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Schizophrenia (SCZ) is a serious mental condition with an unknown cause.

According to the reports, Brodmann Area 10 (BA10) is linked to the pathology

and cortical dysfunction of SCZ, which demonstrates a number of replicated

findings related to research on SCZ and the dysfunction in tasks requiring

cognitive control in particular. Genetics’ role in the pathophysiology of SCZ

is still unclear. Therefore, it may be helpful to understand the e�ects of these

changes on the onset and progression of SCZ to find novel mechanisms

involved in the regulation of gene transcription. In order to determine

the molecular regulatory mechanisms a�ecting the SCZ, the long non-

coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs)

axes in the BA10 area were determined using a bioinformatics approach

in the present work. A microarray dataset (GSE17612) consisted of brain

post-mortem tissues of the BA10 area from SCZ patients and matched

healthy subjects was downloaded from the Gene Expression Omnibus (GEO)

database. This dataset included probes for both lncRNAs and mRNAs.

Using the R software’s limma package, the di�erentially expressed lncRNAs

(DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were

also discovered using the DIANA-LncBase and miRTarBase databases. In the

ceRNA network, positive correlations betweenDEmRNAs andDElncRNAswere

evaluated using the Pearson correlation coe�cient. Finally, lncRNA-associated

ceRNA axes were built by using the co-expression and DElncRNA-miRNA-

DEmRNA connections. We identified the DElncRNA-miRNA-DEmRNA axes,

which included two key lncRNAs (PEG3-AS1, MIR570HG), seven key miRNAs
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(hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-191-5p, hsa-

miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p), and eight key mRNAs (EGR1,

ETV1, DUSP6, PLOD2, CD93, SERPINB9, ANGPTL4, TGFB2). Furthermore,

DEmRNAs were found to be enriched in the “AGE-RAGE signaling pathway

in diabetic complications”, “Amoebiasis”, “Transcriptional misregulation in

cancer”, “Human T-cell leukemia virus 1 infection”, and “MAPK signaling

pathway”. This study o�ers research targets for examining significantmolecular

pathways connected to the pathogenesis of SCZ, even though the function of

these ceRNA axes still needs to be investigated.

KEYWORDS

bioinformatics analysis, competing endogenous RNA, long non-coding RNA,

microarray, schizophrenia

Introduction

Schizophrenia (SCZ) is a mentally destructive ailment

affecting young adults. Its symptoms comprise a spectrum of

delusions, hallucinations, and cognitive impairment (1). About

one percent of the population is affected by this condition on a

worldwide scale (2). It is believed that complicated interactions

between genetic and environmental factors contribute to the

pathophysiology of SCZ (3, 4). Transcriptional changes in

the post-mortem human brain that are correlated with SCZ

have been appraised in various studies using microarray or

RNA-sequencing (5). Such studies revealed alterations in the

expression of genes involved in a variety of biological processes

in various parts of the brain, including the anterior prefrontal

cortex (Brodmann area 10; BA10) (6–8). To devise new

diagnostic techniques and individualized therapies for SCZ,

we need to augment our knowledge of molecular processes

that are involved in the onset and exacerbation of SCZ.

Recent findings about novel mechanisms of gene expression

regulation can be useful in understanding how changes in

these regulatory mechanisms can affect SCZ formation and

progression (9). Non-coding RNAs (ncRNAs) play an important

role in the regulation of gene expression. One of the proposed

mechanisms for the involvement of these transcripts in the

control of gene expression is the competing endogenous RNA

(ceRNA) hypothesis (10). In this novel regulatory mechanism,

ncRNAs, especially long non-coding RNAs (lncRNAs), regulate

other RNA transcripts through sponging shared microRNAs

(miRNAs) (11). Cross-talk between RNAs, including coding

RNAs and ncRNAs, through miRNA complementary sequences

known as miRNA response elements (MREs), produces a

large-scale regulatory network throughout the transcriptome,

according to this notion. If two RNA transcripts regulate each

other by a ceRNA-mediated mechanism, then the expression

levels of these two RNA transcripts would be negatively

correlated with the levels of target miRNAs and positively

correlated with each other (11).

Although multiple investigations have shown that ceRNA

networks differ in SCZ (9, 12–14), the role of ceRNA networks

in the pathogenesis of SCZ remains to be elucidated, and it is

of great importance to evaluate the expression of downstream

affected genes by these networks. With the emergence of

high throughput techniques such as RNA-sequencing and

microarray, assessing the expression of numerous genes

simultaneously became possible, and a bulk amount of

information about the expression profile of different samples

has been made publicly available for the scientific community.

Different computational methods can be utilized to analyze

these bulk data to unravel potential regulatory mechanisms

like ncRNA networks that contribute to SCZ (9, 13, 14).

RNAs are more “druggable” than proteins because they

can be simply targeted by corresponding complementary

sequences. These unique features make it easier and economical

to design and develop drugs targeting RNA molecules as

novel therapeutic targets (15–17). CeRNA networks contain

a variety of transcripts, which makes them useful for

exploring possible treatment targets for complex diseases

like SCZ, even if only one of them is targeted (i.e., an

immediate fluctuation in the levels of various disease-related

RNAs) (18).

The objective of this bioinformatics-based study was to

identify the expression patterns and relevant lncRNA-associated

ceRNA regulatory axes in the BA10 brain region of SCZ patients.

Methods

In the current study, a microarray dataset (GSE17612)

consisting of brain post-mortem tissues of the BA10 area

from SCZ patients and matched healthy subjects was analyzed.
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Differentially expressed lncRNAs (DElncRNAs) and mRNAs

(DEmRNAs) were extracted from the dataset, and lncRNA-

miRNA-mRNAs axes were constructed by utilizing previously

published bioinformatic approaches (13).

Data collection of the gene expression
profile

We obtained the GSE17612 dataset from the NCBI Gene

Expression Omnibus database (GEO, https://www.ncbi.nlm.

nih.gov/geo/). In this dataset, the GPL570 platform (HG-

U133_Plus_2) was used as microarray chip that included probes

for mRNAs and lncRNAs. The GSE17612 dataset contains brain

post-mortem tissues of the BA10 area from 28 patients with SCZ

and 23 matched healthy subjects (8). Demographic information

is shown in Table 1. According to the original study, RNA

integrity number (RIN) was employed as the major inclusion

criterion to assess the quality of the RNA. The RINwas evaluated

using spectrophotometry to estimate the amount of extracted

RNA, and an Agilent 2100 Bioanalyzer (South Plainfield, NJ,

USA) was used to evaluate the RNA’s quality. The RIN was used

to classify samples into three quality categories: pass (RIN >

7.0), borderline (RIN 6.0-7.0), and fail (RIN < 6.0) (8). Five

samples in the fail group were excluded from the study after

classification. In addition, six samples were excluded following

the evaluation of hybridization quality (8). A total of 51 samples

were included (8).

Data preprocessing and identification of
DEmRNAs and DElncRNAs

We employed Robust Multichip Average (RMA) method

for background correction and quantile normalization of all

primary data records (19). In addition, to exclude insignificant

probe sets with no expression, we performed an interquartile

range (IQR) filter (IQR across the samples on the log2 scale

larger than median IQR), that was followed by an intensity

filter (a minimum of >100 expression signals in a minimum

of 25% of the arrays) (20). AgiMicroRna Bioconductor package

(version 2.46.0) was used for quality control. We applied

removeBatchEffect() function from the limma package and

added age and gender as covariates in all statistical models

to adjust for possible effects. We applied linear models for

microarray data (limma) package (version 3.52.2) of R (version

4.2.1) for differential gene expression analysis between patients

with SCZ and control subjects (21) in Bioconductor (https://

www.bioconductor.org/) (22). We used the same approach in

our previous paper to recognize lncRNA probes (13). We

downloaded the latest list of lncRNAs from the HUGO Gene

Nomenclature Committee (HGNC) (https://www.genenames.

org/) with approved symbols (23). Then after, we merged

obtained lncRNAs list with the dataset based on their gene

symbols to retrieve common lncRNAs between the lncRNAs

list and dataset. Student t-test was applied to evaluate

the statistical significance of differential expression, and P-

value adjustment was carried out using Benjamini-Hochberg

method. Cut-off values applied in this study were set as

follows: (1) a false discovery rate (adjusted P-value) < 0.001,

and (2) |log2 fold change (log2FC) | > 0.5. Finally, a

volcano plot and heat map of DEGs was drawn using the

Enhanced Volcano (version1.14.0) and the Pheatmap (version

1.0.12) packages.

RNA interaction pairs prediction

We utilized DIANA-LncBase v3 to identify miRNAs

targeting DElncRNAs based on experimentally validated

interaction (24). The DIANA-LncBase query was performed

based on the “Species” of Homo Sapiens and high “miRNA

Confidence Levels”. Also, we recognized miRNAs targeting

mRNAs using miRTarBase (25); only the interactions with

strong experimental evidence were included in the study.

By comparing the mRNAs obtained from miRTarBase and

the previously identified DEmRNA, the common mRNAs

were used to construct the DElncRNA-miRNA-DEmRNA

regulatory axes.

Analysis of correlation between
DEmRNAs and DElncRNAs,
protein–protein interaction (PPI) network
analysis, and lncRNA-associated ceRNA
axes construction

We investigated the positive correlation between

DElncRNAs and DEmRNAs in ceRNA networks using Pearson

correlation analysis. DELncRNAs, targeted DEmRNAs, and the

interacting miRNAs were omitted upon observing opposing

expression patterns between the targeted DEmRNAs and

DElncRNAs. The correlations were calculated and illustrated

using bcdstats (version 0.0.0.9005) and corrplot (version 0.92)

R packages. Inclusion criteria was based on Pearson correlation

coefficient (r) > 0.5 and false discovery rate (FDR) < 0.001.

The online STRING database (https://string-db.org/) (26) was

utilized to create a PPI to prognosticate the interactions among

DEmRNAs encoding proteins. For PPI network construction,

a combined score of 0.4 (medium confidence) was selected.

Visualization of these PPI and construction of ceRNA networks

was carried out using Cytoscape software (version 3.8.0) (27).
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TABLE 1 Demographic information.

Sample Source name Age Gender Ph Post-mortem

delay (h)

GSM439778 Brain BA10 post-mortem schizophrenic 74 Male 6 4.5

GSM439779 Brain BA10 post-mortem control 72 Male 6.8 12

GSM439780 Brain BA10 post-mortem control 89 Female 6.5 5

GSM439781 Brain BA10 post-mortem schizophrenic 85 Female 5.9 3.5

GSM439782 Brain BA10 post-mortem control 61 Male 6.2 16.5

GSM439783 Brain BA10 post-mortem control 54 Female 6.5 4

GSM439784 Brain BA10 post-mortem schizophrenic 41 Male 6.3 8

GSM439785 Brain BA10 post-mortem schizophrenic 71 Male 6 6.5

GSM439786 Brain BA10 post-mortem schizophrenic 77 Male 6.1 3

GSM439787 Brain BA10 post-mortem control 90 Female 5.7 12.5

GSM439788 Brain BA10 post-mortem control 91 NA 6.3 4.5

GSM439789 Brain BA10 post-mortem control 54 Male 6.6 12

GSM439790 Brain BA10 post-mortem schizophrenic 65 Female 6.1 3

GSM439791 Brain BA10 post-mortem schizophrenic 75 Male 6.3 9

GSM439792 Brain BA10 post-mortem control 78 Female 6.7 8

GSM439793 Brain BA10 post-mortem control 90 Male 6.2 6.75

GSM439794 Brain BA10 post-mortem schizophrenic 56 Male 6.4 16.5

GSM439795 Brain BA10 post-mortem schizophrenic 81 Female NA 22

GSM439796 Brain BA10 post-mortem schizophrenic 82 Male 6 11

GSM439797 Brain BA10 post-mortem control 91 Male 6.3 9.5

GSM439798 Brain BA10 post-mortem schizophrenic 82 Male 6.4 11

GSM439799 Brain BA10 post-mortem control 58 Male 6.5 15

GSM439800 Brain BA10 post-mortem schizophrenic 28 Female 6.3 11

GSM439801 Brain BA10 post-mortem schizophrenic 87 Male 6 3.5

GSM439802 Brain BA10 post-mortem control 87 Female 6.5 14.5

GSM439803 Brain BA10 post-mortem schizophrenic 72 Male 6.6 20

GSM439804 Brain BA10 post-mortem control 25 Male 6.9 17

GSM439805 Brain BA10 post-mortem schizophrenic 82 Female 5.9 8.5

GSM439806 Brain BA10 post-mortem schizophrenic 79 Male 6.1 4.5

GSM439807 Brain BA10 post-mortem schizophrenic 88 Female 5.7 7

GSM439808 Brain BA10 post-mortem control 94 Female 6.3 9.5

GSM439809 Brain BA10 post-mortem schizophrenic 63 Male 6.5 30

GSM439810 Brain BA10 post-mortem control 46 Female 6.6 4

GSM439811 Brain BA10 post-mortem schizophrenic 75 Female 6 3

GSM439812 Brain BA10 post-mortem control 68 Female 6.4 6

GSM439813 Brain BA10 post-mortem schizophrenic 83 Male 6.1 11.5

GSM439814 Brain BA10 post-mortem control 60 Male 6.9 16

GSM439815 Brain BA10 post-mortem schizophrenic 79 Male 6.3 4.5

GSM439816 Brain BA10 post-mortem control 38 Male 6.9 6

GSM439817 Brain BA10 post-mortem schizophrenic 79 Male 6.2 4

GSM439818 Brain BA10 post-mortem control 71 Female 6.3 13

GSM439819 Brain BA10 post-mortem control 91 Male 6.3 13

GSM439820 Brain BA10 post-mortem schizophrenic 97 Female 6.2 3.5

GSM439821 Brain BA10 post-mortem schizophrenic 82 Male 5.8 19.5

GSM439822 Brain BA10 post-mortem control 25 Male 6.6 12

GSM439823 Brain BA10 post-mortem schizophrenic 82 Male 6.2 5

GSM439824 Brain BA10 post-mortem schizophrenic 44 Male 6.3 4

(Continued)
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TABLE 1 (Continued)

Sample Source name Age Gender Ph Post-mortem

delay (h)

GSM439825 Brain BA10 post-mortem control 88 Female 6.8 5

GSM439826 Brain BA10 post-mortem control 67 Female 6.7 6

GSM439827 Brain BA10 post-mortem schizophrenic 67 Female 6.1 3.5

GSM439828 Brain BA10 post-mortem schizophrenic 77 Male 6.2 3

DEmRNAs pathway enrichment analysis

We performed a KEGG pathway enrichment analysis

of DEmRNAs in the ceRNA network using the Enricher

tool (28, 29).

Results

Identification of DEmRNAs and
DElncRNAs

Before implementing differential expression analysis,

background correction, normalization, and gene filtering were

carried out. The quality control of the dataset was conducted

using the AgiMicroRna Bioconductor package. To assess the

distribution of data, we drew box plots of the gene expression

data after performing normalization (Supplementary File 1).

The medians of expression level were equal for each of the

distinct arrays in the box plot, proving that the correction was

done correctly.

According to cut-off values for identification of DEGs and

DElncRNAs (|log2FC | ≥ 0.5, and adjusted P < 0.001), a

total of 183 DEmRNAs and six DElncRNAs were observed

between SCZ and control samples. Figures 1, 2 represent the

volcano plot of the DEmRNAs and heatmap of DElncRNAs,

respectively. Also, we summarized more details about DEGs in

Supplementary File 2.

Prediction of RNA interaction pairs

We used the DIANA-LncBase ver. 3 online tool to predict

miRNAs targeting DElncRNA. Results showed that the miRNAs

might target three of the six DElncRNAs. Then we obtained

mRNAs targeted by candidate miRNAs using miRTarBase.

Lastly, we retrieved 20 overlapping genes by comparing

mRNAs obtained from miRTarBase and DEmRNAs. Additional

information regarding RNA interaction pairs is provided in

Supplementary File 3.

Analysis of correlation between
DEmRNAs and DElncRNAs, PPI network
analysis, and lncRNA-associated ceRNA
axes construction

In this step, we applied Pearson correlation analysis of

expression levels between DEmRNAs and DElncRNAs to

explore positive correlations to establish the ceRNA hypothesis

(mRNAs’ expression is positively modulated by lncRNAs

through sponging miRNAs; Figure 3). We constructed a ceRNA

network based on interactions of DElncRNA, miRNA, and

DEmRNA, co-expression pattern of DElncRNA and DEmRNA,

and PPIs to indicate the lncRNAs associated ceRNA axes in

the brain BA10 region that are related to SCZ (Figure 4).

CeRNA axes consisted of two DElncRNAs [PEG3 Antisense

RNA 1 (PEG3-AS1), MIR570 Host Gene (MIR570HG)], eight

DEmRNAs [Early Growth Response 1 (EGR1), ETS Variant

Transcription Factor 1 (ETV1), Dual specificity phosphatase

6 (DUSP6), Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase

2 (PLOD2), CD93, Serpin Family B Member 9 (SERPINB9),

Angiopoietin Like 4 (ANGPTL4), Transforming Growth Factor

Beta 2 (TGFB2)] and seven miRNAs (hsa-miR-124-3p, hsa-

miR-17-5p, hsa-miR-181a-5p, hsa-miR-191-5p, hsa-miR-26a-5p,

hsa-miR-29a-3p, hsa-miR-29b-3p).

DEmRNAs pathway enrichment analysis

The KEGG pathway enrichment analysis was performed on

all DEmRNAs in the ceRNA network. Hence, the top enriched

KEGG pathways are mentioned as follows: “AGE-RAGE

signaling pathway in diabetic complications”, “Amoebiasis”,

“Transcriptional misregulation in cancer”, “Human T-cell

leukemia virus 1 infection”, and “MAPK signaling pathway”

(Figure 5).

Discussion

Several studies have shown brain BA9, and BA10 regions

are affected by SCZ pathology and cortical dysfunction. The

involvement of these regions is associated with cognitive
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FIGURE 1

Di�erentially expressed mRNAs (DEmRNAs) volcano plot. DEmRNAs were screened using a |(log2FC)| ≥ 0.5 and an adjusted P < 0.001 threshold.

impairment (7, 8, 30, 31). Furthermore, it has been suggested

that ceRNA regulatory axes and their related networks

contribute to a variety of neurological disorders (32). Organ, cell,

and the subcellular environment have important impacts on the

expression level of the ceRNA. Different RNA transcripts such as

lncRNAs, circular RNAs (circRNAs), pseudogenes, and mRNAs

can be involved in the ceRNA network. LncRNAs are one of the

main elements of the ceRNA network and have a pivotal role

in both normal and pathological conditions (33). It is believed

that lncRNAs have different expression patterns depending on

the development stage, cell type, and organ. The expression of

lncRNAs is strictly regulated based on their tissue specificity

and subcellular localization (34). The lncRNA-associated ceRNA

axes may have a critical role in SCZ pathogenesis, according

to the aforementioned theoretical assumptions. In the current

study, we discovered the DElncRNA-miRNA-DEmRNA, which

included two key lncRNAs, seven key miRNAs, and eight

key mRNAs.

We found two major lncRNAs (PEG3-AS1, MIR570HG) in

this investigation. It has been demonstrated that PEG3-AS1 has

been correlated with acute myeloid leukemia (35), colorectal

cancer (36), and head and neck squamous cell carcinoma (37);

however, the exact function and mechanisms of PEG3-AS1 are

poorly understood. As far as we know, the correlation between

PEG3-AS1 and SCZ has been reported in this study for the

first time; thus, additional research is required to confirm our

findings. MIR570HG (originally designated as LINC00969) is

another new lncRNA that has been reported to be linked to

intervertebral disk degeneration (IDD) (38). Zhao et al. (38)

studied the differential expression of lncRNAs in patients with

IDD in comparison to control subjects affected with spinal cord

injury using RNA-sequencing combined with quantitative real-

time PCR and identified several differentially expressed lncRNAs

in IDD patients. Among them, LINC00969 lncRNA was among

the top 10 upregulated lncRNA in nucleus pulposus samples of

IDD patients. To our knowledge, our study is the first to identify

a link between MIR570HG and SCZ, so additional research

should be done to verify the reported findings. In line with

our result, a previous study showed that LINC00969 positively

regulates the expression of the thioredoxin-interacting protein

(TXNIP) and increases IDD degeneration by acting as a ceRNA

for miR-335-3p and sponging it and modulating activation of

NLRP3 inflammasome (39). Moreover, Lee et al. (40) explored

possible gene-gene interaction in susceptibility to SCZ by

intensively searching for SNP-SNP interactions in three GWAS

datasets. They observed that one of these SNP-SNP interactions

could be understood as the interaction between FHIT and

LINC00969 (40). FHIT and LINC00969 were discovered to have

an expression in the brain and could represent a novel discovery

in SCZ research (40).

We predicted that the sponging of seven key miRNAs

(hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-

191-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p) by

key lncRNAs might influence target genes. By binding to the

non-transcript region of the target gene, miRNAs can regulate

the expression of the gene. This might have an impact on cellular

signaling and biological pathways, which may influence the

initiation and course of SCZ (41). Among the key miRNAs,

the correlation between hsa-miR-124-3p, hsa-miR-17-5p, hsa-

miR-29a-3p, and hsa-miR-29b-3p and SCZ has been studied,
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FIGURE 2

Di�erentially expressed long non-coding RNAs (DElncRNAs) heatmap. The color values correspond to normalized gene expression data. The

color and intensity of the boxes are used to reflect the expression level of DElncRNAs in each sample. The color blue shows those DElncRNAs

with low expression, while red represents those with high expression.

already. In accordance with the multi-hit and multi-layered

genetic mechanisms implicated in this and other forms of SCZ,

Ying et al. (42) proposed a potential role for miR-17-5p and

hsa-miR-124-3p perturbation involving genes affected by rare

genome-wide copy number variations in the elevated risk for

SCZ in 22q11.2 deletion syndrome. In accord with our results,

elevated levels of miR-124-3p in SCZ patients compared with

healthy controls was reported in a previous investigation (43).

In another study, Xu et al. (44) reported upregulation of miR-

124-3p in patients with SCZ. They also identified a composite

feed-forward loop consisting of EGR1-miR-124-3p-SKIL that

may have clinical significance (44). In a previous research, it

has been shown that expression of miR-29a-3p decreased in

the prefrontal cortex of SCZ patients compared to individuals

without psychiatric disorders (45), which is in line with our

findings. Finally, it has been indicated that miR-29b-3p is one

of the SCZ susceptibility loci (46). Although these findings

support our results, additional functional studies must be done

to validate our anticipated ceRNA axes.

In this study, we performed KEGG enrichment analysis

on DEmRNAs and found that significantly enriched

pathways include: “AGE-RAGE signaling pathway in

diabetic complications”, “Amoebiasis”, “Transcriptional

misregulation in cancer”, “Human T-cell leukemia virus

1 infection”, and “MAPK signaling pathway”. Advanced

glycation end products (AGEs), produced through glycation

of lipids or proteins with reducing sugars in a non-enzymatic

manner, have been associated with different illnesses, like

cardiovascular complications in patients with diabetes mellitus

(47), chronic renal failure (48), and Alzheimer’s disease (49).

Plasma pentosidine AGEs were shown to be connected to

SCZ in earlier investigations (50–52) and serve as a helpful

biomarker for the treatment-resistant-like phenotype (53).

Elevated levels of AGEs may result in psychotic symptoms
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FIGURE 3

Pearson correlation analysis. Values represent Pearson’s correlation coe�cient (r). Positive correlations are shown in blue, while negative

correlations are represented in red. False discovery rate (FDR) values greater than 0.001 are deemed unimportant (blank), and the intensity is

proportional to correlation coe�cients.

by inducing brain inflammation (54). In fact, AGEs cause

elevation of proinflammatory cytokines through binding

to a membrane-bound receptor, RAGE, that is present on

membrane of astrocytes, microglia, and neurons (55). The

blood and cerebrospinal fluid of SCZ patients have elevated

levels of pro-inflammatory indicators, such as cytokines

(56). A comprehensive epidemiological investigation has

conclusively shown that severe infections and autoimmune

illnesses are risk factors for SCZ (57). The vulnerability-

stress-inflammation paradigm may be useful for elucidating

the role of inflammation in SCZ since stress can enhance

pro-inflammatory cytokines and even lead to a persistent

pro-inflammatory state (56). SCZ is characterized by risk

genes that induce inflammation, environmental stress factors,

and immune system modifications. Typical abnormalities in

dopaminergic, serotonergic, noradrenergic, and glutamatergic

neurotransmission observed in SCZ have also been seen in

low-level neuroinflammation, and hence may be important

contributors to the onset of SCZ symptoms (56). Neuroimaging

evidence of volume loss in the central nervous system (CNS)

and microglial activation provides additional support for the

importance of a low-level neuroinflammatory process in SCZ

(56). The early twentieth century-famous infectious theory of

psychosis (58) has now gained additional scientific justification
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FIGURE 4

Long non-coding RNA (lncRNA)-associated competing endogenous RNA axes. Red and blue represents upregulation and downregulation of

ceRNAs, respectively. LncRNAs, miRNAs, and mRNAs are represented by hexagon, round rectangle, and ellipse, respectively. The dash lines

between nodes represent the interactions between proteins.

FIGURE 5

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The top five enriched pathways are displayed along with the

corresponding P-values in a bar graph. Those with significant P-values (i.e., <0.05) are matched with the colored bars. A P-value (shown with *)

shows the significant adjusted P-value (<0.05).

(59–62). It has been shown that SCZ is a multifactorial disease

that results from the interaction of SCZ susceptibility genes with

environmental factors. In addition to lots of SCZ susceptibility

genes, viral infections during the prenatal or adult period and

toxoplasmosis or Lyme disease also can have a role in this

disease (63). The discovery of infectious pathogens that are

linked to SCZ etiopathogenesis might result in the development

of novel approaches to prophylaxis, diagnosis, and therapy of

SCZ (58). The gene expression patterns playing an important

role in creating and sustaining particular cell states are exactly

regulated by a substantial number of transcription factors,

cofactors, and chromatin regulators. Perturbation of these gene

expression patterns can contribute to a wide range of illnesses,

from cancers to neurological disorders like SCZ (64). According
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to available data, SCZ may be caused by changes to the way

that different neurotransmitter systems signals are integrated.

Recently, dysregulation of cyclic adenosine monophosphate

(cAMP) and mitogen-activated protein kinase (MAPK)

signaling pathways has been observed in SCZ patients in brain

dorsolateral prefrontal cortex and anterior cingulate (65).

Primarily we found eight mRNAs in the ceRNA network,

including EGR1, ETV1, DUSP6, PLOD2, CD93, SERPINB9,

ANGPTL4, and TGFB2. Among these key mRNAs, EGR1,

DUSP6, PLOD2, CD93, SERPINB9, and TGFB2 have already

been mentioned to be related to the SCZ. The EGR1 gene is

from the EGR family of Cys2-His2-type zinc-finger proteins,

which encodes the early protein (66). Additionally, it is involved

in cell proliferation, female reproduction, immune response,

cell growth, neuronal plasticity, and memory formation (67).

EGR1 is a nuclear protein functioning in neural development

(as a transcriptional regulator) (67). Animal studies revealed

that brain function, cognitive aging, and antipsychotic drug

administration could affect the EGR1 gene (68, 69). Moreover,

downregulation of EGR1 has been reported in several studies

in SCZ patients (44, 70–73). For instance, an analysis of

reverse transcription-quantitative PCR illustrated a considerable

decline in the EGR1 expression level in peripheral blood

mononuclear cells and the prefrontal cortex in SCZ patients

(compared with controls) (44, 70, 71, 73). Also, compared to

the control samples, the downregulation of EGR1 in the anterior

cingulate cortex of SCZ samples was observed by Ramaker

et al. (72). These findings are similar to our results which

declare that the EGR1 gene is related to the pathophysiology of

SCZ. Nevertheless, some other expression studies showed up-

regulation of the EGR1 gene in fibroblasts, peripheral blood

cells (74), and in post-mortem superior temporal cortex of SCZ

(75), in which these incompatible observations could be justified

by SCZ’s heterogeneity, medications, and epigenetic processes

(76). The human DUSP6 gene is located at 12q22–q23 (77),

overlapping a locus correlated with susceptibility to bipolar

disorder. This gene’s genetic association with SCZ and bipolar

disorder has been represented (78). Furthermore, DUSP6 is

referred to asMAPKinase Phosphatase 3 (MKP3) (a cytoplasmic

phosphatase), which is more selective for extracellular signal-

regulated kinase1/2 (ERK1/2) compared to other MAPK

isoforms (79, 80). Additionally, PLOD2 is recognized as an

enzyme for mediating the formation of stabilized collagen

cross-links in collagen (through the hydroxylation of lysyl

residues) (81). Our results from the up-regulation of PLOD2

are concordant with previous studies (82). A negative regulator

in astrogenesis and participating in the regulation of CNS

inflammation is CD93, familiar for its immune functions (83,

84). CD93 was widely and ubiquitously expressed in the brain

and may be involved in the regulation of innate and adaptive

immunity in the CNS. Similarly, we reported results from

the bioinformatics analysis, such as up-regulation of CD93 in

ceRNA axes in the hippocampus, BA46, and striatum samples

obtained from patients with SCZ (14). An intracellular inhibitor

of the cytotoxic protease granzyme B (grB) is SERPINB9 which

was previously named PI-9 in humans (SPI6 in mice) (85). It is

generated in CD8+ T and NK cells (with a nucleo-cytoplasmic

distribution), which is vital for these cells’ protection against

grB-mediated apoptosis (85). With regards to the former

investigations, SERPINB9 protein was upregulated in SCZ

organoids (86), which meets our results. The TGFBs manage

various cells’ growth, differentiation, and function and have been

involved in several disease processes (87). Notably, according

to the reports, TGFB2 seems to be a critical driver in the

dysregulation of numerous genes related to SCZ (88). Moreover,

aberrant epigenetic regulation of TGFB2 and alteration in TGFβ

signaling might contribute to loss or reversal of brain laterality

in SCZ cases. A previous study revealed that clozapine exposure

is correlated with down-regulation of ANGPTl4 (89). Clozapine,

an uncommon antipsychotic treatment, is used for SCZ patients

with other antipsychotic drug resistance (90). ANGPTL4 is

linked with triglyceride and high-density lipoprotein cholesterol

levels (91); hence it could be related to the higher risk of type 2

diabetes in SCZ patients treated with clozapine drug (89, 92).

Delplanque et al. reported that ETV1, another key mRNA in

the ceRNA network, correlates with spinocerebellar ataxia 21

(another mental disorder) (93). A member of the ETS family (E

twenty-six) of transcription factors is encoded by ETV1. This

transcription factor can attach to distinct DNA sequences in

the promoter/enhancer regions of genes and regulate several

biological pathways (94).

It should be noted that a number of technical factors,

including various methodologies, patient characteristics, sample

preparation, data analysis, and platforms, could have an impact

on the gene expression profiles. Furthermore, small sample size

may compromise statistical power. On the other hand, potential

covariates (e.g., RNA extraction quality, post-mortem interval,

and antipsychotic treatment) were not statistically controlled.

Finally, our findings must be supported by confirmatory

experimental work and comparisons to reanalysis of modified

microarray gene expression.

Conclusion

Our study discovered ceRNA axes associated with

lncRNAs, which may be important for SCZ. These axes

consist of eight key mRNAs (EGR1, ETV1, DUSP6,

PLOD2, CD93, SERPINB9, ANGPTL4, TGFB2), two key

lncRNAs (PEG3-AS1, MIR570HG), and seven key miRNAs

(hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-

191-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p).

Despite the need to understand the functions of these

axes, this work provides possible research targets for

looking at molecular pathways that might be important

for SCZ pathogenesis.
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