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The existence of repressive and durable chromatin assemblies along gene

promoters or networks, especially in the brain, is of theoretical and therapeutic

relevance in a subset of individuals diagnosed with schizophrenia who

experience a chronic, persistent, and treatment-resistant trajectory. We used

chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to

generate an epigenomic map that includes differential sites occupied by di-

methylated lysine 9 of histone 3 (H3K9me2), a repressive modification that

is yet unexplored in human postmortem brain tissue. We have discovered

over 150 significantly differential promoter sites in the postmortem prefrontal

cortex tissue of individuals diagnosed with schizophrenia (n = 15) when

compared to controls (n = 15). Potentially dysregulated gene categories

include postsynaptic proteins, processing enzymes (for proproteins, lipids, and

oxidative stress), cadherin family genes, the complement system, and peptide

hormones. Ten genes with significantly increased or decreased H3K9me2

promoter occupation were selected through statistical analysis, function,

or previous GWAS association, and Quantitative RT-PCR (qRT-PCR) was

performed on an extended sample of postmortem brain tissue, adding an

additional 17 controls, 7 individuals with schizophrenia, and 19 individuals with

bipolar samples (n = 32 control, 22 schizophrenia, 19 bipolar). This approach

revealed that mRNA expression levels correlated with chromatin modification

levels in eight of 10 selected genes, and mRNA expression in the total sample

could be predicted by the occupancy of H3K9me2. Utilization of this method
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and replication in a larger sample open a pathway to durable and restrictive

epigenomic assemblies whose accumulation across the lifespan of individuals

diagnosed with schizophrenia may explain treatment resistance, and advance

therapeutic options.

KEYWORDS

schizophrenia, histone methylation, heterochromatin, postmortem brain, ChIP-Seq,
gene expression

Introduction

The molecular basis of chronic, persistent, and treatment
resistance in a subset of individuals diagnosed with
schizophrenia (SCZ) can be informed by the study of
durable tertiary cellular structures. Heterochromatin is
one such structure and is seeded, assembled, and distributed
along the chromosome by the post-translational modification of
multiprotein components, as well as the underlying DNA strand.
Because SCZ is characterized by long-term dysfunction in the
frontal cortex, it follows that altered gene expression may be
coordinated with the local epigenetic architecture of particular
promoters and other regulatory sequences. Conceptually,
studying these types of durable epigenetic modifications
makes possible a dissection of a spatial/temporal stream of
pathological events (immune, metabolic, psychological, stress,
pharmacological) deposited in this molecular repository.

Heterochromatin that is characterized by the methylation
of lysine 9 along the H3 histone tail (H3K9me2) is a chromatin
assembly that is particularly linked to transcriptional repression.
This type of chromatin assembly is often called “facultative
heterochromatin” but is best described as permissively
restrictive. H3K9me2 heterochromatin is located in gene-rich
stretches of the genome and can facilitate nuclear localization
and compartmentalization (1). Functionally, this modification
can be distinguished from H3K9me1 or H3K9me3 and is
targeted by histone methyltransferases (HMTs) such as G9a,
GLP, and SETDB1 (2). H3K9me2 serves as a “ligand” for
ambient “receptor” proteins of the heterochromatin family,
particularly heterochromatin protein 1γ (HP1γ), which can
be dislodged from this attachment by phosphorylation of the
adjacent serine (H3S10-phos). The entire assembly anchored at
H3K9me2/3 can include an array of epigenetic repressors such
as Histone deacetylases (HDACs), DNA methyltransferases
(DNMTs), and anchor platform adaptor proteins such as
REST/CoREST as well as several identified lncRNAs that
can cobble together these multiple components. Recent
findings have identified up to 172 proteins embedded in this
H3K9me2/3 seeded assembly (3, 4). This multiprotein complex
is typically coordinated with local CpG methylation, another
potentially lifelong covalent modification (5), providing a

durable anchor for these repressive complexes (6, 7). H3K9me2
heterochromatin is dynamic and can assemble in response to
oxidative stress (neurons) or prolonged kinase signaling (e.g.,
endotoxin tolerance in macrophages) (8–10). Once nucleated,
H3K9me2/3 heterochromatin can spread up to distances of
15 kb along the DNA strand (11) and can sequester large
regions of the epigenome to the nuclear periphery rendering
these regions resistant to gene activation (1, 12, 13).

The ENCODE project has H3K9me2 data on 14
immortalized cell lines and three in vitro differentiated
cell types. The three differentiated cell types include one
bipolar neuron, one neural cell, and one hepatocyte. The
Roadmap Epigenomics and PsychENCODE projects have not
yet generated data on this histone modification. In other words,
H3K9me2 has not been studied in a human population sample,
particularly in the brain. Given the deficiency of scientific
literature in this area, there is urgency to develop a reference
map of H3K9me2 in human brains and explore H3K9me2 in
individuals who experience chronic, persistent, and treatment
resistant psychosis and in non-clinical controls.

Our laboratory has previously reported elevated global levels
of H3K9me2 protein in the parietal cortex from postmortem
brain tissue samples of individuals diagnosed with SCZ (14).
Additionally, we identified elevated mRNA levels of the enzymes
responsible for catalysis of H3K9me2 (GLP, G9a, and SETDB1)
in postmortem brain tissue, as well as peripheral blood
mononuclear cells (PBMCs) from individuals with SCZ (14,
15). Finally, we reported that this assembly is reversible by
small molecule inhibition of its methyltransferases (16, 17) as
well as kinase inhibitors modifying histone phosphorylation on
site specific promoters (17). Because global protein levels do
not identify the regulation of individual genes, we advanced
these findings with a promoter-targeted approach. Here,
we pioneered the examination of genome-wide occupancy
of H3K9me2 in the postmortem frontal cortex tissue of
individuals with schizophrenia and attempted to understand
whether causation can be implied through the increase or
decrease of gene expression in networks crucial to natural
development and function.

Chromatin immunoprecipitation followed by deep
sequencing (ChIP-Seq) for H3K9me2 in the postmortem brain
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tissue of individuals with schizophrenia has not previously
been performed and can provide an illustrative example of
the benefits of epigenome mapping. For logistical reasons,
we have restricted the ChIP-Seq analysis to promoter regions
in 30 prefrontal cortex samples [15 non-psychiatric controls
(NPC) and 15 SCZ]. We selected H3K9me2 since it is a
strongly repressive type of heterochromatin associated with
euchromatin sectors of the genome, and conceptually could be
reversed to allow facile expression of genes in the underlying
and coordinate regions. In order to determine if the identified
expression changes secondary to heterochromatin were specific
to individuals with SCZ we directly measured mRNA levels
using qRT-PCR in a larger and inclusive cohort of brain
samples (NPC, n = 32, SCZ, n = 22, BPD, n = 19) that included
individuals diagnosed with bipolar disorder (BPD). Finally, we
performed a correlational analysis between mRNA expression
and H3K9me2 promoter occupation in the brain.

Materials and methods

Postmortem brain tissue samples

Human postmortem brain tissue samples [Prefrontal cortex,
Brodmann area 9 (PFC)] were obtained from the Harvard
Brain Tissue Resource Center that were donated by individuals
diagnosed with schizophrenia, bipolar, and controls. ChIP-Seq
for the repressive modification H3K9me2 was performed on 30
postmortem PFC from individuals with SCZ (n = 15) and NPC
(n = 15). ChIP-Seq mRNA validation using qRT-PCR in a larger
cohort of brain samples from the same collection included three
diagnostic groups NPC (n = 32), individuals with SCZ (n = 22),
and individuals with BPD (n = 19). This expanded set included
the 15 NPC and 15 individuals with SCZ samples that were
initially analyzed with ChIP-seq. A summary of demographic
parameters is given in Table 1.

Chromatin immunoprecipitation with
sequencing

ChIP was performed according to a previously published
procedure (16). Briefly, an aliquot of human brain tissue
was used for each experiment and homogenized in 500 µl
of RPMI1640 media (GIBCO #11875-093). Proteins were
cross-linked to DNA by adding 48.25 µl of methanol-free
formaldehyde (Thermo #28908) and incubated at 37◦C
for 5 min. The sample was then quenched with 70.5 µl
of 1M glycine, spun down, the supernatant removed, and
washed with PBS in the presence of 1:100 protease inhibitor
(Calbiochem #539134). The samples were spun-down again,
the supernatant removed, and resuspended in SDS lysis
buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH

8.1), again in the presence of 1:100 protease inhibitor.
Samples were then sonicated for 20 min at 10%df in a
Covaris m220 sonicator. Further processing was performed
using a ChIP assay kit (#17-295; Millipore, Upstate), and
DNA was precipitated by standard ethanol precipitation.
Lysates were immunoprecipitated (IP) with H3K9me2
monoclonal antibody (Abcam, ab1220) that was validated
by both peptide ELISA and Western blot and is specific
to only H3K9me2, not H3K9, H3K9me1, H3K9me3,
H3K27me2/3, or H3K4me1/2/3, as verified in previous
ChIP studies (17–19). Samples were then examined for
quality prior to sequencing through qPCR for previously
established negative (GAPDH) and positive (ZNF333 and
UGT1A10) control genes for the H3K9me2 modification (20)
(Supplementary Figure 1A).

Quality control

Sample quality was examined in the following ways. First,
a small quantity of the sonicated chromatin was run on an
agarose gel to ensure fragment size was within 500–1,000 bp.
Secondly, after IP and DNA extraction, DNA concentrations of
the input and IP were measured via Qubit fluorometric assay.
Finally, pulldown efficiency was determined by qPCR of the
IP product. We verified GAPDH as a transcriptionally active
promoter (not containing H3K9me2) and two genes ZNF333
and UGT1A10 as transcriptionally inactive promoters and
thus would contain high H3K9me2 occupancy (Supplementary
Figure 1) (20). There was no qPCR amplification of GAPDH
promoter, while the ZNF333 and UGT1A10 show amplification
and thus successful pulldown by the antibody. Samples
that exhibited GAPDH promoter pulldown were discarded
because of cross-reactivity or contamination and were not
used for library preparation or sequencing (for example,
sample #1113 in Supplementary Figure 1). These samples

TABLE 1 Subject demographics and clinical characteristics.

Patient cohort

NPC
(n = 32)

SCZ
(n = 22)

BPD
(n = 19)

M/F ratio 21/11 15/7 4/15

Age, years 59.6± 14.8 60.6± 12.5 62.8± 17.8

Postmortem interval, hours 21.8± 3.6 23.9± 7.3 22.2± 5.1

Brain pH 6.4± 0.3 6.5± 0.3 6.6± 0.3

Medication

Antipsychotic drug usea,b 0 11 8

Values are expressed as mean± SD.
aPresent at the time of death.
bIncludes the following with combination: clozapine, trifluoperazine, olanzapine,
quetiapine, haloperidol, chlorpromazine, aripiprazole, thioridazine, perphenazine,
risperidone, fluphenazine.
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were reprocessed using fresh brain tissue for successful
pulldown if necessary.

Library construction and sequencing

After completion of the ChIP-Seq protocol, frozen
immunoprecipitates were sent to the University of Illinois at
Urbana Champaign for library construction and sequencing
on an Illumina HiSeq 2500, followed by a data quality control
pipeline. Samples were run at four samples per lane, returning
130–180 million reads, putting the average sequencing depth for
each sample at approximately 40 million single-end reads (21,
22). We utilized single-end reads due to our focus on promoter
regions, as the information on duplications, inversions, splice
variants, or SNPs provided by double-end reads was not
a priority. The quality of the runs was determined by FASTQC.
An example of an acceptable FASTQC output from our data is
provided in Supplementary Figure 1B.

Alignment of sequenced reads

Reads were trimmed at both ends using Trimmomatic (23).
Genome alignment was performed using Bowtie2, which was
selected for its utility in aligning short DNA sequence reads
to long mammalian genomes (24, 25). These alignments were
visualized using the UCSC Genome Browser; examples for
two selected genes are shown in Supplementary Figure 2.
Multiple aligned sequences and duplicate reads were discarded
before normalization. We limited our region of interest to a
10 kb window centered at the transcription start site (TSS)—a
defined promoter region of fixed but approximate length
since the upstream boundaries of most promoter regions are
not well defined.

GWAS enrichment analysis

Starting with the Working Group of Psychiatric
Genomics Consortium 1 (PGC) SCZ GWAS summary
statistics, we searched the significant differentially modified
promoters from our data set against the 25,069 genes.
Next we performed the hypergeometric distribution
test using the software R 4.1.0 to see which promoters
were enriched in the PGC3 SCZ GWAS significant
associated genes. The PGC3 SCZ GWAS summary statistics
(PGC3_SCZ_wave3.primary.autosome.public.v3.vcf.tsv.gz)
was downloaded from PGC website,1 and the SNPs were
annotated to genes using the software ANNOVAR (26) based
on hg19_avsnp142 database (Supplementary Table 2).

1 https://www.med.unc.edu/pgc/download-results

Identification and analysis of H3K9me2
sites in cases and controls

DiffReps were used to detect differential H3K9me2
modification sites, again limiting our search to the promoter
regions of annotated genes (27). According to the evaluation of
tools for ChIP-seq data analysis, this is the best choice for data
analysis with biological replicates without predefined regions of
interest (28). DiffReps analyzes an entire ChIP-Seq dataset using
a fix-sized sliding genomic window, where only the reads falling
inside the window are counted. The sliding window analyzes
a fixed length as it is moved along the genome in fixed steps
(e.g., window size 1 Kb moving along at 100 bp per step). The
sliding window strategy is advantageous for a more “smeared”
modification such as H3K9me2, since it is independent of any
“peak” calling program. DiffReps output data includes not only
nearby gene annotation but also other gene features (e.g., gene
body, centromere, promoter, gene desert) allowing us to focus
on gene promoters. DiffReps calculates case-control group
difference directly, allowing us to identify gene-promoters
based on fold change as well as both raw and Padj values (FDR)
to determine a significant difference between cases and controls.

Quantitative RT-PCR

Expanding the sample of postmortem brain tissue to include
the same original ChIP-seq samples and an additional 17 NPC,
7 individuals with SCZ, and 19 individuals with BPD, total
RNA was isolated using TRIzol reagent (Life Technologies)
and treated with DNase (Ambion/Life Technologies #AM1906)
after extraction. Total RNA was used to prepare cDNA via the
Applied Biosystems High Capacity cDNA Reverse Transcription
Kit (#4368814). For detection and measurement of expression,
Fermentas Maxima SYBR Green/ROX qPCR Master Mix
(#K0222) was used. PCR mixtures were run on a Thermo
Scientific PikoReal real-time PCR System using manufacturer
cycling conditions. Cycle threshold (CT) value was used for
relative quantification, and all values were normalized to
GAPDH, and run in duplicate. Ten genes were selected for
qPCR assessment, taking into account combinatorial best fold
change and adjusted p-values from our ChIP-seq data Table.
Primer sequences are provided in Supplementary Table 3.

Results

Differential heterochromatin
occupancy of 159 promoters

DiffReps output data contained 159 differentially modified
promoters based on a raw p-value of p < 0.01, once all
other gene features (intergenic areas, pericentromere, etc.) were
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cleared from the output (Supplementary Table 1). Of the
159 promoters, 82 have increased H3K9me2 occupancy, while
77 have decreased occupancy in individuals with SCZ when
compared to NPC. Five genes (AKT3, C4B, FURIN, GPX6,
and NRGN) were common to the PGC2 SCZ GWAS data set
available to us during the project, and three of these genes
(AKT3, FURIN, GPX6) remained common to the most recent
PGC3 SCZ GWAS data set. Three genes, FURIN, GPX6, and
NRGN have increased H3K9me2 promoter occupancy and two
genes, AKT3 and C4B show decreased promoter occupancy.
Five additional genes (GPHN, OXT, CDHR2, CDH20, LIPJ) were
selected, two (GPHN, OXT) based on previous associations in
the SCZ literature (29, 30) and three (CDHR2, CDH20, LIPJ)
are novel with no consistent link to individuals with SCZ. C4B
was included with an additional focus of its identification with
the PGC2 GWAS analysis (2014) and its central role in immune
function; an isotypic allele C4A was noted to be significantly
higher in the brain of individuals with SCZ (31). The statistical
analysis of diffReps on the ten regions chosen to be analyzed
using qPCR is reported in Table 2. The full list of 159 promoter
regions with differentially modified H3K9me2 occupancy is
provided in Supplementary Table 1.

mRNA expression is coordinated with
H3K9me2 occupancy

Ten genes were selected for qPCR analysis using a
larger cohort. Five genes (GPHN, CDHR2, FURIN, GPX6,
and OXT) of the six genes which showed higher H3K9me2
promoter occupancy also resulted in significantly decreased
mRNA expression in individuals with SCZ compared to NPC
(Figure 1). Three of the four genes with decreased H3K9me2
promoter occupation in individuals with SCZ (AKT3, C4B, and
CDH20) showed significantly increased mRNA expression in
individuals with SCZ compared to NPC. When we include the
individuals with BPD samples, they exhibit a similar level of
mRNA expression to NPC for all 10 genes examined, indicating
the effect is specific to individuals with SCZ (Figure 1).
Next we performed a correlation analysis between individual
promoter H3K9me2 ChIP-Seq reads and mRNA expression
of the occupied gene (Figure 2). For all subjects, seven of
the 10 genes analyzed were found to have highly significant
negative correlations, as shown in Figure 2, supportive of
the repressive nature of the H3K9me2 assembly. Of the
genes that did not reach significance in their correlations
(FURIN, NRGN, and LIPJ), only FURIN achieved significance
between individuals with SCZ compared to NPC in the mRNA
expression data. We suspect this to be the case due to the
closeness in average promoter reads (169.84 vs. 166.46) between
the NPC and individuals with SCZ groups. NRGN and LIPJ are
perhaps the most curious of all genes analyzed, as the diffReps
analysis provided what appeared to be significant enrichment of

H3K9me2 on promoters between the NPC and individuals with
SCZ groups. Still, neither gene reached significance in either the
mRNA expression data or correlational analysis.

Enrichment of GWAS signals from the
PGC3 schizophrenia analysis

To match our list of heterochromatinized gene promoters
to the most recent PGC3 SCZ GWAS findings we filtered at
the FDR < 0.05 level. We matched 143 promoters that are
differentially occupied with H3K9me2 to the significantly
associated gene identities form the PGC3 SCZ study (32). We
identified 19 promoters (5 with increased heterochromatin and
14 with reduced heterochromatin) which also had significant
(P < 5e-08) SCZ GWAS signals (Supplementary Table 2). This
PGC3 enrichment coordinated with promoter heterochromatin
levels was significant (hypergeometric distribution test
p = 0.022).

Potential confounding variables

SPSS was used to analyze the possible effects of several
confounding factors on the diffReps and qPCR data. There
was no significant difference in either diffReps or qPCR data
when we compared the individuals with SCZ group with
and without antipsychotics, the individuals with BPD group
with and without antipsychotics, individuals with SCZ and
individuals with BPD grouped together and compared with
and without antipsychotics. We found no significant effect of
demographic variables; age, sex, brain pH, PMI among the three
groups (NPC, SCZ, and BPD), indicating that these variables will
not affect our conclusions.

Epigenetic enzymes/proteins
underwriting heterochromatin
assembly

Because the target molecule in this study was the assembly
of heterochromatin, we also measured mRNA levels of several
canonical enzymes critical in producing heterochromatin. These
include three HMTs responsible for the H3K9 methylation; GLP
and G9A primary for H3K9me2 and SETDB1 for H3K9me3.
In addition, we also measured the REST protein (RE1-Silencing
Transcription factor), an adaptor/platform protein coordinating
heterochromatin assembly alongside other repressor proteins
(33, 34). Binding of REST protein to its cognate motif results
in an accumulation of H3K9me2/3 heterochromatin (34).
The results are presented in Figure 3, indicating an increase
in the three measured methyltransferases (GLP, G9A, and
SETDB1) and a decrease in the REST protein. Together these
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TABLE 2 DiffReps output.

Gene SCZ avg reads NPC avg reads Occupation log2FC P-value Padj

n = 15 n = 15

Increased H3K9me2 promoter occupation in SCZ compared to NPC

GPHN 140.72 54.22 Increased 1.38 2.89E-10 2.13E-07

CDHR2 61.97 10.07 Increased 2.62 1.13E-10 8.67E-08

GPX6 68.9 32.26 Increased 1.09 7.51E-07 9.54E-04

OXT 33.57 3.87 Increased 3.12 2.04E-07 9.23E-05

FURIN 169.84 166.46 Increased 0.03 1.08E-10 8.57E-07

NRGN 86.06 62.46 Increased 0.46 2.61E-04 9.12E-02

Decreased H3K9me2 promoter occupation in SCZ compared to NPC

AKT3 26.74 515.22 Decreased –4.27 1.38E-07 3.85E-04

CDH20 74.88 209.92 Decreased –1.49 3.33E-16 3.65E-13

LIPJ 1.29 53.45 Decreased –5.37 1.55E-15 1.62E-12

C4B 256.53 619.55 Decreased –1.27 6.3E-03 2.9E-01

DiffReps provides a large amount of information about differentially modified genomic areas, which is reduced for relevance. “avg reads” is the average occupation of the gene
promoter by H3K9me2 modification of all samples (SCZ; n = 15, NPC; n = 15). Log2FC refers to the log ratio of the fold change between NPC and SCZ average reads. P-values
demonstrate high significance, while Padj value corresponds to p-value adjusted for multiple testing using Benjamini-Hochberg method. The complete DiffReps output is presented in
Supplementary Table 1.

FIGURE 1

mRNA expression is coordinated with promoter H3K9me2 occupation. (A) Genes with increased H3K9me2 occupation on their promoters in
SCZ samples demonstrate decreased mRNA expression. GPHN, CDHR2, FURIN, GPX6, OXT, and NRGN all demonstrated significantly increased
promoter occupancy of H3K9me2. After the ChIP-seq discovery phase in the initial 15 NPC and 15 SCZ brain samples, an additional 17 NPC, 7
individuals with SCZ, and 19 individuals with BPD samples were included and processed for mRNA expression of these genes, all but NRGN
showed decreased expression in SCZ when compared to NPC or individuals with BPD samples. **p < 0.01, ***p < 0.005. A table of statistical
analysis is provided in Supplementary Table 1. (B) Genes with decreased H3K9me2 occupation on their promoters in SCZ samples demonstrate
increased mRNA expression. AKT3, C4B, CDH20, and LIPJ were four genes found to have decreased H3K9me2 promoter occupancy in the SCZ
brain samples. When processed for mRNA expression, AKT3, C4B, and CDH20 showed increased mRNA expression, but LIPJ did not.
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FIGURE 2

Correlational analysis of H3K9me2 promoter occupation and mRNA expression. Scatterplots showing correlations between H3K9me2 promoter
DiffReps reads and mRNA levels of the corresponding gene. (A) Promoter loci where H3K9me2 occupancy is significantly increased in SCZ
compared to NPC. Promoters GPHN, CDHR2, GPX6, and OXT show H3K9me2 diffReps reads have significant negative correlation with their
corresponding mRNA levels. (B) Promoter loci where H3K9me2 occupancy is significantly decreased in SCZ compared to NPC. Promoters
AKT3, CDH20, and C4B show H3K9me2 diffReps reads have significant negative correlation with their corresponding mRNA levels. Pearson’s r
and P-values for each loci are shown in the insert table.

results could suggest a chromatin environment conducive
to heterochromatin formation in the brain of individuals
diagnosed with SCZ.

Discussion

We have demonstrated that genome-wide sequencing
of H3K9me2-bound regions of DNA can provide valuable
insight into differentially modified regions and inform
correlated mRNA expression levels in the postmortem
frontal cortex tissue of individuals with schizophrenia and
control subjects. As this was the first sequencing study of
its nature for this modification, some gene selections were
based on previous disease associations, but also some novel
exploratory genes were selected based on their statistical
significance and fold change. Using the stringApp in Cytoscape
we retrieved functional enrichment analysis results for the
159 H3K9me2 differentially occupied promoter sites listed
in Supplementary Table 1 (Figure 4). To visualize and
identify groups of proteins that exhibit similar changes in
H3K9me2 occupancy we used the K-means clustering method
in STRING. This resulted in a network with three clusters,
an average local clustering coefficient of 0.36, and an average
node degree of 1.04. Identifying enriched genes involved
mainly in neurotransmitter/receptor neuronal function,

hormone/hormone receptor function, and the immune
system. Additionally, we see a high degree of connectivity of
AKT3-MAPK3-MAPK10 protein network. All analyses were
performed using Cytoscape version 3.9.1, stringApp version
1.7.0, and clusterMaker2 version 2.2. Connections with the
Kinase signaling network noted is exciting given the role of
MAPK pathways in modifying heterochromatin (35). The
nuclear kinase mitogen- and stress-activated protein kinase
1 regulates hippocampal chromatin remodeling in memory
formation. Furthermore, our lab has previously demonstrated
the role of kinase signaling in “disassembling” heterochromatin
using the antipsychotic risperidone (36).

H3K9me2 is known to occupy gene-rich territories and is
known to be modifiable using pharmacology directed to one
of its primary methylating enzymes G9a. Heterochromatin has
durability and is likely responsible for the reduced expression
of non-neuronal genes as in the heterochromatin assemblies
coordinated with the REST/Co-REST adaptor proteins (37).

Heterochromatin regulation of
synaptic genes

Gephyrin (GPHN) is a scaffold protein that docks GABAa
receptors to the postsynaptic membrane (38). Abnormal
GPHN clustering during neurodevelopment is associated with
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FIGURE 3

Epigenetic enzymes underwriting heterochromatin formation. Relative mRNA expression levels in the PFC of Repressor element-1 silencing
transcription factor (REST) and H3K9 histone methyltransferases (G9a, GLP, and SETDB1). Data is shown as fold change (FC) ± S.E.M. (error bars)
after normalization to GAPDH and case compared to NPC. NPC (n = 32), individuals with SCZ (n = 22), individuals with BPD (n = 19). *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001.

the pathogenesis of neurological, neurodevelopmental, and
psychiatric disorders (39), with exonic deletions implicated in
the risk for schizophrenia, autism, and epilepsy development
(40, 41). GPHN SNPs have also been associated with
schizophrenia (41). Furthermore, a recent study showed that
enrichment of copy-number variations in GABAergic genes
from individuals with schizophrenia that were identified
duplications and deletions in the region of GPHN (42). Deficient
GPHN function, as indicated by decreased expression in
our samples, impairs inhibitory GABAergic synaptic activity,
which results in hyper-excitability of neural cells, as seen in
epilepsy (43).

Cadherin family members CDHR2 and CDH20 are
intercellular adhesion molecules associated with psychiatric
disorders (44–46). Variable expression of these proteins may
alter synaptic connectivity and information processing in the
developing brain. Epilepsy, autism, bipolar, and schizophrenia
are associated with cadherin dysfunction, mostly in genome-
wide association studies (44, 46). Our expression analysis
revealed increased H3K9me2 and decreased expression of
CDHR2; decreased H3K9me2, and increased expression of
CDH20, suggesting that symptoms typically reported by
individuals with schizophrenia may be caused by dysregulation
spread throughout the cadherin system.

Neurogranin (NRGN) is a neuron-specific calmodulin
binding protein, expressed in postsynaptic dendritic spines
modulating the activity of downstream calmodulin-Ca2+-
dependent enzymes that function in the neuroplasticity
mechanisms of learning and memory (47). Altered mRNA
expression is demonstrated in postmortem brain tissue of
individuals with schizophrenia (48–50). Altered CSF levels of
NRGN are associated with the impairments in cognition seen
in both Alzheimer’s and Parkinson’s disease (51).

Heterochromatin regulation of
catalytic activity

FURIN is necessary for axonal growth and development
of dendritic arbors, a process linked to neurological
diseases of the CNS (52). Knockdown of FURIN in
human neural progenitor cells results in abnormal
neuronal migration (53). In a study examining RNA-seq
from over 500 dorsolateral prefrontal cortices, FURIN
emerged as one of five single-gene loci implicated in
schizophrenia. Decreased expression of this gene due to
heterochromatinization could result in disruption of many key
systems, potentially contributing to comorbidities associated
with schizophrenia.
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FIGURE 4

Pathway and Gene Ontology analysis. Using the Cytoscape STRING app, a network was retrieved for the 159 promoters with differentially
modified H3K9me2 occupancy. Genes with significantly increased or decreased H3K9me2 levels were selected by the diffReps program using a
p-value > 0.05 and were entered in the “Network and Enrichment Analysis” within the STRING app. With a confidence cutoff of 0.4, kmeans
clustering was used to generate 3 clusters (red, blue, and green). Resulting associations within and between clusters is depicted with solid and
dotted lines, respectively. Different color lines indicates different type of interactions. (Cyan-from curated databases; Magenta-experimentally
determined; Blue-gene co-occurrence; green-from text mining; Black-coexpression; lilac-protein homology; Red gene fusions).

Glutathione Peroxidase 6 (GPX6) is part of a family of
enzymes that protect cells from oxidative stress, resulting from
an imbalance between reactive oxygen species (ROS) production
and deficiency of antioxidants to process the ROS, leading
to deleterious peroxidations of lipids, proteins, and DNAs.
The brain is especially vulnerable to oxidative damage due
to its high utilization of oxygen, high content of oxidizable
polyunsaturated fatty acids, and the presence of redox-active
metals (54). Oxidative stress is hypothesized to contribute
to symptomology reported by individuals with schizophrenia,
specifically along the Tryptophan/Kynureine/Quinolinic acid
pathway, which can be induced by cytokines such as IFNγ,
long noted to be abnormally regulated in schizophrenia
(55). Developmental dysregulation of glutathione synthesis

combined with environmental risk factors that generate
oxidative stress may result in deficits in neural connectivity
and synchronization observed in individuals with schizophrenia
(56–58).

Though Lipase family member J (LIPJ) is not well studied,
the general lipase family increases after antipsychotic treatment
(59). Therefore, our non-significant mRNA expression results
may be a result of the variable antipsychotic dosing present in
our sample. We have also shown that antipsychotic treatment
in vitro can decrease heterochromatin levels and increase
promoter phosphorylation and mRNA expression of genes that
are tolerized (heterochromatinized) via an endotoxin tolerance
paradigm, while other promoters do not respond in this way (36,
60). This targeted response to antipsychotic treatment could be
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an explanation for the LIPJ and NRGN genes that did not show
coordination with their H3K9me2 promoter occupation levels.

The AKT Serine/Threonine Kinase 3 (AKT3) genomic locus
is a replicated GWAS signal in individuals with schizophrenia
[Schizophrenia Working Group (61)]. AKT signaling plays a
critical role in cell growth, proliferation, survival, differentiation,
and metabolism. AKT3 is highly expressed in the brain, with
expression peaking during development, indicating a crucial
role in cognitive function (62). AKT3 genetic abnormalities
result in intellectual disabilities (63–67), and deficits in temporal
order discrimination and spatial memory are seen in AKT3
knockout mice (68). Protein levels of AKT3 family member
AKT1 are significantly reduced in lymphocytes and the brain
of individuals diagnosed with schizophrenia (69). However, our
findings seem to conflict, as AKT3 expression is increased in
postmortem prefrontal cortices in individuals diagnosed with
schizophrenia (Figure 1).

Oxytocin is a peptide hormone acting on both central
and peripheral targets to decrease cortisol release in response
to social stresses (70). In individuals with schizophrenia,
plasma oxytocin levels are elevated in response to trust-
related interactions, an effect not seen in normal controls (71).
Low oxytocin levels also correlate with negative symptoms in
individuals with schizophrenia (72). Our data found significant
H3K9me2 enrichment on the OXT promoter, correlating with
significantly decreased oxytocin mRNA levels in postmortem
brain tissue of individuals with schizophrenia. Due to the
function of the hormone, it is hypothetically valid to suggest that
heterochromatin promoter occupancy and decreased oxytocin
mRNA expression could limit the plastic response to social stress
or interactions seen in individuals with schizophrenia.

The C4 locus on chromosome 6 has a strong association
with postmortem brain tissue in individuals with schizophrenia
(31, 73) and expresses two isotype molecules, C4A and
C4B (74). As both complements serve a crucial role in
synaptic pruning (75), it follows that dysregulation of this
process can result in aberrant connections that can underlie
neurological disorders. Most recently, our lab showed that
C4A mRNA expression is positively associated with psychotic
symptomology, including the severity of delusions (76). Our
data support a linkage between aberrations in postmortem brain
tissue in individuals with schizophrenia, as we found that at the
C4B promoter, H3K9me2 was significantly decreased, resulting
in increased mRNA levels.

Epigenetic enzymes/proteins
underwriting heterochromatin
assembly

We have previously demonstrated elevated levels of both
mRNA and protein in two separate tissues obtained from

individuals with schizophrenia; parietal cortical samples from
the Stanley Foundation Neuropathology Consortium and
lymphocyte samples from the University of Illinois at Chicago
(UIC) (14). In both tissues types, we measured mRNA
expression of HMTs, GLP, G9a, and SETDB1 via real-time RT-
PCR and H3K9me2 levels via western blot. We have replicated
this in our current study using frontal cortex from the Harvard
Brain Tissue Resource Center. Elevation of the mRNA of these
HMTs suggest a cellular/neuronal environment conducive to
heterochromatin formation. We additionally measured mRNA
levels of REST protein, which is a platform adaptor protein that
coordinates the multicomponent assembly of Heterochromatin
proteins, and note that expression levels are differentially
reduced in individuals with schizophrenia.

Limitations

There are several sources of variation that could misalign
our results when comparing DNA promoter occupancy
(estimation of DNA sequences from the smaller ChIP-Seq
subset) to its downstream gene expression (mRNA measured
by qRT-PCR and presented in Figure 1). These could include
variations in the expanded cohort utilized purely for qRT-
PCR, unidentified sources of gene regulation that could
impact gene mRNA expression levels, and additional regulatory
factors acting downstream of the promoter. For example, the
NRGN locus shows significantly increased H3K9me2 occupancy
(refer to p-value in Table 2), while the LIPJ locus has
significantly decreased H3K9me2 occupancy (refer to p-value
in Table 2). While conceptually, we would see the coordination
of promoter occupancy and mRNA expression, these two
measurements (ChIP-seq vs. qRT-PCR) are uncoupled for these
two loci.

We did not perform ChIP-seq on subjects with BPD, and
therefore, we can only state that heterochromatin itself is
differentially located, in SCZ, on the promoter sites provided
in Supplementary Table 1 and note that the mRNA expression
of these promoters in BPD is not different from the mRNA
expression in NPC, allowing us to conclude that the selected
promoters are “heterochromatinized” in SCZ and not BPD
samples.

There are universal confounds in all translational
or clinical tissue-oriented studies including the effect of
pharmacology/psychotropics, obesity, drugs of abuse, trauma,
or environmental factors related to psychosocial disparities
and these have not been resolved. Limitations of ChIP-Seq
directed to a specific histone modification are impacted by the
heterogeneous population of neuronal/non-neuronal cells. This
is approached with techniques such as laser capture dissection
of unique neuronal populations or FACS sorting according to
neuronal markers (77), but this was not feasible given the tissue
requirements of ChIP-Seq.
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Conclusion and summary

We have demonstrated the experimental identification
of specific gene promoters differentially occupied by
H3K9me2 heterochromatin in the PFC of postmortem
brain tissue in individuals diagnosed with schizophrenia.
We have also demonstrated a functional effect of promoter
occupation by this modification on mRNA gene expression
in a coordinated manner. We demonstrate differential
modification levels on the promoters of several genes
that have previously been linked to individuals with
schizophrenia, in addition to genes that are novel to the
disorder. Some of the genes featured here offer coherent
functional explanations to established hypotheses (i.e.,
Gephyrin expression and the hypothesis of excitatory and
inhibitory synapse imbalance as it relates to individuals
with schizophrenia), while others will require further
exploration to determine their role in the development or
maintenance of disease.

Our ability to demonstrate differences in heterochromatin
along specific gene promoters in the brains of individuals
diagnosed with schizophrenia opens up new hypotheses and
therapeutic targets. We have earlier noted that heterochromatin
assemblies are durable and can persist for the life span
especially in neurons (78). Theoretically, they possibly serve as
repositories for the accumulation of psychological, metabolic
or pharmacological inputs over extended periods (79). In
treatment resistant individuals, the blockade of gene promoters
by durable and stable repressive heterochromatin could explain
why targeting of membrane monoamine synaptic receptors is
not adequate in disassembling these deep genomic structures
and the inability to activate the underlying gene networks (79).
Our findings suggest that alternate/parallel signaling pathways
capable of targeting genomic heterochromatin may provide a
supplemental advantage.

Considering this approach, we have elsewhere demonstrated
that signaling along the kinase pathways in cell cultures
can target heterochromatin assemblies by regulating histone
phosphorylation (36). Because heterochromatin is a stable
modification and in equilibrium with its regulatory factors,
its measurement along specific gene networks in the neuron
would allow a reverse engineering approach to study “what
stress” deposits heterochromatin on “which network.” This
approach has been utilized using defined immunological stimuli
to assemble heterochromatin on pre-defined immune gene
promoters (15, 36, 80–82).

To our knowledge, this is the first study of H3K9me2
based heterochromatin promoter assembly in the postmortem
brain tissue in individuals diagnosed with schizophrenia and
is directly relevant to gene expression. These modifications
may be particularly relevant in individuals who are resistant
to available psychotropics, suggesting gene networks that
are not receptive to usual monoamine receptor signaling.

Future studies aiming to reveal new potential targets for
treatment advancement will attempt to map the distribution
of other restrictive chromatin assemblies such as those
originating with H3K27me3, as well as mapping regions of
the genome that are primed for transcription such as those
occupied by H3K4me1/2/3.
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