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Synthetic cannabinoid receptor agonists (SCRAs) continue to make up a

significant portion new psychoactive substances (NPS) detected and seized

worldwide. Due to their often potent activation of central cannabinoid

receptors in vivo, use of SCRAs can result in severe intoxication, in addition

to other adverse health e�ects. Recent detections of AB-4CN-BUTICA,

MMB-4CN-BUTINACA, MDMB-4F-BUTICA and MDMB-4F-BUTINACA mark

a continuation in the appearance of SCRAs bearing novel tail substituents.

The proactive characterization campaign described here has facilitated the

detection of several new SCRAs in toxicological case work. Here we detail

the synthesis, characterization, and pharmacological evaluation of recently

detected SCRAs, as well as a systematic library of 32 compounds bearing

head, tail, and core group combinations likely to appear in future. In vitro

radioligand binding assays revealed most compounds showed moderate

to high a�nity at both CB1 (pKi = < 5 to 8.89 ± 0.09M) and CB2 (pKi
= 5.49 ± 0.03 to 9.92 ± 0.09M) receptors. In vitro functional evaluation

using a fluorescence-based membrane potential assay showed that most

compounds were sub-micromolar to sub-nanomolar agonists at CB1 (pEC50

= < 5 to 9.48 ± 0.14M) and CB2 (pEC50 = 5.92 ± 0.16 to 8.64 ± 0.15M)
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receptors. An in silico receptor-ligand docking approach was utilized to

rationalize binding trends for CB2 with respect to the tail substituent, and

indicated that rigidity in this region (i.e., 4-cyanobutyl) was detrimental

to a�nity.
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synthetic cannabinoid, cannabinoid receptor 1 agonists, pharmacology,

cannabinoids, SCRAs, docking, in vitro evaluation, synthesis

Introduction

Synthetic cannabinoid receptor agonists (SCRAs) represent
a large portion of detected new psychoactive substances (NPS)
globally, accounting for 29% of the 1,047 NPS identified between
2009 and 2019 (1). Commonly sold as herbal blends, such
as “Spice,” “K2,” and “Black Mamba” which are consumed by
smoking, SCRAs are part of a conscious effort by manufacturers
and retailers to mimic the effect of 1

9-tetrahydrocannabinol
(THC, 1, Figure 1), the primary intoxicating compound in
cannabis (2–6). Several mass intoxication events have been
observed over the past decade, with clinically significant impact
on patients including psychosis, seizure, respiratory failure,
encephalopathy, necrotizing pancreatitis, acute kidney injury,
and death (3, 7–31).

SCRAs primarily target the endocannabinoid system,
specifically as agonists of centrally expressed cannabinoid 1
receptors (CB1), to provide users with a high analogous to
cannabis, although these compounds generally display equal
or better affinity and potency at CB1 compared with THC.
However, unlike THC, SCRAs such as JWH-018 (2), MDMB-
FUBINACA (3), and ADB-BUTINACA (4) generally act as
high efficacy agonists at CB1 resulting in significantly greater
intoxication of users, and display differing profiles of tolerance,
dependence, and withdrawal (32).

Modern SCRAs typically consist of amino acid-derived
indole- and indazole-3-carboxamide type scaffolds, similar to
compounds disclosed by Pfizer in a series of patents in 2009
(33–38). Appearance of NPS containing modification of these
scaffolds has seemingly been a result of incoming legislation
bringing detected compounds under national and international
control, while attempting to retain CB1 activity. Recent
approaches observed include scaffold hopping, fluorination,
nitrogen walking, alkyl chain contraction, and homologation,
as well as the coupling of different amino acid residues to
the substituted heterocyclic cores. These modifications have led

to a significant structural evolution of contemporary SCRAs
from the late 2000s, with equivalent or increased potency at
CB1 (39–41).

The utility of proactive synthesis programs to detect
emerging NPS has recently facilitated the detection of two
new SCRAs bearing the 4-cyanobutyl tail moiety. The
indole and indazole derivatives AB-4CN-BUTICA (5) and
MMB-4CN-BUTINACA (6, a.k.a. AMB-4CN-BUTINACA),
respectively, were identified in Alabama, facilitated by proactive
reference standard generation and toxicological screening by our
laboratories (Figure 2) (42, 43). The 4-fluorobutyl compounds
MDMB-4F-BUTICA (7) and MDMB-4F-BUTINACA (8) were
also recently detected, with the latter involved in a suicide,
as well as multiple fatal intoxications (7, 31, 44–49). With
the appearance of these compounds, it is feasible that NPS
manufacturers may introduce the 4-fluorobutyl or 4-cyanobutyl
subunits to other amino acid-derived indole-, indazole- and 7-
azaindole-3-carboxamide SCRAs in future. As such, this paper
describes the synthesis, chemical analysis, and pharmacological
characterization of the newly detected SCRAs, as well as a
series of 32 systematic analogs (5–40, Figure 3). Due to the
combinatorial design of the library, direct comparison of the
contributions of subunits to the pharmacological profile of
the compounds enabled identification of key structure-activity
relationships (SARs). In vitro binding and functional data were
obtained at both CB1 and CB2, and an in silico docking
approach was utilized to explore observed SARs, especially
concerning differences in binding between 4-cyanobutyl and
4-fluorobutyl tail moieties. Most compounds displayed high
affinity, potency, and efficacy at both CB1 and CB2, suggesting
these compounds should be included in NPS monitoring
programs. Given the similarity in structure and pharmacological
profile of the library evaluated in this work compared to existing
SCRAs, these data provide important insights into the potential
effect of these compounds in humans, pending evaluation
in vivo.
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Experimental

General chemical synthesis details

All reactions were performed under an atmosphere of
nitrogen unless otherwise specified. Methyl 1H-indazole-
3-carboxylate (42) and methyl 1H-pyrrolo[2,3-b]pyridine-
3-carboxylate (43) were purchased from Fluorochem
LTD (Derbyshire, UK) and used as received. 1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDC•HCl)
was purchased from Oakwood Chemical (Estill, SC, USA).
Deuterated solvents (CD3OD, CDCl3, and DMSO-d6) were
purchased from Cambridge Isotope Laboratories (Tewksbury,
MA, USA). Unless otherwise stated, all other reagents
and solvents used for this manuscript were obtained from
Sigma-Aldrich/Merck (Castle Hill, NSW, Australia) and used
as purchased. Analytical thin-layer chromatography was
performed using Merck aluminum-backed silica gel 60 F254
(0.2mm) plates (Merck, Darmstadt, Germany), which were
visualized using shortwave (254 nm) UV fluorescence. Flash
chromatography was performed using a Biotage Isolera Spektra
One and Biotage SNAP KP-Sil silica cartridges (Uppsala,
Sweden), with gradient elution terminating at the solvent
combination indicated for each compound (vide infra). Melting
point ranges (m.p.) were measured in open capillaries using
a Stuart SMP50 Automated melting point apparatus (Cole-
Palmer, Staffordshire, UK) and are uncorrected. Nuclear
magnetic resonance (NMR) spectra were recorded at 298K
using an Agilent 400-MHz spectrometer (Santa Clara, CA,
USA), or a Bruker NEO 300 MHz NMR spectrometer (Billerica,
MA, USA). The data are reported as chemical shift (δ ppm)
relative to the residual protonated solvent resonance, relative
integral, multiplicity (s = singlet, brs = broad singlet, d =

doublet, t= triplet, q= quartet, quin= quintet, m=multiplet),
coupling constants (J Hz), and assignment. High resolution
mass spectrometry (HRMS) data were collected using an Agilent
LC 1260-QTOF/MS 6550 (Santa Clara, CA, US) or a Bruker
Solarix 2xR 7T Fourier Transform Ion Cyclotron Resonance
Mass Spectrometer. A methanolic extract of each pure standard
was run using an electrospray ionization (ESI) source in
automated MS/MS (information dependent acquisition) mode.
Accurate mass for the parent ion and its corresponding mass
error expressed in parts per million (ppm) are reported.
LC-MS/UV data were acquired using a Shimadzu (Kyoto,
Japan) Nexera LC-30AD UHPLC system coupled to a Shimadzu
SPD-20AV photo diode array detector and a Shimadzu LCMS-
8040 triple-quadrupole mass spectrometer, equipped with an
electrospray ionization (ESI) source. Compounds were dissolved
in a 90:10 mixture of 0.1% formic acid in water and methanol,
and placed in the UHPLC autosampler that was maintained at
8◦C. Elution was performed in gradient mode with an Agilent
(CA, USA) Zorbax XDB-C18 column (2.1 × 50mm, 3.5µm
particle size), held at 50◦C, with a 10 µL injection volume. The

mobile phases were 0.1% formic acid in water (A) and methanol
(B). Mobile phase composition was held at 10% B until 0.5min,
then steadily increasing to 100% B at 2.5min, holding until
3min, and then re-equilibrating at 10% B for a total run time
of 4min. UV absorbance was measured from 190 to 800 nm.
UV data from blank injections were subtracted to account for
mobile phase absorbance and background noise. Single stage
mass spectra (MS1) were collected in positive ESI mode using
a single quadrupole (Q3) scanning from m/z 100–600. All data
were processed using Shimadzu LabSolutions (v 5.89) software.
Fourier-transform infrared spectroscopy (FTIR) spectra were
collected using a Bruker Alpha II ATR FTIR spectrophotometer.
Precursors 44–51, and compounds 6, 7, 11, 17, and 22 were
synthesized and used as is, as previously described (50, 51).
Synthetic procedures and characterization data (1H and 13C
NMR, melting point, Rf , FTIR, HRMS, UV, and LCMS) can be
found in the supporting information.

In vitro binding evaluation

Human embryonic kidney (HEK) cells expressing either
human CB1 receptors N-terminally tagged with pplss
(preprolactin signal sequence) and 3HA (3x haemagglutinin)
epitopes or human CB2 receptor N-terminally tagged with 3HA
were harvested in 5mM EDTA in PBS, and “P2” membranes
were prepared in sucrose buffer as previously described (52, 53).
Protein content was estimated using a BioRad (Hercules,
CA) DC protein assay (modified Lowry assay). For binding
assays, radioligand ([3H]-CP55,940, PerkinElmer, Waltham,
MA, USA), non-radiolabeled drugs, and P2 membrane
preparations were diluted in binding buffer (50mM HEPES
pH 7.4, 1mM MgCl2, 1mM CaCl2, 2 mg/mL NZ-origin BSA,
MP Biomedicals, Santa Ana, CA, USA) and dispensed into
96-well, polypropylene V-well plates (Hangzhou Gene Era
Biotech Co Ltd, Zhejiang, China) in a final reaction volume of
200 µL (membranes were dispensed last). Final radioligand
concentration was 1 nM for all assays. Protein content was 3
µg/point for pplss-3HA-hCB1 HEKmembranes, and 2µg/point
for 3HA-hCB2 HEK membranes for the assays using type A
harvest plate (PerkinElmer, GF/C filters, 1.2µm pores), these
plates were discontinued during the course of this study, and
replaced with type B harvest plates (Merk Millipore, GF/C
filters, 1.2µm pores). As these plates appear to retain a smaller
proportion of the protein, membrane content was increased
to 8 µg/point for CB1 membranes, and 3 µg/point for CB2
membranes. When all components had been dispensed, the
V well plate was sealed and incubated for 1 h at 30◦C. During
the incubation, the 96 well harvest plate was treated with
0.1% w/v branched polyethyleneimine (PEI; Sigma Aldrich) in
H2O. Immediately prior to washing, PEI was washed through
the filters using a vacuum manifold (Pall Corporation, Port
Washington, NY) and all wells were washed once with ice cold
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wash buffer (50mM HEPES pH 7.4, 500mM NaCl, 1 mg/mL
BSA). Equilibrated binding mixture was then transferred to
the harvest plate under vacuum, and samples washed through.
For the assays using type A harvest plate, binding wells were
rinsed once with wash buffer and transferred to the harvest
plate, and then wells were washed three more times with 200 µL
of wash buffer. The plate was then removed, and filters allowed
to dry overnight. The next day, the plate bottom was sealed,
and 50 µL of Ultima Gold XR scintillation fluid (PerkinElmer)
was dispensed to each well and the plate loaded into the 96
well “rigid” cassette. For the assays using type B harvest plate,
samples were rapidly washed 4 times with 100µL of wash buffer.
The bottom of the plate was then removed, and filters allowed to
dry overnight. The next day, the plate was inserted into a 96 well
“rigid” cassette. The base of the cassette was sealed and 50 µL of
scintillation fluid was added to each well. The top of the plates
were sealed prior to loading into a Wallac MicroBeta2

R©
TriLux

Liquid Scintillation Counter (PerkinElmer). Scintillation was
detected after a 30min delay, for 2min per well. Counts were
corrected for detector efficiency. Data were then exported and
analyzed in GraphPad Prism v9 (GraphPad Software Inc., La
Jolla, CA, USA). Ki was determined through fit of “Competition
binding- One site fit Ki” in GraphPad prism using a Kd of
3.50 nM for the radioligand for the assays using type A harvest
plate; while for the assays using harvest plate B, Kd was 3.58 nM
for binding at CB1 and 1.162 nM for binding at CB2 (Kd was
determined empirically using homologous competition assay
under matching conditions). Log Ki were determined for at least
three independent experiments (maximum 6) and combined to
determine mean pKi ± SEM reported in Tables 1, 2. Assays for
compounds 5, 6, 10–12, 14, 15, 17, 18, 20–22, 24, 29, 34 used
type A harvest plate. Assays for compounds 7–9, 13, 16, 19, 23,
25–28, 30–33, 35–40 used type B harvest plates.

In vitro functional evaluation

Mouse AtT20 FlpIn adenocarcinoma cells stably transfected
with human CB1 or CB2 were cultured in DMEM containing
10% FBS, 100U penicillin/streptomycin, and 80µg/mL of
hygromycin, as previously described (54). Cells were passaged
at 80% confluency, cells for assays were grown in 75 cm2

flasks and used at 90% confluence. The day before the assay
cells were detached from the flask with trypsin/EDTA (Sigma
Aldrich) and resuspended in 10mL of Leibovitz’s L-15 media (L-
15) supplemented with 1% FBS, 100U penicillin/streptomycin,
and 15mM glucose. The cells were plated in volume of 90 µL
in black walled, clear bottomed 96-well microplates (Corning,
Corning, NY, USA) and incubated overnight at 37◦C in ambient
CO2. Membrane potential was measured using a Membrane
Potential Assay Kit (blue) from Molecular Devices (San Jose,
CA, USA), as described previously (55, 56). The dye was
reconstituted with assay buffer [145mM NaCl, 22mM HEPES,

0.338mM Na2HPO4, 4.17mM NaHCO3, 0.441mM KH2PO4,
0.407mM MgSO4, 0.493mM MgCl2, 1.26mM CaCl2, 5.56mM
glucose (pH 7.4)]. Prior to the assay, cells were loaded with
90 µL/well of the dye solution without removal of the L-
15. Plates were then incubated at 37◦C in ambient CO2

for 60min. Fluorescence was measured using a FlexStation
3 (Molecular Devices) microplate reader with cells excited at
a wavelength of 530 nm and emission measured at 565 nm.
Baseline readings were taken every 2 s for at least 2min, at which
time either drug or vehicle was added in a volume of 20 µL.
The background fluorescence of cells without dye or dye without
cells was negligible. Changes in fluorescence were expressed as
a percentage of baseline fluorescence after subtraction of the
changes produced by vehicle (DMSO, final concentration was
nomore than 0.1%) addition. Concentration-response data were
analyzed using GraphPad Prism 9 (GraphPad Software, San
Diego, CA, USA), using a four-parameter non-linear regression
to fit concentration-response curves on data from 3 to 6
independent experiments.

Molecular modeling

Protein preparation

The cryo-EM structures of the CB1 receptor (PDB: 6N4B)
and the CB2 receptor (PDB: 6KPF) were retrieved from RCSB
PDB (57–59). The structures were prepared with Maestro’s
Protein Preparation Wizard as follows (60). The G proteins
and cholesterol were removed, leaving only the CB1 and
CB2 receptor and their cognate ligands. The preparation
process consisted of assigning bond orders, adding hydrogens,
generation of disulfide bonds, generation of missing side chains
using Prime, generating het states using Epik at pH 7.4 ± 1.0,
and deleting water molecules beyond 3 Å from het groups
(61, 62). The hydrogen bonding network was optimized, the pKa

values of the protein were predicted using PROPKA, and target
pH value was set at 7.4 (63). Lastly, the protein structure was
minimized using the OPLS4 force field where RMSD of the atom
displacement for terminating the minimization was set as 0.3
Å (64).

Ligand preparation

Ligands were prepared using LigPrep to generate energy
minimized 3D structures (65). OPLS4 force field was used for
minimization. Epik was used to generate all possible ionized
states at pH 7.4± 1.0.

Ligand docking

A receptor grid was generated using Glide, with a van der
Waals radius scaling factor of 1.0 and a partial charge cutoff
at 0.25 (66). The binding site was defined by the centroid
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of the cognate ligand for each structure. The Van der Waals
scaling factor for the ligands was set to 0.80 with a partial
charge cut-off at 0.15. The precision was set to Extra Precision
(XP) with flexible ligand sampling. Nitrogen inversions and
ring conformations were sampled and Epik state penalties were
added to the docking scores. The ligand cores were restricted to
the position of the cognate ligand by their maximum common
substructure and post docking minimization was performed.
Poses that had the lowest RMSD between the 4-fluorobutyl and
4-cyanobutyl analogs were taken for direct comparison.

Strain calculations

The internal strain of ligands in their bound and unbound
states was calculated using MacroModel (65). The 4RDDD
solvation forcefield was used, a constant 4.00 kcal/mol energy
offset selected, a penalty scale factor of 0.25 and Cartesian
restraints with a bound state half-width of 0.3 Å and a 120
kcal/mol/Å2 force constant.

Binding site mapping

The binding site regions for both the CB1 and CB2
structures were evaluated using SiteMap (67). SiteMap was run
in evaluate mode using the structures cognate ligand and a 5 Å
buffer. A minimum of 15 site points per binding site was set,
using the “more restrictive” definition of hydrophobicity and a
standard grid. Site maps were cropped at 4 Å from the nearest
site point.

Results and discussion

Synthesis

Indole-based SCRAs were derived from indole (41),
with a convenient one-pot alkylation and trifluoracetylation
procedure employed to give intermediate N-alkyl-5-(3-(2,2,2-
trifluoroacetyl)-1H-indoles before subsequent hydrolysis
gave N-alkyl-1H-indole-3-carboxylic acids 44 and 45 in
good yield (Scheme 1, eq. 1). This was then subjected to
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/1-
hydroxybenzotriazole (HOBt)-mediated amide coupling
with the appropriate amino acid derivatives to furnish the
final indole derived compounds (5, 7, 9, 10, 17–19, 25–

27, 34, 35). The indazole and 7-azaindole derivatives were
synthesized using a similar sequence from methyl indazole-
or methyl-7-azaindole-3 carboxylates 42 and 43 (Scheme 1,
eq. 2). Thus, alkylation with the appropriate alkylbromide and
sodium hydride provided methyl N-alkyl-indazole- or methyl
N-alkyl-7-azaindole-3 carboxylates 46–49 before hydrolysis
to give the corresponding carboxylic acids 50–53. In the
same manner as described previously, EDC/HOBt-mediated

amide coupling furnished N-alkyl-indazole- or -alkyl-7-
azaindole-3-carboxylamides 6, 8, 11–16, 20–24, 28–33, 36–40
(6, 50, 51, 54, 68, 69). Synthetic procedures and characterization
data (1H and 13C NMR, melting point, Rf , FTIR, HRMS,
and LCMS) for all novel compounds can be found in the
supporting information.

In vitro binding a�nity trends for 5–40

Following our previous efforts in the characterization of
existing SCRAs, in vitro binding data were obtained via

a competitive radio binding assay in HEK293 cells stably
transfected with human cannabinoid receptor 1 (hCB1) or
human cannabinoid receptor 2 (hCB2) (6, 50, 54, 68, 69).
Ligand affinity (pKi) was determined based on extent to which
compounds displaced the tritiated standard [3H]CP55,940
(Tables 1, 2). Except for terminal amide bearing 7-azaindoles
SCRAs 38, 33 and 16, all compounds displayed micromolar to
sub-nanomolar affinity for CB1 receptors (pKi = 8.89 ± 0.09–
5.48 ± 0.11). Similar or increased CB2 affinity was observed
in almost all cases (pKi = 9.92 ± 0.09–5.49 ± 0.03), with
several examples exhibiting sub-nanomolar affinities for this
receptor subtype (20, pKi = 9.53 ± 0.07; 29, pKi = 9.16 ±

0.04; 7, pKi = 9.30 ± 0.12; 8, 9.92 ± 0.09; 37, pKi = 9.34
± 0.05), which represent the highest affinities in the series.
Across the 4-cyanobutyl and 4-fluorobutyl tail substituents, no
clear trend was apparent for CB1 except within methyl tert-
leucinate (18, 20, 23 > 7, 8, 39) and methyl phenylalaninate
(35, 37, 40 > 19, 21, 24) subgroups, whereby 4-cyanobutyl
and 4-fluorobutyl substitution, respectively, conveyed increased
affinity, albeit slightly. Only 4-cyanobutyl bearing 15 (CB1 pKi

= 6.81 ± 0.09) showed affinity an order of magnitude greater
than its 4-fluorobutyl analog 32 (CB1 pKi = 5.90 ± 0.06).
Conversely, 4-fluorobutyl derivatives were in general equal or
better ligands at CB2. Variation of the headgroup within the
indazole series (AB: 28 > 11; ADB: 29 > 12; APP: 30 > 13;

MMB: 36 > 4; MDMB: 8 ≈ 20; MMP: 37 ≈ 21) highlights this
trend. A clear structure-affinity trend within the core scaffold
was observed, with indazoles (CB1, pKi = 8.89 ± 0.09–5.48
± 0.11; CB2, pKi = 9.53 ± 0.07–6.78 ± 0.03) providing the
best affinity to both CB1 and CB2, followed closely by indoles
(CB1, pKi = 8.18 ± 0.11–5.50 ± 0.10; CB2, pKi = 9.30 ± 0.12–
6.22 ± 0.13). Finally, 7-azaindoles (CB1, pKi = 8.03 ± 0.13–
< 5; CB2, pKi = 8.67 ± 0.07–5.49 ± 0.03) exhibited reduced
affinity compared with the other groups, often by an order of
magnitude. This is in keeping with previous studies detailing
related indole, indazole and 7-azaindole carboxamides (36, 51,
54). Notably, the indazole core was required to achieve sub-
nanomolar affinity for CB2 (i.e., 20, 29, 8, 37) except in the case
of 7, whereby high affinity was maintained with combination
of an indole core, and importantly, the methyl tert-leucinate
head group. In each core and tail sub-group, the tert-leucine
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derivatives (MDMB > ADB) were consistently the best ligands
for both CB1 and CB2, followed by phenylalanine methyl esters
(MPP), which were better than both valine derivatives (MMB
> AB), and finally, phenylalaninamides (APP). For example,
within the indole set, a tert-leucinate conferred the highest CB1
affinity (18, pKi = 8.18 ± 0.11), which was reduced by an order
of magnitude for the corresponding phenylalaninate (19, pKi

= 7.07 ± 0.09), and further halved for valine derivatives (17,
pKi = 6.80 ± 0.14). An alternate order was observed for the
corresponding terminal amides of tert-leucine (9, pKi = 8.17
± 0.12), valine (5, pKi = 6.26 ± 0.09) and phenylalanine (10,
pKi = 5.48 ± 0.11), which conferred one of the lowest affinities
in the set. Affinities for CB2 followed the same general trend,
although phenylalaninamides exhibited affinities up to an order
of magnitude greater compared to CB1 (e.g., 13, CB1 pKi =

5.48 ± 0.11; CB2 pKi = 6.78 ± 0.03). Indeed, APP derivatives
were not well-tolerated at CB1 and thus modest selectivity for
CB2 (4- to 50-fold) was observed in this class (i.e., 10, 33, 16,
27, 30).

In vitro CB1 and CB2 functional
characterization of 5–40

SARs for compounds 5–40 were also investigated via

a fluorescence-based functional assay using AtT20 cells
transfected with hCB1 and hCB2. This method measures
change in membrane potential resulting from Gβγ-coupled
activation of inwardly rectifying potassium channels (GIRKs).
The full concentration-response curves of 5–40 are shown
in Figure 4, with potencies and efficacies referenced to 1µM
CP55,940 in Tables 1, 2. Most compounds, except for selected
phenylalaninamide and/or 7-azaindole derivatives (10, 13, 16,
27, 33, and 38), had maximal efficacy (Emax = 102–122%), and
exhibited nanomolar to sub-nanomolar potencies (pEC50= 9.48
± 0.14–6.30 ± 0.05) at CB1. In general, this group activated
CB2 with equal or increased potency (pEC50 = 8.67 ± 0.17–
6.41 ± 0.10) and efficacy, albeit, with no ligands active at sub-
nanomolar levels. As with other SCRAs, these compounds are
generally similar or greater potency, but more efficacious than
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THC (pEC50 = 6.76 ± 0.09 and Emax = 58% ± 3% at CB1, and
32% ± 1% at 30µM at CB2) (36). Potency compared with THC
is also similar (pKi = 8.09 ± 0.02 and 7.50 ± 0.07 at CB1 and
CB2, respectively) (70).

E�ect of 4-cyanobutyl and 4-fluorobutyl
substituents on CB1 and CB2 activation

Of the 3 chemical modifications investigated in the present
study, variation of the tail substituent had the least significant
impact on potency and efficacy. The 4-cyanobutyl and 4-
fluorobutyl derivatives commonly displayed similar potency at
both CB1 and CB2, for example in the tert-leucinate subgroup
(18, 20, 23 ≈ 7, 8, 39, respectively), or conversely, exhibited
differing potency with no discernable preference for either tail
group. Indeed, both tail substituents produced active ligands
with sub-nanomolar potency for CB1 (20: pEC50 = 9.14± 0.14;
8: pEC50 = 9.39 ± 0.17) and low nanomolar potency for CB2
(20: pEC50 = 8.45 ± 0.07; 8: pEC50 = 8.48 ± 0.14). These
data are consistent with the corresponding structure-affinity
trends; however, binding is not predictive of relative potency in
some cases. For example, MDMB-4F-BUTINACA (8) exhibits

activation (pEC50 = 9.39± 0.17) an order of magnitude greater
than its affinity (pKi = 8.21± 0.13) for CB1, whilst for CB2, the
opposite is true (pEC50 = 8.48± 0.14; pKi = 9.92± 0.09).

E�ect of indole, indazole and 7-azaindole
core on CB1 and CB2 activation

In the present study, the nature of the heterocyclic core
greatly impacts potency, giving rise to the same trends as
previously documented (51, 54, 71). Rank order potency
of activity at CB1 closely mirrored the observed binding
affinities, whereby indazoles (pEC50 = 9.39± 0.17–6.31± 0.05)
demonstrated equal or greater potency to the corresponding
indoles (pEC50 = 8.57 ± 0.13–<5), which were, again, more
potent than the corresponding 7-azaindoles (pEC50 = 8.05 ±

0.21–<5). In all cases, the indazole core was required to produce
sub-nanomolar potency (pEC50 = 9.39± 0.17, 9.48± 0.14, 9.14
± 0.14) observed for compounds 8, 12, and 20, respectively.
While the same general trend is realized for activation of CB2
(indazoles: pEC50 = 8.75 ± 0.03–7.00 ± 0.36; indoles: pEC50 =

8.54± 0.05–6.49± 0.2; 7-azaindoles: pEC50 = 8.41± 0.08–5.92
± 0.16), differentiation of heterocyclic cores is less pronounced
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TABLE 1 A�nities and functional activities of 4-cyanobutyl derived SCRAs at hCB1 and hCB2.

Compound hCB1 hCB2

pK i ± SEM

(K i, nM)

pEC50 ± SEM

(EC50, nM)

Emax ± SEM

(% CP55,940)

pK i ± SEM

(K i, nM)

pEC50 ± SEM

(EC50, nM)

Emax ± SEM

(% CP55,940)

AB-4CN-BUTICA (5) 6.26± 0.09 (550) 6.40± 0.08 (400) 111± 5 6.22± 0.13 (603) 7.12± 0.05 (75.9) 100± 2

ADB-4CN-BUTICA (9) 8.17± 0.12 (6.8) 7.99± 0.16 (10.2) 115± 5 8.26± 0.06 (5.5) 7.98± 0.21 (10.4) 106± 6

APP-4CN-BUTICA (10) 5.48± 0.11 (3310) DNCb 85± 3d 6.11± 0.06 (776) 7.01± 0.08 (98.4) 95± 3

AB-4CN-BUTINACA (11) 7.36± 0.12 (43.7) 7.58± 0.14 (26.3) 111± 5 7.62± 0.07 (24.0) 8.30± 0.05 (4.97) 103± 1

ADB-4CN-BUTINACA (12) 8.09± 0.03 (8.13) 9.48± 0.14 (0.33) 109± 2 8.59± 0.05 (2.57) 8.75± 0.03 (1.76) 96± 2

APP-4CN-BUTINACA (13) 5.97± 0.09 (1100) DNCb 104± 3d 6.78± 0.03 (170) 7.13± 0.25 (74.1) 107± 11

AB-4CN-BUT7AICA (14) 5.59± 0.12 (2570) DNCb 80± 3d 5.49± 0.03 (3240) 6.41± 0.10 (390) 87± 5

ADB-4CN-BUT7AICA (15) 6.81± 0.09 (155) 7.85± 0.1 (14.0) 102± 4 6.84± 0.10 (145) 8.22± 0.03 (6.09) 96± 1

APP-4CN-BUT7AICA (16) < 5 NDc 25± 3d 5.73± 0.08 (1860) 6.64± 0.09 (232) 72± 3

MMB-4CN-BUTICA (17) 6.80± 0.14 (159) 7.29± 0.06 (50.8) 105± 3 7.07± 0.12 (85.1) 7.87± 0.08 (13.5) 95± 3

MDMB-4CN-BUTICA (18) 8.18± 0.11 (6.61) 8.57± 0.13 (2.68) 111± 3 8.69± 0.05 (2.04) 8.39± 0.14 (4.04) 101± 4

MPP-4CN-BUTICA (19) 7.07± 0.09 (85.1) 7.45± 0.07 (35.5) 109± 3 8.06± 0.02 (8.71) 8.07± 0.08 (8.44) 105± 3

MMB-4CN-BUTINACA (6) 7.76± 0.06 (17.4) 8.44± 0.19 (3.61) 117± 6 8.19± 0.14 (6.46) 8.67± 0.17 (2.14) 101± 4

MDMB-4CN-BUTINACA (20) 8.89± 0.09 (1.29) 9.14± 0.14 (0.72) 113± 2 9.53± 0.07 (0.295) 8.45± 0.07 (3.56) 101± 2

MPP-4CN-BUTINACA (21) 7.68± 0.13 (20.9) 8.06± 0.07 (8.72) 115± 3 8.42± 0.10 (3.80) 8.49± 0.06 (3.24) 100± 2

MMB-4CN-BUT7AICA (22) 5.82± 0.08 (1510) 6.37± 0.1 (430) 114± 7 6.50± 0.07 (316) 7.17± 0.08 (68.3) 95± 4

MDMB-4CN-BUT7AICA (23) 8.03± 0.13 (9.2) 7.99± 0.16 (10.3) 114± 5 8.61± 0.08 (2.4) 7.90± 0.16 (12.6) 106± 5

MPP-4CN-BUT7AICA (24) 6.42± 0.07 (380) 6.73± 0.08 (189) 110± 5 7.26± 0.06 (55.0) 7.84± 0.05 (14.3) 104± 2

aData represent mean values± standard error of the mean (SEM) from 3 to 6 independent experiments;
bDid not converge (DNC);
cNot determined (ND): <50% change in fluorescence at 10 µM;
dMaximal response at 10 µM.
AB, [(S)-2-amino-3-methylbutanamide]; ADB, [(S)-2-amino-3,3-dimethylbutanamide]; APP, [(S)-2-amino-3-phenylpropanamide]; MMB, [methyl (S)-2-amino-3-methylbutanoate];
MDMB, [methyl (S)-2-amino-3,3-dimethylbutanoate]; MPP, methyl [(S)-2-amino-3-phenylpropanoate]; 4-CN-BUT, 4-cyanobutyl; 4F-BUT, 4-fluorobutyl; ICA, indole-3-carboxamide;
INACA, indazole-3-carboxamide; 7AICA, 7-aza-indole-3-carboxamide.

for this receptor, with the MPP subgroup (21 > 19 > 24)
highlighting this effect. Notably, this is not apparent for MDMB
derivatives (7 ≈ 8 ≈ 39), whereby all core motifs conferred
similar potency.

E�ect of amino acid derived head groups
on CB1 and CB2 activation

As described previously, tert-leucine derived compounds
(MDMB/ADB) are commonly more potent than the
corresponding valine (ADB/AB) species at CB1, despite
differing only by a single methyl group (36, 51, 54, 69, 71, 72).
In line with this is the greater potencies of MDMB/ADB vs.
MMB/AB analogs for indole (18, 9 > 5, 17), indazole (20, 12 >

6, 11) and 7-azaindole (23, 15 > 22, 14) sub-groups observed

here. Further, MDMB- and ADB-4F-BUTINACA (8 and 29)
represent two of only three substrates with sub-nanomolar
potency, and indeed the highest potencies observed for CB1.
While themethyl esters of phenylalanine (MPP) were commonly
equipotent or greater than valine (AB andMMB) analogs, unlike
with tert-leucine derivatives, switching to the terminal amide
(APP) was detrimental to potency at CB1. Specifically, when
combined with an indole (10 and 27) or 7-azaindole core (16
and 33), the APP substituent produced submaximal agonist
activity at the highest concentration tested (10µM), whereas
full efficacy was maintained with the indazole core (i.e., 13:
Emax = 104%). In terms of CB2, structure-activity trends align
closely with CB1; however, with all phenylalaninamides (APP)
except APP-4CN-BUT7AICA (16: Emax = 73%, pEC50 = 6.63
± 0.11) having full agonist effect with moderate potency. As
with binding, these findings indicate a CB2 receptor subtype
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TABLE 2 A�nities and functional activities of 4-fluorobutyl derived SCRAs at hCB1 and hCB2.

Compound hCB1 hCB2

pK i ± SEM

(K i, nM)

pEC50 ± SEM

(EC50, nM)

Emax ± SEM

(% CP55,940)

pK i ± SEM

(K i, nM)

pEC50 ± SEM

(EC50, nM)

Emax ± SEM

(% CP55,940)

AB-4F-BUTICA (25) 6.00± 0.11 (1,000) 7.02± 0.05 (96.5) 108± 3 7.09± 0.08 (82) 7.63± 0.05 (23.5) 97± 2

ADB-4F-BUTICA (26) 7.46± 0.08 (35) 7.39± 0.09 (40.4) 110± 4 8.10± 0.11 (8.0) 7.36± 0.12 (44.1) 105± 4

APP-4F-BUTICA (27) 5.50± 0.10 (3,200) DNCb 82± 4d 6.76± 0.01 (170) 6.51± 0.16 (306) 108± 8

AB-4F-BUTINACA (28) 6.88± 0.13 (130) 8.22± 0.06 (5.98) 107± 2 8.07± 0.07 (8.5) 8.31± 0.04 (4.85) 96± 1

ADB-4F-BUTINACA (29) 8.39± 0.08 (4.07) 8.79± 0.06 (1.61) 116± 2 9.16± 0.04 (0.69) 8.28± 0.07 (5.28) 103± 2

APP-4F-BUTINACA (30) 5.86± 0.13 (1,380) 6.30± 0.05 (504) 103± 3 7.55± 0.15 (28.2) 8.08± 0.13 (8.35) 101± 12

AB-4F-BUT7AICA (31) <5 DNCb 82± 4d 5.86± 0.07 (1,400) 6.86± 0.05 (137) 98± 4

ADB-4F-BUT7AICA (32) 5.90± 0.06 (1,300) 7.34± 0.13 (46.0) 112± 6 7.34± 0.06 (46) 8.30± 0.04 (4.99) 108± 2

APP-4F-BUT7AICA (33) <5 NDc 25± 14d 5.62± 0.04 (2,400) 5.93± 0.16 (1,170) 99± 12

MMB-4F-BUTICA (34) 7.01± 0.10 (97.7) 7.11± 0.04 (76.9) 116± 3 7.57± 0.05 (26.9) 7.95± 0.05 (11.4) 102± 2

MDMB-4F-BUTICA (7) 7.88± 0.12 (13.2) 8.47± 0.08 (3.43) 114± 3 9.30± 0.12 (0.35) 8.54± 0.05 (2.87) 110± 3

MPP-4F-BUTICA (35) 6.57± 0.10 (270) 7.44± 0.06 (36.6) 105± 2 8.22± 0.06 (6.1) 8.00± 0.05 (10.1) 100± 2

MMB-4F-BUTINACA (36) 7.50± 0.15 (32) 8.41± 0.08 (3.93) 103± 2 8.81± 0.09 (1.6) 8.42± 0.08 (3.76) 100± 2

MDMB-4F-BUTINACA (8) 8.21± 0.13 (6.2) 9.39± 0.17 (0.41) 106± 3 9.92± 0.09 (0.10) 8.48± 0.14 (3.28) 103± 5

MPP-4F-BUTINACA (37) 7.47± 0.13 (34) 8.25± 0.12 (5.62) 106± 3 9.34± 0.05 (0.50) 8.33± 0.10 (4.65) 101± 3

MMB-4F-BUT7AICA (38) 6.65± 0.05 (220) 5.86± 0.18 (1,390) 115± 16 7.22± 0.02 (61) 7.30± 0.13 (49.6) 114± 6

MDMB-4F-BUT7AICA (39) 6.97± 0.08 (107) 7.65± 0.08 (22.2) 109± 3 8.67± 0.07 (2.14) 8.41± 0.08 (3.88) 95± 2

MPP-4F-BUT7AICA (40) 6.06± 0.13 (880) 6.20± 0.14 (637) 122± 10 7.54± 0.08 (29) 7.57± 0. 17 (26.9) 110± 6

aData represent mean values± standard error of the mean (SEM) from 3 to 6 independent experiments;
bDid not converge (DNC);
cNot determined (ND): <50% change in fluorescence at 10 µM;
dMaximal response at 10 µM.
AB, [(S)-2-amino-3-methylbutanamide]; ADB, [(S)-2-amino-3,3-dimethylbutanamide]; APP, [(S)-2-amino-3-phenylpropanamide]; MMB, [methyl (S)-2-amino-3-methylbutanoate];
MDMB, [methyl (S)-2-amino-3,3-dimethylbutanoate]; MPP, methyl [(S)-2-amino-3-phenylpropanoate]; 4-CN-BUT, 4-cyanobutyl; 4F-BUT, 4-fluorobutyl; ICA, indole-3-carboxamide;
INACA, indazole-3-carboxamide; 7AICA, 7-aza-indole-3-carboxamide.

selectivity for the phenylalaninamide group. In general, the
SARs described here corroborate the observed structure-affinity
trends for the compounds in the present study, as well as those
previously found (54).

In silico molecular docking study

To rationalize the novel SARs observed in vitro at CB1 and
CB2, we performed docking for each of the screened ligands
using the cryo-EM structures of the CB1 (PDB ID: 6N4B)
and the CB2 (PDB ID: 6PT0) receptors retrieved from the
Research Collaboratory for Structural Bioinformatics Protein
Databank (RCSB PDB) (57–59). These agonist-bound structures
were chosen for the similarity between our compounds and the
cognate ligands MDMB-FUBINACA (6N4B) and WIN 55,212-
2 (6PT0).

When docking at CB1 there were π-π interactions between
each of the ligands and residues PHE200 and PHE268. The

flexible 4-fluorobutyl and 4-cyanobutyl tail groups occupied a
hydrophobic pocket comprised of MET363, LEU276, TYR275,
LEU193, and ILE271. There is also a common polar interaction
between the amide linker carbonyl and SER383, as well as the
terminal carbonyl and HIE178.

Docking at CB2 was dictated by hydrophobic interactions
between the core and PHE117, and PHE183 residues. The
flexible tail occupied a pocket comprised of TRP194, ILE186,
TYR190, and SER165. The amide and ester head groups
occupied a pocket comprised of PHE91, PHE94, HIS95, and
PRO184. Ligands bearing a terminal amide had the potential
for H-bonding with the backbone carbonyl of PHE183. Pairs
of docking poses for ligands that differed by tail substitution
were selected for strain rescoring (see SI, figures S105–116 for
all calculated docking poses). This allowed us to investigate
the SAR described in the in vitro section, wherein many 4-
fluorobutyl ligands showed higher affinity for the CB2 receptor
than their 4-cyanobutyl counterparts. Given the lack of formal
intermolecular interactions possible for this substituent, the
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FIGURE 4

Functional activities of compounds 5–40 at hCB1 and hCB2, relative to CP55,940. E�cacies are normalised to maximal response of 1µM

CP55,940. Vertical sets indicate the same heterocyclic core (left = indole; centre = indazole; right = 7-azaindole). Graphs are grouped by tail,

with rows indicating alkyl tails, either 4-cyanobutyl (rows 1 and 3), or 4-fluorobutyl (rows 2 and 4). Dashed lines indicate where curve could not

be fit. Data is expressed as means ± SEM from 3 to 6 independent experiments.

effect is likely due to the size-constraints of the binding pocket
for CB2 as compared with CB1. Figure 5 shows an overlay of
compounds 9 and 26 at both CB1 and CB2, as well as the
computed hydrophobic regions of the binding site. Relative
to CB1, the CB2 binding site region occupied by the 4-
fluorobutyl or 4-cyanobutyl tail is significantly constrained.
This was observed by Sitemap calculation on the active site
of CB1 and CB2 receptors as illustrated in Figure 5. This may
force the longer and more rigid 4-cyanobutyl tail into a higher
strain conformation to adopt the predicted binding pose. The
strain energy of the ligands in their bound state relative to
their unbound state was calculated, and the values compared
for analogous ligands (see SI Table T1). The mean difference
and standard error between the docked 4-cyanobutyl and 4-
fluorobutyl ligands were 0.220 ± 0.400 kcal/mol at CB1 and
2.552± 0.468 kcal/mol at CB2.

Conclusions

The detected SCRAs AB-4CN-BUTICA, MMB-4CN-
BUTINACA, MDMB-4F-BUTICA, MDMB-4F-BUTINACA, as
well as a series of 32 analogs, were synthesized, characterized,
and evaluated in vitro using a radioligand binding assay
and a functional membrane potential assay at both human
CB1 and CB2. These data confirm that AB-4CN-BUTICA,
MMB-4CN-BUTINACA, MDMB-4F-BUTICA, MDMB-4F-
BUTINACA are potent and efficacious cannabinoid receptor
ligands. Most analogs in the present study, barring the
APP (phenylalaninamide) derivatives, were also potent and
efficacious cannabinoid ligands. SAR trends observed here
were consistent with those previously described for with
respect to head group and core group contributions to ligand
activity (30, 36, 50, 54, 69, 72). The increased affinity for
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FIGURE 5

Computationally predicted binding modes of 9 (orange) and 26 (green) overlayed at CB1 (A), PDB:6N4B and CB2 (B), PDB:6PT0 (57, 58). The

hydrophobic regions of the binding site (grey) were evaluated with SiteMap (67). Glide docking was performed using the Schrodinger

computational chemistry suite (66).

4-fluorobutyl derivatives at CB2 is likely to arise from increased
strain of the 4-cyanobutyl tail in the hydrophobic tail pocket.
Given these pharmacological data, availability of precursory
chemical building blocks, ease of synthesis, and structural
similarity to previous SCRAs, the compounds evaluated in
this study should be monitored as potential emerging NPS in
the marketplace.
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Glossary

[3H]CP55,940, Tritiated 2-((1R,2R,5R)-5-hydroxy-2-(3-
hydroxypropyl)cyclohexyl)-5-(2-methyloctan-2-yl)phenol
AB-4CN-BUTICA, (S)-N-(1-amino-3-methyl-1-oxobutan-2-
yl)-1-(4-cyanobutyl)-1H-indole-3-carboxamide
ADB-BUTINACA, (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-
2-yl)-1-butyl-1H-indazole-3-carboxamide
AtT20, Mouse AtT20 FlpIn adenocarcinoma cells
BSA, Bovine serum albumin
CB1, Cannabinoid receptor 1
CB2, Cannabinoid receptor 2
CD3OD, Deuterated methanol (d4)
CDCl3, Deuterated chloroform
CH2Cl2, dichloromethane
CP55,940, 2-((1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)
cyclohexyl)-5-(2-methyloctan-2-yl)phenol
cryo-EM, Cryogenic electron microscopy
DMEM, Dulbecco’s modified eagle medium
DMF, Dimethylformamide
DMSO, Dimethyl sulfoxide
DMSO-d6, Deuterated dimethyl sulfoxide (d6)
DNC, Did not converge
EC50, Half maximal effective concentration
EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
EDTA, Ethylenediaminetetraacetic acid
Emax, Maximum effect
Et3N, Triethylamine
EtOAc, Ethyl acetate
FBS, Fetal bovine serum
FTIR, Fourier-transform infrared spectroscopy
Gβγ, G beta-gamma subunit
GIRK, G protein-coupled inwardly rectifying potassium channel
HA, Haemagglutinin
hCB1, Human cannabinoid receptor 1
hCB2, Human cannabinoid receptor 2
HEK, Human embryonic kidney cells

HEPES, 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethane-1-
sulfonic acid
HOBt, 1-hydroxybenzotriazole
HRMS, High resolution mass spectrometry
JWH-018, Naphthalen-1-yl(1-pentyl-1H-indol-3-yl)methanone
Kd, Equilibrium dissociation constant
Ki, Inhibition constant
LC-UV, Liquid chromatography- Ultraviolet
m.p., Melting point
MDMB-4F-BUTICA, Methyl (S)-2-(1-(4-fluorobutyl)-1H-
indole-3-carboxamido)-3,3-dimethylbutanoate
MDMB-4F-BUTINACA, Methyl (S)-2-(1-(4-fluorobutyl)-1H-
indazole-3-carboxamido)-3,3-dimethylbutanoate
MDMB-FUBINACA, Methyl (S)-2-(1-(4-fluorobenzyl)-1H-
indazole-3-carboxamido)-3,3-dimethylbutanoate
MeOH, Methanol
MgSO4, Magnesium sulfate
MMB-4CN-BUTINACA, a.k.a. AMB-4CN-BUTINACA,
methyl (1-(4-cyanobutyl)-1H-indazole-3-carbonyl)-L-valinate
MS, Mass spectrometry
Na2SO4, Sodium sulfate
NaH, Sodium hydride
ND, Not determined
NMR, Nuclear magnetic resonance
NPS, New psychoactive substance
PBS, Phosphate buffered saline
PEI, Branched polyethyleneimine
pplss, Preprolactin signal sequence
RCSB PDB, Research Collaboratory for Structural
Bioinformatics Protein Databank
RMSD, Root-mean-square deviation
SARs, Structure activity relationships
SCRA, Synthetic cannabinoid receptor agonist
SEM, Standard error of the mean
THC, 19-tetrahydrocannabinol
XP, Extra Precision
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