neurodevelopmental disorders classification of
ICD-11 (International Classification of Diseases 11th Revision).
Note that we will use ICD-11 to select the major disorders to
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TABLE 2 | Results of the novel approach validation after creating the simulated data with double error.

Simulated

factual data

Novel SDM-PSI

approach

Previous SDM-PSI approach

Main disorder is A Main disorder is B Main disorder is C

Disorder A ROI 1, g +0.25 βA = ROI 1, g +0.25 βA = ROI 1, g +0.26

ROI 2, g +0.23

ROI 4, g +0.11

βAB−B = ROI 1, +0.23

ROI 4, +0.27

βAC−C = ROI 1, g
+0.25

Comorbidity AB ROI 4, g +0.25 βAB = ROI 4, g +0.25 βAB−A = ROI 4,

g +0.23

ROI 2, g +0.22

ROI 3, g +0.24

(not studied)

Disorder B ROI 2, g +0.25

ROI 3, g +0.25

βB = ROI 2, g +0.23

ROI 3, g +0.26

βB = ROI 2, g +0.35

ROI 3, g +0.15

βBC−C = ROI 2,

g +0.29

ROI 3, g +0.25

Comorbidity BC (None) βBC = (None) (Not studied) βBC−B = ROI 2, g

+0.25

ROI 3, g −0.26

Disorder C ROI 2, g +0.25

ROI 3, g −0.25

βC = ROI 2, g +0.24

ROI 3, g −0.24

βAC−A = ROI 2,

g +0.20

ROI 3, g −0.31

βC = ROI 2, g +0.37

ROI 3, g −0.15

Comorbidity AC (None) βAC = (None) (not studied) (see Disorder A)

“g”, average Hedges’ g of the voxels within the cluster of statistical significance; ROI, region of interest.

investigate. Still, as we clarify later, we will include studies using
any standard clinical assessment beyond ICD (e.g., DSM). Our
search will have two steps.

First Step: Search and Inclusion of Meta-Analyses
In the first step, we will search for the most recent SDM
meta-analysis (if any) in the PubMed and Scopus databases for
each mental disorder listed in ICD-11 classification (excluding
nicotine use disorder, substance-induced specific disorders,
neurocognitive disorders, and mental or behavioral disorders
associated with pregnancy, childbirth, or the puerperium). The
keywords will be the mental disorder (e.g., “major depression,”
“anxiety disorders,” “bipolar disorders,” etc.) AND (“meta-
analysis”) AND (“voxel-based morphometry” OR “VBM” OR
“gray matter” OR “grey matter”). We will first screen all the
results by the title/abstract and afterward by full-text reading.

The inclusion criterion will be meta-analyses of studies
that employed VBM to investigate whole-brain GM volume
differences between patients with the above disorders and healthy
controls. The exclusion criterion will be meta-analyses from
which we can include <10 studies even after adding new studies
as described in the second step. We will select the most recent
meta-analysis conducted with SDM if more than one meta-
analysis meets our inclusion/exclusion criteria. Suppose the
inclusion/exclusion criteria of ameta-analysis led to the exclusion
of studies that we would include according to our second-step
study inclusion/exclusion criteria (see next). In that case, we will
look for these potentially includable studies (e.g., a meta-analysis
may have excluded studies in children/adolescents while we
will include them). Conversely, suppose the inclusion/exclusion
criteria of a meta-analysis led to the inclusion of studies that we
would exclude according to our second-step inclusion/exclusion
criteria. In that case, we would exclude these studies (e.g., a

meta-analysis may have included studies with fewer than 10
participants per group while we will exclude them). Suppose
during our search, a new meta-analysis is published after we
have included a meta-analysis for the same mental disorder. In
that case, we will include both analyses (but we will include the
duplicated studies only once.

Second Step: Search and Inclusion of
Individual Studies
In the second step, we will search in PubMed and Scopus
databases for the studies published since the search date of
the selected meta-analysis. The keywords used in this search
will be [Title/Abstract]: (selected mental disorder) and (“VBM”
OR “morphometry” OR “voxel-based” OR “voxelwise” OR “gray
matter” OR “grey matter”). We will first screen all the results by
the title/abstract and then by full-text reading.

Inclusion criteria will be: (1) studies reporting whole-brain
regional GM volume differences between individuals with
the included mental disorders, diagnosed by standard clinical
assessments (DSM or ICD), and matched healthy controls; (2)
employing VBM to conduct the comparisons, (3) reporting the
peaks of the clusters of statistically significant voxels or null
findings, or availability of statistical parametric map; (4) using a
constant statistical threshold throughout the whole gray matter;
(5) published as peer-reviewed original articles in English in
indexed journals. Exclusion criteria will be: (1) sample size
smaller than 10 participants in either the patient or the control
group; (2) no case-control comparisons; (3) disorders’ subtypes
with a known organic origin (e.g., pediatric autoimmune
neuropsychiatric disorders associated with streptococci); (4)
coordinates of the peaks of the clusters cannot be obtained after
contacting the authors (unless maps are available, in which case
we will not need the coordinates); (5) ROI or small volume
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correction (SVC) analyses; (6) ANOVA analysis without whole-
brain t-test post hoc analyses; (7) case reports, conferences
abstracts, editorials, non-scientific letters, and research protocols;
(8) duplicated datasets (we will only include the largest sample
size); (9) studies that only analyze the correlation of GM volume
with any othermeasure or that use GMvolume features to predict
diagnosis unless they specify an additional VBM case-control
comparison in the abstract. Special cases will be: (1) longitudinal
studies: we will only include the baseline comparison; (2)
studies reporting different subgroup analyses: we will include
the combined analysis of all subgroups if available. Otherwise,
we will include them as different studies if they use different
control groups and provide demographic and clinical data for
both subgroups separately. If they share the control group, we will
divide the control sample size between the number of subgroups.

Two researchers will conduct the systematic search
independently, and we will resolve any discrepancies by
consensus with a third researcher.

Data Collection
For each study separately, we will extract the sample sizes,
demographic and clinical data, methodologic details, and the
original statistical parametric map (when available) or the
coordinates and t-values (or equivalent statistics when available)
of the peaks of the clusters of statistically significant voxels (or
null findings).

Demographic data will include age distribution (mean and
standard deviation) and percentage of males and females.

Clinical data will consist of the percentages of patients with
different mental disorders, the percentage of patients receiving
each medication group (antipsychotics, antidepressants,
anxiolytics -other than hypnotic-, mood stabilizers, and
stimulants), the severity of the primary disorder assessed by
standard measures [e.g., Hamilton Depression Rating Scale
(HDRS) (55)], the age of onset or illness duration of the primary
disorder (mean and standard deviation), and the different
subtypes for the primary disorder as reported in the included
meta-analyses (e.g., inattentive, hyperactive, or combined type
for ADHD, type I or II for BD, etc.).

Methodological details will include the pre-processing
analysis software (e.g., FSL, SPM) and their version, stereotactic
space (e.g., MNI, Talairach space, or MNI coordinates converted
to Talairach using the old Brett transform), and the statistical
significance threshold (e.g., FWER < 0.05). For studies reporting
peaks obtained using two or more whole-brain statistical
significance levels (e.g., uncorrected p < 0.001 and corrected
FWER p < 0.05), we will include all peaks obtained using the
less conservative threshold. We will also record the information
required for the quality assessment (see below).

Given the magnitude of data, we will store them in a database
and a well-organized file system with automatic daily backups.

Quality Assessment
We will use the Newcastle-Ottawa Scale (NOS) for case-control
studies to assess each study’s quality (56). The NOS assesses three
characteristics of the studies: the selection of the study groups,
the comparability of the groups, and the ascertainment of the

exposure for case-control studies. The “selection of the study
groups” evaluates the adequate definition of case and control,
as well as the representativity of the cases (e.g., selection of all
eligible cases with the outcome of interest over a defined period,
in a defined catchment area or hospital, etc.), and the controls
(community controls or hospital controls). The “comparability of
the groups” evaluates if researchers matched cases and controls
and/or adjusted for confounders (e.g., age, sex, handedness).
Here, statements of no differences between groups or non-
statistically significant differences are insufficient for establishing
comparability. Finally, we will not evaluate the “ascertainment
of the exposure for case-control studies” because both groups
underwent a structural MRI in our studies.

We will also assess how much demographic or clinical data
each independent study reports.

Imputation of Missing Comorbidity Data
Not all studies report the percentage of patients with specific
comorbid disorders. For instance, in the meta-analysis of OCD
mentioned earlier, 12% of studies had not excluded comorbid
MDD but did not report how many patients had this diagnosis.
To impute these unreported data, we will assume they aremissing
at random. In other words, the proportion of patients with
no information about comorbid MDD should follow a similar
distribution than in studies reporting this information.

The proportion of patients with a comorbid disorder likely
follows a zero-inflated distribution. For example, the percentage
of patients with MDD might follow some statistical distribution,
but this distribution probably has excess zeroes due to the studies
that excluded patients with MDD. However, as fitting zero-
inflated distributions with the small data available would be
unfeasible, we will use a more straightforward, distribution-free
approach. Specifically, the imputation will consist of assigning
to each study not reporting the proportion of patients with
comorbid MDD, the proportion from another random OCD
study. Thus, for example, we may estimate that the missing
proportion in a given study is the same as in the study by van
den Heuvel et al. (57), or the same as in the study by Pujol et al.
(58), or the same as in any other random study (including studies
that excluded MDD).

We will repeat these imputations 50 times.We want to remark
that his number is commonly considered more than adequate for
multiple imputation (Rubin recommended 3 to 10 imputations
(59). Additionally, we have checked that the histogram of the
imputed proportions of patients with MDD is similar to the
histogram of known proportions of patients withMDD after only
ten imputations and nearly identical after twenty imputations.

These imputations will be conducted separately for each
comorbid disorder. Thus, for instance, in studies with
OCD, we will impute comorbid MDD and comorbid anxiety
disorders separately.

Statistical Analyses
We will carry out the data pre-processing and the statistical
analysis with the SDM-PSI 6.21 software (https://www.
sdmproject.com/) (11, 40–42). We will conduct two independent
analyses, one for adults and one for children/adolescents.
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The pre-processing of statistical parametric maps is the
straightforward conversion into images of effect sizes. For studies
with only peak information available, the pre-processing consists
of estimating the 3D images of the lower and higher bounds of
potential effect sizes. The software will later impute the effect sizes
multiple times within these bounds.

We will include all major mental disorders in one single linear
model described earlier. Then, we will estimate the effects related
to each disorder and comorbidity by testing different contrasts
within the model. The steps will be those of standard SDM-PSI
(11, 40–42) unless otherwise specified:

1. Estimation of the 3D images of maximum likely effect sizes for
each model coefficient.

2. Multiple imputation of the study 3D images of effect size
adding spatially realistic noise to the expected effect size
according to the estimated distribution within the bounds.
Following SDM-PSI default parameters, we will conduct this
process 50 times, resulting in 50 imputed datasets covering the
imputations’ uncertainty.

3. Separately for each imputation dataset, random-effects meta-
linear model. The dependent variable will be the effect size of
the voxel. The independent variables will be the percentages
of patients with each mental disorder and the percentages
of patients with each pair of potentially comorbid disorders
(as far as they involve at least ten studies). In case that at
least studies reported the percentage of patients with more
than three or more comorbid disorders (e.g., OCD, MDD,
and anxiety), we will also include these percentages as an
independent variable in the model.

4. Using Rubin’s rules, combination of the meta-analytic 3D
images of effect size from the different imputation datasets.

To assess the statistical significance, the software converts
the 3D image of z-values into a 3D image of threshold-
free cluster enhancement (TFCE) statistics and finds the
p-value of the TFCE statistics using a Freedman-Lane-
based permutation test (60). We will consider statistically
significant those voxels with family-wise error-rate (FWER,
i.e., corrected p-values) <0.05. For comprehensive reporting,
we will also publish supplementary results using significance
thresholds of FWER < 0.01, uncorrected p < 0.001, and
uncorrected p < 0.005.

In the complementary analyses, we will add additional
independent variables to the linear model to explore potential
interactions with mean sample age and percentage of males and
control themedication’s possible confounding effects. Depending
on our final dataset, we will try to assess the effects of the age
of onset or illness duration and the severity of the primary
disorder, as reported in the original studies. Furthermore, we will
perform a subgroup analysis excluding those disorders for which
we cannot safely collect whether they are comorbidities for other
disorders (e.g., we expect that we will not have information on
comorbid personality disorders in many studies).

We will use the I2 statistic to quantify heterogeneity
and conduct meta-regression by the standard error [similar
to an Egger-test (41)] to detect potential publication bias.

Conventionally, I2 values above 50% are interpreted as an
indication of significant heterogeneity (61).

DISCUSSION

This paper first presents and validates a neuroimaging meta-
analytic approach that focuses on comorbidities in mental
disorders. Then, using simulations, we show that the newmethod
may detect all GM volume differences with the correct effect
size and without falsely positive findings. Finally, we describe the
protocol for a meta-analysis of all major mental disorders and
their comorbidities, separately for adult and pediatric groups.We
will also assess the potentially confounding effects of medication,
age of onset or illness duration and the symptom severity
of the primary disorder, and the moderator effects of sex on
GM volume.

We broadly expect some findings according to previous
literature, though a significant part of these findings might
change due to the improvements of the new approach. For
example, for chronic schizophrenia, previous meta-analyses have
detected reduced GM volume in the bilateral insula/ superior
temporal gyrus, dorsal, and rostral anterior cingulate cortex
(ACC) / medial frontal gyrus, and the thalamus (62, 63).
Similarly, for the first episode of psychosis, we expect a reduced
GM volume in the right dorsal ACC and the right posterior
insula/superior temporal gyrus (35, 62, 63). In OCD, previous
meta-analyses have detected both increased GM volumes, mainly
located in subcortical regions (e.g., bilateral putamen, left
cerebellum, and left hippocampus), and decreased GM volumes,
located primarily on prefrontal and cingulate areas (e.g., bilateral
ACC/ventromedial prefrontal cortex, bilateral inferior frontal
gyrus) (9, 33, 34). For BD and MDD, previous meta-analyses
have detected a commonly reduced GM volume in the medial
prefrontal system and ACC, regions strongly implicated in
mood regulation (64). However, smaller hippocampus and
parahippocampal gyrus volumes have been more reported in
MDD (26, 37, 65–69). For ADHD, previous meta-analyses have
reported a reduced GM volume in ventromedial orbitofrontal
cortex/ventromedial prefrontal cortex/rostral ACC, and the right
basal ganglia/anterior and posterior insula (34, 70). For ASD,
previous meta-analyses have reported reduced GM volume in
dorsal ACC/dorsomedial prefrontal cortex, left cerebellum, and
increased GM volume in the left middle superior anterior lobe
and middle frontal gyrus (33, 70). For anxiety disorders, previous
meta-analyses have reported a reduced GM volume in the right
ventral ACC and inferior frontal gyrus (71). These areas have
been primarily reported in panic disorder, together with the
prefrontal cortex (72, 73). However, some of these findings may
have been influenced by comorbidity. Thus, we need to conduct
the new meta-analysis to know which results remain, which do
not, and which had not been detected due to the confounding
effects of comorbidities.

We hope that this improved atlas of the anatomical
localization of the brain abnormalities associated with each
mental disorder will help improve our understanding of their
physio-pathological processes. In addition, we hope that this atlas
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could be the base for developing MRI-based diagnostic tools that
help earlier diagnoses and, therefore, more targeted treatments.
For instance, when complex psychotic symptoms hamper the
assessment of other symptoms needed for the diagnosis, the
“opinion” of an MRI-based diagnostic tool could provide timely
extra information to establish an affective vs. non-affective
diagnosis and thus a more focused treatment earlier. Or similarly,
in depressed individuals at risk of manic shift, the “opinion” of an
MRI-based diagnostic tool may help the clinician better evaluate
the probability of bipolar vs. unipolar disorder and thus design
a more personalized preventive strategy. Indeed, we have found
elsewhere that diagnostic labels are among the variables that best
predict the future recurrence of an episodic disorder.

Better knowledge about the disorder-specific abnormalities
could also increase the efficacy of therapies to modify specific
brain regions’ activity [e.g., deep brain stimulation or non-
invasive brain stimulations such as repetitive transcranial
magnetic stimulation (74)]. Improved knowledge about the
spatial distribution of these abnormalities may help localize the
brain targets better. Indeed, previous studies have already shown
how the efficacy of such therapies depends on the exact position
of the brain target (75).

We acknowledge that the novel approach has several
limitations. The first relates to the debatable nosology of current
mental disorders, based on clinical consensus rather than known
biological underpinnings. We know, for example, that major
psychiatric disorders share some genetic risk factors, and there
are high percentages of comorbidity and diagnostic change.
However, this does not mean that there are no disorder-specific
brain correlates. As noted above, diagnostic labels are among
the best predictors of future outcomes, highlighting their clinical
relevance. The second relates to the commonly poor reporting of
some comorbid disorders in the literature and the subthreshold
disorder-specific symptoms that we will not consider due to the
complexity of the analysis and the expected large amount of
missing data. For instance, studies may check for schizophrenia
but not for personality disorders. For this reason, we will conduct
subgroup analyses excluding the disorders under-reported as
comorbidities. A third limitation is that, as stated earlier, some
studies may not report the proportion of patients with specific
comorbidities. Thus, we will have to use multiple imputation.We
will use a simplistic imputation algorithm without considering
whether the proportion of patients with a given comorbid
disorder may depend on the age or symptom severity of the
sample.We preferred this simple algorithm because we anticipate
that we would not be able to collect the necessary data for
robustly using more complex imputation algorithms. Another
limitation is that, as in any other meta-analysis, a potential

drawback may be the heterogeneity across studies. Considering
comorbidity, age, sex, and medication, we aim to explain
the heterogeneity more than previous meta-analyses, but we
anticipate that there will still be unexplained heterogeneity. A
significant source of heterogeneity may be due to differences
in the MRI equipment (e.g., varying field strength or head
coils) and acquisition parameters (76) and the VBM processing
method employed by the different studies, such as software and
version, normalization, statistical correction, or the size of the
smoothing kernel (19). Another relevant source of heterogeneity
may be different subject-specific artifacts such as head motion
(77), body mass index (78), drops in signal-to-noise ratio due to
susceptibility artifacts, the symptom severity of the disorders, or
the different phases present in some disorders (e.g., the various
episodes in BD) (79, 80). Also, we will only study those mental
disorders for which a meta-analysis has already been published
and examined by at least ten studies. Last but not least, we
must highlight that even when, for simplicity, we talk about GM
volume abnormalities, we should more appropriately refer to
differences in T1-MRI signal, given that the acquired MRI data
are not a direct measure of brain structure (81).
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