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Background: Major depressive disorder (MDD) is a heterogeneous and

prevalent mental disorder associated with increased morbidity, disability, and

mortality. However, its underlying mechanisms remain unclear.

Materials and methods: All analyses were conducted based on integrated

samples from the GEO database. Differential expression analysis, unsupervised

consensus clustering analysis, enrichment analysis, and regulation network

analysis were performed.

Results: Mitogen-activated protein kinase (MAPK) signaling pathway was

identified as an associated pathway in the development of MDD. From

transcriptional signatures, we classified the MDD patients into two

subgroups using unsupervised clustering and revealed 13 differential

expression genes between subgroups, which indicates the probably relative

complications. We further illustrated potential molecular mechanisms of

MDD, including dysregulation in the neurotrophin signaling pathway,

peptidyl-serine phosphorylation, and endocrine resistance. Moreover, we

identified hub genes, including MAPK8, TP53, and HRAS in the maintenance

of MDD. Furthermore, we demonstrated that the axis of miRNAs-TFs-

HRAS/TP53/MAPK8 may play a critical role in MDD.
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Conclusion: Taken together, we demonstrated an overview of MAPK-

related key genes in MDD, determined two molecular subtypes, and

identified the key genes and core network that may contribute to the

procession of MDD.

KEYWORDS

major depressive disorder, MAPK pathway, molecular subtypes, hub genes, regulation
network

Introduction

Major depressive disorder (MDD) is an increasingly
multifactorial and devastating mental disorder that affects
estimating 4.4% population of the world (1). It is usually
prevalent throughout the lifespan and causes diverse somatic
symptoms (2, 3). Recent work has demonstrated that MDD
is associated with many other diseases, such as Alzheimer’s
disease (4), Parkinson’s disease (5), and carcinoma (6). However,
despite great advances in exploring the pathogenesis of MDD,
the underlying mechanism remains largely elusive (7). Due to
the lack of objective diagnostic tests, it is still hard to identify
MDD patients and evaluate the status of MDD as early as
possible (8). What’s worse, about one-third of patients treated
with antidepressants do not reach symptomatic remission (9,
10). Although some candidate genes in MDD, like SLC6A4, have
been identified, the procession is still unclear because of the
genetic variants and environmental exposures (11). Hence, there
is an urgent need to characterize specific and practical molecular
signatures for accurate diagnosis and individualized treatment
of MDD.

In the past few decades, many interpretations have been
proposed to explore MDD (12, 13). It was noted that MDD
is closely related to diverse brain region (14, 15), circadian
genes (16), neuregulin signaling (17), insulin resistance (18),
testosterone deficiency (19), neuroinflammation (20), and other
metabolic pathways (21, 22). However, whether these pathways
can be applied to identify MDD patients and evaluate their
different statuses has not been fully elucidated.

In our study, we aimed to identify new significant and
practical diagnoses and phased markers. We first identified
a potential relative pathway by enrichment analyses based
on the Differential Expression Genes (DEGs) from the
GEO database.1 We next collected the most associated
genes from GeneCards.2 Unsupervised consensus clustering
further classified different subtypes of MDD patients. DEGs
between subtypes were further identified. Enrichment analyses

1 http://www.ncbi.nlm.nih.gov/geo

2 https://www.genecards.org

for the DEGs, including Gene Ontology (GO) function
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were performed. Furthermore, we recognized
the hub genes and verified them by arrays expression
from brain tissue. Finally, the protein-protein interaction
(PPI) network and miRNAs-TFs-hub genes networks were
constructed.

Materials and methods

Data preprocession and differential
expression genes identification

The datasets used in this research were downloaded from
the GEO. The workflow of our study was shown in Figure 1.
We selected two datasets: GSE98793 and GSE76826, including
microarray RNA expression profiles and clinical data. The
GSE98793 dataset includes 128 MDD patients and 64 healthy
controls. The GSE76826 dataset includes 20 MDD patients
and 12 healthy controls. But from GSE76826, we only chose
the 12 healthy controls and 10 patients who were not in
remission states [The depressive state was measured using
the Structured Interview Guide for the Hamilton Depression
(SIGH-D) rating scale; a remission state was defined as a stage in
which a participant did not meet the diagnosis of a MINI major
depressive episode for a period of 2 consecutive months and had
a SIGH-D score of less than 8]. According to the annotation
information on the GPL570 and GPL17077, the probes were
respectively converted into corresponding gene symbols, and
we next intersected common genes between two cohort data.
According to the shared genes, two datasets were merged and
normalized to remove the batch effect between arrays by the
“SVA” R package (23). After screening, we finally gained 6,989
genes in a new dataset with 138 MDD patients and 76 healthy
controls for analyses (Supplementary Table 1).

LIMMA package, meaning linear models for microarray
data, was applied to distinguish DEGs between MDD
patients and healthy controls in the integrated microarray
expression matrix. Benjjammini-Hochberg’s method was used
to control the false discovery rate (FDR). P-value < 0.05
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FIGURE 1

Flowchart of this study.

and |log2 (fold change)| (|logFC|) > 0.3 were accepted as
indicative of significant differences. Heatmap and volcano
plots were constructed by the R packages “pheatmap”
and “ggplot2.”

Pathway enrichment and
MAPK-related matrix construction

To further explore the potentially related pathway in MDD,
we applied the “clusterProfiler” R package to perform gene set
enrichment analysis (GSEA) (24). GO enrichment and KEGG
pathway analyses. The “ggplot2” package visualized the results.

Based on the related mitogen-activated protein kinase
(MAPK) pathway, we used the online resource Genecards to
filter out the genes that may function in the MAPK pathway. The
criteria for selection were listed as follows: category = “protein-
coding,” score cut-off > 16. With the potential molecules in
the MAPK pathway, we finally got a new correlative expression
matrix through intersecting procession on the previously
integrated matrix.

Molecular subtypes identification and
differential expression genes screening

Major depressive disorder patients samples were selected
for further analyses. The R package “ConsensusClusterPlus”
(24) (V1.54.0; parameters: reps = 50, pItem = 0.8,
pFeature = 1, distance = “pearson”) was used for
unsupervised consensus analysis. The consistent matrix
(CM) plots, cumulative distribution function (CDF)
index plot, Delta area plot, and tracking plot were
constructed to determine our preferred K value. It was
considered the best optimal when the CDF index was
up to the approximate maximum. Based on the previous
MAPK-related genes expression matrix, we validated the
classification by principal components analysis (PCA) using the
“clusterProfiler” R package.

The Limma in R was again used to identify the DEGs
between clusters. P-value < 0.05 and | log FC| > 0.5 were
considered statistically significant. The volcano plot of DEGs
was present using the “ggplot2” R package, and the heatmap of
DEGs was shown using the “pheatmap” R package.
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Tissue-most expressed gene analysis

To identify the most related tissues in different clusters of
MDD patients, we used the online database BioGPS3 to search
for the distribution of the DEGs. The most related tissues should
be the top three expressed tissues for each gene, which can be
identified as having a certain degree of specificity: (1) the most
related tissues-expression level was more than the median, and
(2) the fourth related tissue expression was less than one-third
as high as the third level.

Functional enrichment analyses of
differential expression genes

In our study, functional enrichment analyses of DEGs
containing GO terms and KEGG pathways were performed
by “clusterProfiler” R package. Results with P-value < 0.05
were indicated as significant. The results of enrichment
were further visualized by “ggplot2,” “ggnewscale,” and
“enrichplot” packages in R.

Construction and modular selection of
protein-protein interaction networks

We applied STRING4 online tool to predict DEGs’ protein-
protein interaction (PPI) network. A combined score ≥ 0.4 of
PPI pairs was considered significant. The network of PPI was
then sent to Cytoscape software (Version: 3.7.1) for visualization
and subsequent analyses. Cytohubba application in Cytoscape
was employed to identify the top 6 hub genes ranked by
the MCC method (25). Moreover, the degree of each protein
node was assessed by MCODE application in Cytoscape (26).
Default criteria in MCODE plug-in were set as follows: Degree
Cutoff = 2, Node Score Cutoff = 0.2, K-Core = 2, and Max.
Depth = 100. We finally identified one module with 13 key
genes, and their connection relation was visualized as a Sankey
diagram plot by the “ggalluvial” R package.

Expression validation of hub genes

To validate the expression of hub genes identified, we
obtained another microarray dataset from GEO, GSE20388, an
expression profile of a genetic animal model of depression.
Eighteen samples from Flinders Depression Sensitive (FSL)
cohort and 22 control samples from Flinders Depression
Resistant (FRL) cohort were selected. All these samples were

3 http://biogps.org

4 http://www.string-db.org/

located in the Frontal Cortex. GEO2R, a functional tool
in GEO,5 was used to verify the differential expression
of hub genes. P-value of <0.05 was accepted as the
significant threshold.

Construction of miRNAs-TFs-hub
genes network

To further illustrate the potential regulation network for
the hub genes, we first applied three TF databases, including
the ChEA3 online database,6 hTFtarget online database,7 and
KnockTF online database8 to predict the transcription factors.
A transcription factor would be included in the network only
when it was indicated in more than two databases. We then
intersected the TFs of the three hub genes and further predicted
the upstream miRNAs for these common transcription factors
using the ENCORI database (27). MiRNAs confirmed in the
miRanda and TargetScan databases were selected. Finally, the
network of miRNA-TF-hub genes was demonstrated using the
Cytoscape software (Version: 3.7.1).

Results

Data preprocession and
protein-protein interaction
identification

From the GEO database, we obtained expression profiles
from GSE98793 and GSE76826. With the preprocessing of the
data mentioned above, we finally got a brand-new integrated
microarray expression matrix with 6,989 genes and 214 samples
(138 MDD patients and 76 healthy controls). Boxplot analysis
indicated the effect of our data cleaning (Figures 2A,B).

Based on the limma package and previously set thresholds,
a total of 3,122 DEGs for further enrichment were identified,
including 3,116 down-regulated and 6 up-regulated DEGs. The
volcano plot of DEGs was presented in Figure 2C, and the
heatmap plot was shown in Figure 2D.

Pathway enrichment and
MAPK-related matrix construction

Gene set enrichment analysis was first performed to
explore the most associated pathway. As Figure 3A shown,

5 https://www.ncbi.nlm.nih.gov/geo/geo2r

6 https://amp.pharm.mssm.edu/ChEA3

7 http://bioinfo.life.hust.edu.cn/hTFtarget/

8 http://www.licpathway.net/KnockTF/
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FIGURE 2

DEGs screening in integrated microarray of GSE98793 and GSE76826. (A) The boxplot showed an obvious batch effect before the data merged.
(B) The boxplot showed the pleasant effect of data cleaning. (C) Volcano plot of the integrated exprSet. Data points in red represent
up-regulated, and blue represent down-regulated genes. (D) Heatmap of DEGs identified in integrated microarray. Legend on the top right
indicates the change of the genes.

“ion channel activity,” “passive transmembrane transporter
activity,” and “epidermis cell development” were the top
GO terms enriched, while there was only MAPK signaling
pathway enriched in Figure 3B. Further GO analysis also
demonstrated that DEGs were mainly attributed to neuron
regulation and different ion channel activities such as “axon
development,” “passive transmembrane transporter activity,”
“protein serine/threonine kinase activity,” and “gated channel
activity” (Figures 3C,D; Supplementary Table 2). The pathway
enrichment analysis indicated that the DEGs were enriched
in the pathways such as “MAPK signaling pathway,” “Axon
guidance,” “Focal adhesion,” and “Human papillomavirus
infection” (Figures 3E,F; Supplementary Table 3). Considering
all these results, we regarded the “MAPK pathway” as the most
significantly enriched pathway in MDD.

Based on the MAPK signaling pathway, we searched
associated genes in GeneCards. With the score cut-off > 16,
we identified 30 genes for analysis (Supplementary Table 4).
We then removed healthy control samples from the previous
matrix. Subsequently, we conducted intersecting procession on

a newly integrated matrix and obtained a MAPK-associated
gene expression profile with 19 rows and 138 columns
(Supplementary Table 5).

Molecular subtypes identification and
protein-protein interaction screening

To better characterize the MAPK-associated gene
expression of 138 MDD samples, we applied the consensus
clustering method to classify the patients. From the outcomes,
the CM plot showed the maximum consistency at k = 2
(Figures 4A–C). When K = 2, the consensus CDF curve
(Figure 4D), the Delta area plot (Figure 4E), tracking
plot (Figure 4F) and item consensus plot (Supplementary
Figure 1) consistently displayed the cluster stability. Thus, two
subgroups named cluster 1 (64 MDD patients) and cluster
2 (74 MDD patients) were identified. Principal component
analysis (PCA) also validated the differences between subgroups
(Supplementary Figure 2).

Frontiers in Psychiatry 05 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1004945
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1004945 October 19, 2022 Time: 10:31 # 6

Chen et al. 10.3389/fpsyt.2022.1004945

FIGURE 3

Enrichment analyses of the DEGs from exprset-merged. (A,B) GSEA analysis of the DEGs from exprset-merged. (C,D) GO enrichment analyses
of the DEGs. (E,F) KEGG pathway enrichment analysis of the DEGs.
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FIGURE 4

Consensus clustering analysis. (A–C) Consensus matrix for k = 2 to k = 4. (D) The CDF value of the consensus index. (E) Relative change in area
under CDF curve for k = 2–6. (F) The tracking plot for k = 2 to k = 6.

Limma R package was then used to identify the DEGs.
Statistical significance was defined as P-value < 0.05 and
| logFC| > 0.5. Thirteen DEGs were finally determined
to be significant, including 13 down-regulated genes but
no up-regulated genes. The DEGs were further visualized
by a volcano plot (Figure 5A) and a heatmap plot
(Figure 5B).

Tissue-most expressed analysis

To better know what symptoms the DEGs between different
clusters may cause, we searched our DEGs in BioGPS. The
most highly tissue-related expression system was the Immune
system (46.2%, 6/13), while the circulatory system ranked
second (38.5%, 5/13). Besides, neurological system (23.1%, 3/13)
and respiratory system (23.1%, 3/13), endocrine system (15.3%,
2/13) and reproductive system (15.3%, 2/13) had similar levels
of enrichment (Table 1).

Gene ontology and KEGG pathway
enrichment

Functional enrichment analyses of 13 DEGs were
conducted. Results showed that DEGs were mainly enriched
in “peptidyl-serine phosphorylation,” “peptidyl-serine
modification,” “stress-activated MAPK cascade,” “stress-
activated protein kinase signaling cascade,” “cellular response to
abiotic stimulus,” and “protein serine/threonine kinase activity”
(Figures 5C,D). P < 0.05 and enriched genes count > 5 were
further set as screening criteria, the top 6 GO terms were
additionally present in Supplementary Table 6. Meanwhile,
13 DEGs were also found enriched in some pathways like
“Neurotrophin signaling pathway,” “Hepatitis B infection,”
“MAPK signaling pathway,” “Endocrine resistance,” and “Fc
epsilon RI signaling pathway” et al. (Figures 5E,F). Further, the
top 6 enriched KEGG pathways with enriched genes count > 8
were further screened and shown in Supplementary Table 7.
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FIGURE 5

DEGs identification in subtypes and enrichment analyses. (A) A Volcano plot of the DEGs of exprSet after clustering. The blue nodes represent
down-regulated DEGs. The dark nodes indicate Stable-genes. There is no up-regulated gene. (B) A heatmap of all DEGs of exprSet. Each
column represents one sample, and each row represents one gene. The color changes from blue to red represents the changes from
downregulation to upregulation for the expression. (C,D) The visualization of the results of GO enrichment analyses. (E,F) The visualization of
the results of the KEGG pathway enrichment analysis.
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TABLE 1 The most related tissues identified by BioGPS.

System Tissue/Cell Gene

Immune Lymphoma_burkitts, CD33 + Myeloid, CD14 + Monocytes, CD19 + B cell, CD8 + Tcell MAPK12, MAPK14, JUN, MAP2K2, MAP2K6, MAP2K6

Circulatory Heart, blood, cardiac myocytes, atrioventricular node MAPKAPK2, MAPK14, TP53, MAP2K6, SPRED1

Neurologic Pineal, dorsal root ganglion, superior cervical ganglion, spinal cord, caudatenucleus MAPKAPK2, MAPK8, HRAS

Respiratory Brochial epithelial cells, CD105 + endothelial, lung MAPK13, MAP2K2, HRAS

Endocrine Pituitary, thyroid MAPK8, SPRED1

Reproductive Testis, testis Leydig cell MAPK13, MAP2K2

Others Skeletal muscle MAPK12

BioGPS identified the related tissues according to the DEGs we filtered. They should have a certain degree of specificity: (1) the most related tissues expression level was more than the
median, and (2) the fourth related tissue expression was less than one-third as high as the third level.

FIGURE 6

Construction of functional networks and identification of candidate genes and module analysis. (A) Functional protein-protein interaction (PPI)
network analysis of the 13 differentially expressed genes (DEGs). (B) Subnetwork of top six hub genes from the PPI network. Node color reflects
the degree of connectivity (Red color represents a higher degree, and yellow color represents a lower degree). (C) One module was identified
by ggalluvial in R and was visualized by ggplot.
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Construction of the protein-protein
interaction network and module
identification

From the STRING database (see text footnote 4), we
identified a PPI network consisting of 13 nodes meaning DEGs
and 52 edges to display their relationship. PPI network was
further imported into Cytoscape for visualization (Figure 6A)
and subsequent analysis. Cytohubba application in Cytoscape
was applied to identify the top 6 hub genes by the MCC
method (Figure 6B). TP53, MAPK12, MAPK14, JUN, MAPK8,
and HRAS were screened with the highest connectivity. Then,
we further identified a notably significant cluster of 11 genes,
including GRB2, HRAS, JUN, MAP2K2, MAP2K6, MAPK12,
MAPK13, MAPK14, MAPK8, MAPKAPK2, and TP53. The
result of the module was presented as a Sankey diagram plot
(Figure 6C).

Expression validation of hub genes

We verified the expression of hub genes using the
GSE20388 dataset derived from the depression animal
brain tissue. We found that 4 out of the 6 hub genes
show the same significant differential expression. But
only 3 hub genes exhibited the same expression trend,
including TP53, MAPK8, and HRAS (Table 2). Therefore,
we chose TP53, MAPK8, and HRAS for the following
analyses.

MiRNA-TFs-hub genes network
construction

Based on three TF databases, we predicted different TFs
and took the results’ intersection for the above hub genes,

respectively. Forty-eight TFs for HRAS, 37 TFs for MAPK8, and
85 TFs for TP53 were identified (Figures 7A–C). By taking a
further intersection, 9 co-TFs including GATA2, FLI1, CREB1,
JUND, E2F1, ESR1, TRAP4, SP1, and GABPA were selected
(Figure 7D). Based on the ENCORI database, multiple upstream
miRNAs for co-TFs were further screened. The Cytoscape
software demonstrated the regulation network of miRNAs-TFs-
hub genes (Figure 7E). Taken together, we supposed that the axis
of miRNAs-TFs-HRAS/TP53/MAPK8 may play a potentially
important role in MDD.

Discussion

Major depressive disorder is a debilitating disorder closely
associated with AD and other diseases. Most recent studies
have revealed pathways and biomarkers attributable to it.
Nevertheless, the exact mechanisms of MDD remain widely
unclear. In our study, we identified 3,116 down-regulated and 6
up-regulated genes between MDD patients and healthy controls.
By enrichment analysis, we demonstrated that the MAPK
signaling pathway, passive transmembrane transporter activity
and ion channel activity might play an essential role in the
development of MDD. The terms of passive transmembrane
transporter activity and ion channel activity can regulate energy
metabolism, thus modulating various clinical symptoms. And
the MAPK pathway has also been reported to be correlated
with MDD (28). However, it still lacks more detailed studies of
the correlation.

Based on the 30 MAPK-associated genes from Genecards,
we performed unsupervised consensus clustering on the MAPK-
related genes expression matrix. Two subgroups named cluster
1 (64 MDD patients) and cluster 2 (74 MDD patients) were
identified. We then screened 13 down-regulated genes between
different clusters. The DEGs were mainly distributed in tissues
of the circulatory system, immune system, and neurologic
system, consistent with the fact that MDD patients usually

TABLE 2 DEGs identification from different clusters of MDD.

Gene Log2FC AveExpr t P-value Adj. P-val B Change Change in GSE20388

MAPK12 −3.0576 3.40516 −5.1085 9.37E-07 3.56E-06 5.16614 DOWN NOT

MAPKAPK2 −2.6175 9.74616 −6.2793 3.23E-09 6.14E-08 10.6347 DOWN DOWN

MAPK8 −2.1538 6.05629 −4.3216 2.75E-05 5.22E-05 1.94359 DOWN DOWN

MAPK13 −2.0476 6.53489 −4.6987 5.71E-06 1.36E-05 3.43763 DOWN –

MAPK14 −1.9784 7.51392 −5.4315 2.11E-07 2.00E-06 6.59983 DOWN NOT

JUN −1.8926 5.36798 −4.574 9.70E-06 2.05E-05 2.93307 DOWN UP

MAP2K2 −1.8222 8.4757 −4.8141 3.47E-06 9.41E-06 3.91366 DOWN DOWN

TP53 −1.7985 5.22376 −4.2978 3.03E-05 5.23E-05 1.85267 DOWN DOWN

MAP2K6 −1.7603 6.41526 −5.1478 7.84E-07 3.56E-06 5.33699 DOWN NOT

PIK3CA −1.7517 6.78338 −4.8147 3.46E-06 9.41E-06 3.91627 DOWN DOWN

SPRED1 −1.6162 2.68101 −4.1456 5.55E-05 8.79E-05 1.27957 DOWN –

BRAF −1.508 5.89715 −3.5013 0.0006 0.00082 −0.9571 DOWN –

HRAS −1.2981 5.0562 −3.9696 0.00011 0.00016 0.63786 DOWN DOWN

DEGs between different clusters were screened with P-value < 0.05 and | log FC| ≥ 0.5. All of them were verified by GSE20388.
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FIGURE 7

Network of miRNAs-TFs-hub genes. (A–C) The predicted TFs for hub genes based on the KnockTF, chEA3, and hTFtarget databases,
respectively. (D) The common TFs for HRAS, MAPK8 and TP53. (E) The miRNAs-TFs-hub genes regulation network in MDD. (The Square nodes
represent the hub genes, and diamond nodes represent the TFs. The circle nodes represent the miRNAs.)

harbor coronary artery disease (29). In our study, the most
typical tissues were cardiomyocytes, lymphoma Burkitt, CD33+
myeloid, pineal, and Dorsal Root Ganglion, which might imply
the probable reasons for clinical manifestations in MDD, such as
repeated infection, circadian rhythm disorder and feeling pain
(30, 31).

MF analysis in GO annotation for DEGs demonstrated that
13 down-regulated genes were significantly enriched in protein
serine/threonine kinase activity. And the kinase-associated
pathway was also validated by KEGG analysis. Meanwhile,
the pathway of MAPK cascade, stress-activated protein kinase
signaling cascade and cellular response to abiotic stimulus were
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also identified. As previously described, the results confirmed
that MDD is closely associated with stress and external
stimulation (32). Additionally, the correlation among the DEGs
was visualized by the PPI network. And a module constructed
by MCODE was demonstrated. Besides, 3 hub genes including
MAPK8, TP53, and HRAS were further identified and verified.

MAPK8 is a typical member of the MAP kinase family.
It was confirmed that the MAPK pathway is probably closely
associated with MDD. TP53, also known as the cancer
suppressor gene, is closely correlated with transcriptional
activation, DNA binding and oligomerization domains. It
has been implicated that TP53 can induce cell cycle arrest,
senescence, and changes in metabolism (33), especially when
responding to complicated cellular stresses. TP53 mutation is
also an independent risk factor for immune escape (34). Though
some reports noted that the mechanisms involved in cell
survival and death regulation based on TP53 might be interested
in the pathophysiology of MDD (35), there is no more indication
about TP53 and MDD. To some extent, we inspired a new
light on the association between the traditional molecule and
MDD. HRAS, a gene belonging to the Ras oncogene family, was
also identified in our study. Evidence has suggested that HRAS
is closely associated with Beta-Adrenergic signaling, which
controls cell migration and TP53-dependent cell survival (36).
It has also been revealed that the mutation of HRAS is closely
associated with TP53 in the immune signature (37, 38). All these
DEGs were supposed to participate in different metabolism
pathways like phosphorylation, which has been reported as
an essential alteration in MDD (39, 40). Accordingly, we can
early discriminate MDD through the expression of hub genes,
preventing further exacerbation of the disease. And perhaps our
results contribute to explaining why MDD patients are clinically
prone to tumors and other immune system-related diseases.

We also constructed miRNAs-TFs-hub genes regulation
network in MDD. The common transcription factors were
GATA2, FLI1, CREB1, JUND, E2F1, ESR1, TRAP4, SP1, and
GABPA. It has been reported that GATA2, CREB1, and E2F1
were crucial in the maintenance of MDD (41–43). And ESR1, an
estrogen receptor, was also found to be important in depression
(44). Meanwhile, the role of SP1 in MDD has also been
identified (45). Although studies about the other TFs in MDD
are limited, they are still potential targets for MDD that worth
exploring in the future. Besides, some research has reported
that miRNA may act as potential biomarkers for psychiatric and
neurodegenerative disorders (46, 47). For example, the miR-29
family, miR-34a-5p, and miR-132-3p were discussed as common
dysregulated circulating miRNA in CNS disorders (48). And
from Zheng K’s work, miR-135a-5p was demonstrated to be a
synaptic-related regulator (49). Our constructing network also
demonstrated potential regulation miRNAs, including the hsa-
miR-134-5p, hsa-miR-27b-3p, hsa-miR-373-3p, and hsa-520a-
3p, et al.

There are still several issues to be addressed. First, there
were shortcomings in our integrated expression matrix, for the
platforms were different (GPL570 for GSE98793 and GSE17077
for GSE76826). The batch effect cannot be eliminated entirely
though using the “SVA” R package. Second, both GSE98793
and GSE76826 lack sufficient clinical information, causing the
absence of more clinical analyses. Furthermore, the expressions
of the hub genes and their roles in MDD need to be further
explored and assessed in vivo and in vitro.

Conclusion

Briefly, we demonstrated an overview of MAPK-related key
genes in MDD. Two distinct molecular subtypes of MDD were
identified, which exhibit differential expression of GRB2, HRAS,
JUN, MAP2K2, MAP2K6, MAPK12, MAPK13, MAPK14,
MAPK8, MAPKAPK2, and TP53. The DEGs indicated a
significant correlation between MDD and clinical somatic
symptoms like infection, circadian rhythm disorder and feeling
pain. A new module consisting of GRB2, HRAS, JUN,
MAP2K2, MAP2K6, MAPK12, MAPK13, MAPK14, MAPK8,
MAPKAPK2, and TP53 was further identified, better illustrating
the potential regulation of MDD. Moreover, we distinguished
TP53, MAPK8 and HRAS as hub genes and demonstrated
an axis of miRNAs-TFs-HRAS/TP53/MAPK8. These findings
highlight the role of the MAPK pathway in MDD and provide
insights into diagnosis and therapy in the future.
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Item consensus plot displayed the cluster stability at k = 2. (A–C) Item
consensus plot showed that when k = 2, the cluster reached its stability.

SUPPLEMENTARY FIGURE 2

PCA visualization showed a significant difference between subgroups.
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