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In neuroscience, protein activity characterizes neuronal excitability in
response to a diverse array of external stimuli and represents the cell state
throughout the development of brain diseases. Importantly, it is necessary
to characterize the proteins involved in disease progression, nuclear function
determination, stimulation method effect, and other aspects. Therefore, the
quantification of protein activity is indispensable in neuroscience. Currently,
Imaged software and manual counting are two of the most commonly used
methods to quantify proteins. To improve the efficiency of quantitative protein
statistics, the you-only-look-once-v5 (YOLOv5) model was proposed. In this
study, c-Fos immunofluorescence images data set as an example to verify
the efficacy of the system using protein quantitative statistics. The results
indicate that YOLOV5 was less time-consuming or obtained higher accuracy
than other methods (time: ImageJ software: 80.12 + 1.67 s, manual counting:
341 £ 0.25 s, YOLOvV5: 0.0251 + 0.0003 s, p < 0.0001, n = 83; simple linear
regression equation: ImageJ software: Y = 1.013 x X + 0.776, R2 = 0.837;
manual counting: Y = 1.0*X + 0O, R2 = 1; YOLOV5: Y = 0.9730*X + 0.3821,
R? = 0.933, n = 130). The findings suggest that the YOLOV5 algorithm provides
feasible methods for quantitative statistical analysis of proteins and has good
potential for application in detecting target proteins in neuroscience.

neuroscience, neuron activity, c-Fos, deep learning, quantitative statistics

Introduction

Proteins, as biological macromolecules, play an important role in life activities and
are an indispensable part of scientific research, revealing the mysteries of life (1). They
are involved in the regulation of gene expression (2), redox (3), neurotransmission
(4), learning and memory (5), as well as other cellular activities. In neuroscience,
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protein research is essential. c-Fos is a type of protein
that reflects proto-oncogenes; it has been extensively used
as a marker for the activation of neurons (6), especially in
physical neuromodulation methods of optogenetics (7), deep
brain stimulation (DBS) (8), transcranial magnetic stimulation
(TMS) (9), and ultrasound stimulation (10). In biology, the
state of proteins can be used to evaluate cell activity (11),
protein misfolding and aggregation, which can be detected to
assess the development of brain diseases such as Parkinson’s
disease (alpha-synuclein), Alzheimer’s disease (AD) (amyloid
beta) and Huntington’s disease (huntingtin) (12). Therefore,
it is important to develop a method for identifying and
quantifying proteins.

Currently, there are a few studies on the quantitative
statistical methods of proteins in immunofluorescence images.
Manual counting and Image] software (13) are most commonly
used, but they are laborious, time-consuming and cumbersome.
Fortunately, the advent of artificial intelligence (AI) technology
has overcome this dilemma. Recently, AI has been widely
used in medical image analysis and has achieved state-of-the-
art performance for several clinical tasks (14). For instance,
Pohlen et al. (15) and Lei et al. (16) segmented multi-site infant
brains based on magnetic resonance imaging (MRI) to better
understand early brain development in healthy people and
patients with disorders. Gao et al. (17), He et al. (18) and Zhang
etal. (19) utilized deep learning methods to distinguish COVID-
19 from other types of pneumonia using computed tomography
(CT) or X-ray images, responding to the urgent need to
treat COVID-19 patients effectively. Deep learning has been
successfully exploited for object detection (20), classification
(21), and synthesis of medical images (22) with remarkable
results. In addition to the aforementioned success in the field
of medical imaging, AI has also been applied extensively
to neuroscience (23). For example, automated prediction of
brain activity, such as epileptic seizures (24), dementia with
Lewy bodies (DLB), AD diagnosis (25), and brain response
that reveals a cortical processing hierarchy (26), are some of
the applications.

You-only-look-once (YOLO) is a typical one-stage object
detection algorithm (27). YOLO is characterized by high
detection speed, low background error detection rate, and
strong versatility (28). Moreover, after continuous optimization,
YOLO has now been updated to YOLOv5, and YOLOvV5
outperforms previous versions in terms of accuracy (29).
YOLOVS5 is the fastest and lightest among the YOLO series, and
has been applied in various fields. For example, in industrial
and agricultural fields, Song et al. (30) proposed a strategy to
improve the positioning accuracy of grasping robots, and Zhao
et al. (31) detected particleboard surface defects. Fan et al. (32)
used YOLOVS5 to recognize strawberry maturity. In particular,
Wan et al. (33) and Mushtaq et al. (34) demonstrated the
potential ability of YOLOV5 to detect lumbar spine deformities
and polyps from colorectal images.
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In this study, our main purpose is to apply YOLOvV5 to
fast identify and quantify the protein. Firstly, we constructed
a model to enhance image resolution at low magnification.
Subsequently, an object detection model was utilized for cell
recognition. Finally, we compared the performance of the
proposed YOLOV5 with two traditional methods.

Materials and methods
Image acquisition

Immunofluorescence images were collected from the
Shenzhen Institutes of Advanced Technology, Chinese Academy
of Sciences and Shanghai Key Laboratory of Psychotic
Disorders. C-Fos is a marker of neuronal activation which is
widely used to locate external stimulation in rodent animals (6,
35), and c-Fos images obtained by ultrasound stimulation were
selected as the training data. Mice were stimulated by ultrasound
for 30 min and placed in a quiet room for 60-90 min. Then,
the mice were sacrificed and brain tissues were obtained. The
brain tissues were cut into slices of a 20 mm thickness and pre-
rinsed three times with phosphate buffer saline. The slices were
permeabilized and blocked at room temperature for 1 h and
incubated with primary antibodies (c-Fos, Synaptic Systems,
226003) at 4°C for over 12 h. The slices were then washed thrice
and incubated with secondary antibodies (488 donkey anti-
rabbit, ThermoFisher, Waltham, MA, USA, A21206) for 3 h.
After washing, the slices were counterstained by 4, 6-diamidino-
2-phenylindole (DAPI). Images were acquired using a Nikon
confocal microscope (ECLIPSE Ti2-U, Nikon, Japan).

Data pre-processing

The pixel size of images was mostly 1,636 x 1,088 and
1,024 x 1,024, in a TIFF format. Further, the color of the
images was uniformly adjusted so that green represented
c-Fos and blue represented the nucleus. In addition, the
contrast and saturation of fluorescence images with a fuzzy
background were enhanced in terms of intensity. The images
were annotated using Labelme software and proofread by
two experienced technicians with more than five years of
experience. The annotation box was tangential to the edge
of the target cell. Some of the images needed to be enlarged
because of the different magnifications. To facilitate model
training and recognition we uniformly enlarged the images
with small magnification to twice their original size, and the
images were cut into a pixel size of 512 x 512 using the
window method. Meanwhile, the super-resolution generative
adversarial network (SRGAN) reconstruction (36, 37) was
used to offset blurred details after image enlargement. The
images with a size of 512 x 512 formed a dataset conducive
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to the parameter calculation of the model. The dataset
was randomly divided into a training set (80%) and a
test set (20%).

Network system

Super-resolution reconstruction

Generative adversarial networks (GANs) consist of two
models: a generator and a discriminator that act against
each other to produce good outputs. The generator network
purports to create samples that are as realistic as possible. The
discriminator network then determines whether the image is
from a real or fake sample set. Super-resolution reconstruction
was a difficult task until Ledig et al. (38) proposed a GAN-
related network in this field. SRGAN utilizes perceptual
losses, including adversarial and content losses, and uses a
discriminative network to distinguish the reconstructed image
from the original one. The output image reaches the level
of photorealism.

Model training

As a representative approach for object detection, the
YOLOvV5 model was used for training, and the specific model
used was YOLOvV5! which is ideal for detecting small objects
(39). The object detection task was treated as a regression
problem, and the coordinates of the bounding box, confidence
degree, and category probability of objects contained in the
box were obtained directly from the pixels of the entire image.
YOLOV5 can quickly complete object detection tasks. The
parameters were fine-tuned by our datasets, and the batch,
image size, epoch, and learning rate were 64, 512 x 512, 100,
and 0.001, respectively. Without a complex detection process,
the detection results could only be obtained by inputting
images into the neural network. To evaluate this model, we
utilized the recall and precision formulas, which are defined as
follows:

Precision = % (1)
Recall = T;ﬁ (2)

where TP is a positive sample predicted to be a positive sample,
EN is a negative sample predicted to be a negative sample, FP is
a negative sample predicted to be a positive sample, and TN is a
positive sample predicted to be a negative sample.

In addition, the average precision (AP) is the area under the
precision-recall curve and calculated as follows:

LS max(p(r(k))* (r(k) — r(k — 1)),

re{O, r(0), r(l),.r(k), 1}
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where r (k) is the kth recall rate, and p (r (k)) is the precision rate
of r (k). The pipeline of the proposed algorithm and diagram of
model structure were shown in Figures 1A, B, 2, respectively.

Data post-processing

After model training, the original image was input for
identifying. The area of interest was manually calibrated or
the entire graph was counted according to the actual situation.
When the entire graph was input, the image was windowed
and input into the network model. When the input end
was the manual calibration area, the minimum enclosing
rectangle was considered for the polygon area, and the pixel
points of the non-interesting area were set to 0. Finally,
the detection result was saved according to its confidence
value, and calculated the number of boxes as the final
counting. After testing processing, the reliable result including
processing time, and numbers, saved as a readable file for
statistical analysis.

Imaged software processing

To evaluate the performance of YOLOv5, Image] was used
as a comparison. The specific processing steps are as follows: (1)
the image was imported into Image] software, converted from
RGB color into composite, and split into three channels; (2) the
c-Fos and DAPI channels were automatically segmented using
“Minimum Threshold” and “Mean Threshold,” and created
selections, respectively; (3) selections were added in the region
of interest (ROI) manager and overlap was obtained by merged
ROIs; (4) the overlapping selection was converted into a binary
image by creating mask; (5) the binary image was analyzed by
combining the “Analyze Particles” function with a flexible preset
size range and circularity to remove false positives and obtain
the protein count.

Statistical analysis

All data from the same group are presented as mean & SD
values. An independent samples t-test was performed to
compare the results of the different methods. The statistical
significance was set at p < 0.05.

Results

Super-resolution reconstruction of
images by super-resolution generative
adversarial network

Owing to the different magnifications of the images, we
enlarged them to facilitate model training and recognition.
However, the magnified images showed blurred edges, which
were not beneficial for identifying the target proteins. Therefore,
we utilized the SRGAN model to reconstruct the images, and
then the model was trained. The pipeline and model structure
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Diagram of model structure. Images were imported into super-resolution generative adversarial network (SRGAN) model, and then the enlarged
image was inputted to you-only-look-once-v5 (YOLOvV5) model to obtain visualization results as output

were shown in Figures 1, 2, respectively. And the results showed
that the post-SRGAN images obtained more details and higher
spatial resolution (Figure 3).

Precision-recall curve of target protein

The test data constituted approximately 20% of the dataset,
which contained 4,530 c-Fos images with a size of 512 x 512.

Frontiers in Psychiatry 04

During the test, the precision values and recall values were
calculated with the epochs that range of 0-100, and the AP was
calculated at different Intersection over Union (IoU) thresholds,
as shown in Figures 4A-D. APO0.5 represents AP values for an
IoU threshold of 0.5, and AP@0.5:0.95 represents AP values
with different IoU threshold from 0.5 to 0.95 with 0.05 step
size. The precision-recall curve for an IoU threshold of 0.5 is
presented in Figure 5. As shown in Table 1, APs were assigned
for different IoU thresholds with or without SRGAN. When the
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Post-SRGAN

The images before and after super-resolution generative adversarial network (SRGAN). Left panels represent the original images. Middle panels
are the representative BICUBIC images. Right panels show the images of post-SRGAN.

IoU threshold was set to 0.75, the APs had the greatest contrast
between SGRAN and BICUBIC.

Results of different recognition
methods

To evaluate the performance of YOLOvVS5, the Image]
and manual counting were used for comparison. We used
manual counting, Image], and YOLOV5 to process the same
batch of images. For Image], we used Threshold algorithm
and Watershed algorithm, the results showed that there
was no significant difference between the two algorithms
(Supplementary Figures 1, 2). As shown in Figure 6A, there
were representative images of c-Fos recognition processed by
manual counting, ImageJ software and YOLOV5; the results
showed that more positive c-Fos cells were detected by Al
when YOLOvV5 was compared with Image] software. Curve
fitting of AI showed that most data points were evenly
distributed on either side of the fitting curve whereas some
data points were located far away from the fitting curve in
the Image] method. The fitting curves indicated that YOLOV5
was more accurate than the Image] software (simple linear
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regression equation: Image] software: Y = 1.013 x X + 0.776,
R? = 0.837; manual counting: Y = 1.0*X + 0, R? = 1; YOLOVS5:
Y = 0.9730°X + 0.3821, R? = 0.933, n = 130; Figure 6B).
Meanwhile, bar graphs indicated that YOLOV5 took the shortest
time in protein target identification (time: Image] software:
80.12 £ 1.67 s, manual counting: 3.41 + 0.25 s, YOLOV5:
0.0251 £ 0.0003 s, p < 0.0001, n = 83, Figure 6C).

Discussion

In this study, we used the YOLOV5 algorithm trained with
4,530 immunofluorescence images to distinguish the degree of
overlap between DAPI and c-Fos. We used Labelme software to
get all the images in the dataset annotated by two experienced
technicians, the dataset was divided into a training set (80%)
and a test set (20%). We then used the test set to verify
the performance of the model and achieved good results.
Overall, our findings indicate that the YOLOV5 algorithm can
quickly and efficiently identify the location and quantity of
target proteins compared to the Image] method. These results
suggest that the YOLOV5 algorithm, as a new method used in
neuroscience, can save a considerable amount of time, provide
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The test results of you-only-look-once-v5 (YOLOV5). (A) The precision values of YOLOV5 during test with epochs. (B) The recall values of
YOLOVS5 during test with epochs. (C) Average precisions (AP) values with the intersection over union (loU) threshold value as 0.5. (D) AP values
with different loU threshold values that range from 0.5 to 0.95 with 0.05 step size.
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Precision-recall curves of target protein with (blue line) and
without (red line) super-resolution generative adversarial
network (SRGAN) for intersection over union (loU) threshold
of 0.5.

TABLE 1 Average precisions (APs) for different intersection over union
(loU) thresholds based on super-resolution generative adversarial
network (SRGAN) and BICUBIC.

Image processing ~ AP@0.5:0.05:0.95  AP0.5 AP0.75
SRGAN 72.4 97.1 95.6
BICUBIC 61.3 96.1 76.9

feasible methods for quantitative statistics of proteins, and has
good potential for application in the detection of target proteins
in neuroscience.

This study also showed that the YOLOV5 algorithm, with
its high speed, low background error detection rate, and strong
versatility detection network, can detect and recognize target
proteins. The recognition and quantitative statistics of proteins
have significant implications in biology and neuroscience. The
results of this study indicated that the YOLOV5 algorithm
could accurately and quickly obtain the coordinates of the
bounding box, confidence degree, and category probability of
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c-Fos images. These findings demonstrate the potential of the
YOLOVS5 algorithm as a detection approach for recognition and
quantitative statistics of proteins.

Research on transfer learning shows that it can help small
datasets achieve better results (40, 41). Therefore, we used
a fine-tuned model in this task, which was trained from a
public pre-trained model. It can handle similar identifying
and quantifying tasks such as POMC proteins (Supplementary
Figure 3). Biologists can simply input the original image into
the model, and it will provide results that are automatically
visualized in the output (Figure 2). People who want to use this
tool need not understand any computer knowledge or change
any parameters. The trained model can complete the work
repeatedly and perfectly.

The common object in context (COCO) dataset is a
public dataset obtained by the Microsoft team that can be
used for image recognition, segmentation and captioning.
This kind of data format is called COCO. COCO dataset
proposes strict metrics for images of three different sizes (small,
medium, and large): small targets (area < 322), medium targets
(322 < area < 96%), and large targets (area > 962). The area
is measured as the number of pixels in the segmentation mask.
In our datasets the size of nuclei with c-Fos was a small target.
In state-of-the-art research on natural images, the performance
of APgyay was always the worst. Only a few detectors (42-
44) can exceed a value of 30 on this term, and APy, can
be approximately twice as much as APgn,. This is because
small targets have a low resolution, blurry images, and little
information. Consequently, the feature expression ability is
weak. In manual methods, c-Fos can be distinguished from an
image by its special color and staining range. Further, it has no
complicated background that influences fluorecytes. To solve
this problem, we used the most direct method, enlarging the
original images. This was done because the color and staining
information are of great importance for detecting c-Fos. In
data preprocessing, a trained SRGAN model was employed to
rescale images, and the image clarity was dramatically increased
compared to the normal resizing method. We also found that
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Results of different recognition methods. (A) Representative images of c-Fos recognition processed by ImageJ software (closed circles), manual
counting (white arrows) and you-only-look-once-v5 (YOLOV5) (red boxes). (B) Curve fitting between different methods. The dots show the data
and lines represent fitting curves. (C) Processing time for different methods. The data shown represent the mean =+ SD values for the indicated

n. ****p < 0.0001, from an independent samples t-test.

the preprocessing methods influenced the final metrics of the
detection model (Figure 3).

Currently, there are several methods for the quantitative
statistical analysis of proteins. Owing to the background of
the images obtained and complexity of target proteins, manual
counting, and Image] software are the two most commonly used
methods for identifying and quantifying the number of target
proteins. However, they have varying degrees of limitations
in terms of processing speed and accuracy. We used manual
counting, Image]J, and YOLOV5 to process the same batch of
images and the results showed that YOLOVS5 took the least time
and was more accurate (time: ImageJ software: 80.12 £ 1.67 s,
manual counting: 3.41 £ 0.25 s, YOLOv5: 0.0251 & 0.0003 s,
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p < 0.0001, n = 83; simple linear regression equation: Image]J
software: Y = 1.013 x X + 0.776, R? = 0.837; manual counting:
Y = 1.0*X + 0, R? = 1; YOLOv5: Y = 0.9730*X + 0.3821,
R? =0.933, n = 130, Figures 6B,C). These findings suggest that
the application of YOLOV5 saves a significant amount time and

improve the efficiency.

Various detection networks have been applied in different
fields. They are mainly divided into two types: one-stage and
two-stage detection. Among them, the YOLO (27) series and
single-shot detector (SSD) (45) are typical representations of
one-stage detection, and the faster region-based convolutional
neural network (faster-RCNN) (46) is a typical representation
of a two-stage detection model. Tahir et al. previously reported
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that the faster-RCNN had a higher accuracy (95.31%) than
YOLO (94.2%) and SSD (84.61%) in satellite imagery to detect
objects; however, YOLO is an obvious leader in terms of
speed and efficiency (47). Alkentar et al. indicated that SSD
had good detection ability but a high false positive ratio
for drone detection. Moreover, the faster-RCNN had high
recognition ability but long frame processing, and YOLO had
high recognition rate and ability to work in real time (48).
Therefore, two-stage detection has higher accuracy but slower
speed, and one-stage detection achieves end-to-end training,
which is faster but partially, sacrifices accuracy. After combining
these characteristics of the identification network, we used
YOLOVS5 in this study, which has advantages in terms of speed
and accuracy. Future improvements to the YOLO series or
applications to other networks may result in faster and more
accurate protein detection.

Owing to the limitation of image size and complexity of the
processing steps, the processing speed of the Image] software
is a disadvantage compared to the speed of manual counting.
However, Al is superior to the other methods in terms of
processing speed and accuracy. For YOLOVS5, there are certain
limitations. First, the collected dataset did not reflect all possible
staining conditions. If the images contained a large area of
the fluorescent band, our model could not classify c-Fos, and
the same color band. Therefore, a test image was needed to
ensure the quality of staining to avoid incorrect detection results
that limited the range of applications. Second, the original
images should be segmented for a convenient model learning.
Third, a large number of protein annotations were required
for training and prediction to improve identification accuracy,
but the annotations may be biased because of the subjective
evaluation of the two technicians. Finally, the three-layer or
multilayer fluorescent staining images were not included in
our study, which is important in neuroscience and biology. In
future studies, we will require more technicians to annotate
images to improve the accuracy of learning, collect a large
number of multilayer fluorescent staining images to expand the
range of applications, and improve the algorithm to increase the
efficiency of recognition.

The YOLOV5 system can be applied to other proteins, and
it could conceivably be extended to images of different types of
brain tissue and peripheral tissue cells, not only optical images
but also MRI images, positron emission tomography (PET)
images and so on. In addition, the results can also apply to the
field of neuroscience, e.g., DBS, optogenetic, TMS, ultrasound
stimulation, and so on. Importantly, the YOLOV5 system could
be applied to images of polychromatic immunofluorescence,
which could detect and count multiple proteins simultaneously,
as well as recognize various types of proteins, such as amyloid
beta, tau, alpha-synuclein, and huntingtin. Our proposed
method can thus aid the detection of proteins, which is of great
significance for the early diagnosis, progression, assessment of
curative effects, and prognostic evaluation of brain diseases,
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such as Alzheimer’s and Parkinson’s diseases. In conclusion,
object detection algorithms have great potential in the field
of neuroscience.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

YX and LX: conception and project administration. ZiL,
KS, NP, ZhL, MP, XC, and XL: data curation. KS and NP:
methodology and writing—original draft. All authors reviewed
and commented on the manuscript.

Funding

This work was supported by the National Natural Science
Foundation of China (Grant No. 11974373), the Natural
Science Foundation of Liaoning Province (Grant No. 2021-
YGJC-14), the Basic Scientific Research Project (Key Project)
of Liaoning Provincial Department of Education (Grant No.
LJKZ00042021), and Fundamental Research Funds for the
Central Universities (Grant No. N2119008).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fpsyt.2022.1011296/full#supplementary- material

frontiersin.org


https://doi.org/10.3389/fpsyt.2022.1011296
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.1011296/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.1011296/full#supplementary-material
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/

Pang et al.

References

1. Blanco A, Blanco G. “Proteins” in Medical Biochemistry. Kansas City:
Academic Press (2017). p. 21-71. doi: 10.1016/B978-0-12-803550-4.00003-3

2. Fafournoux P, Bruhat A, Jousse C. Amino acid regulation of gene expression.
Biochem J. (2000) 351:1-12. doi: 10.1042/bj3510001

3. Pendyala S, Natarajan V. Redox regulation of nox proteins. Respir Physiol
Neurobiol. (2010) 174:265-71. doi: 10.1016/j.resp.2010.09.016

4. VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM. Aging
alters the expression of neurotransmission-regulating proteins in the hippocampal
synaptoproteome. J Neurochem. (2010) 113:1577-88. doi: 10.1111/j.1471-4159.
2010.06719.x

5. Hernandez PJ, Abel T. The role of protein synthesis in memory consolidation:
progress amid decades of debate. Neurobiol Learn Mem. (2008) 89:293-311. doi:
10.1016/j.nlm.2007.09.010

6. Dragunow M, Faull R. The use of c-fos as a metabolic marker in neuronal
pathway tracing. ] Neurosci Methods. (1989) 29:261-5. doi: 10.1016/0165-0270(89)
90150-7

7. Shin Yim Y, Park A, Berrios ], Lafourcade M, Pascual LM, Soares N, et al.
Reversing behavioural abnormalities in mice exposed to maternal inflammation.
Nature. (2017) 549:482-7. doi: 10.1038/nature23909

8.Hao S, Tang B, Wu Z, Ure K, Sun Y, Tao H, et al. Forniceal deep brain
stimulation rescues hippocampal memory in Rett syndrome mice. Nature. (2015)
526:430-4. doi: 10.1038/nature15694

9. Volz L], Benali A, Mix A, Neubacher U, Funke K. Dose-dependence of changes
in cortical protein expression induced with repeated transcranial magnetic theta-
burst stimulation in the rat. Brain Stimul. (2013) 6:598-606. doi: 10.1016/j.brs.2013.
01.008

10. Niu L, Guo Y, Lin Z, Shi Z, Bian T, Qi L, et al. Noninvasive ultrasound deep
brain stimulation of nucleus accumbens induces behavioral avoidance. Sci China
Life Sci. (2020) 63:1328-36. doi: 10.1007/s11427-019-1616-6

11. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol.
(2007) 35:495-516. doi: 10.1080/01926230701320337

12. Soto C. Unfolding the role of protein misfolding in neurodegenerative
diseases. Nat Rev Neurosci. (2003) 4:49-60. doi: 10.1038/nrn1007

13. Handala L, Fiore T, Rouille Y, Helle F. QuantIF: an image] macro to
automatically determine the percentage of infected cells after immunofluorescence.
Viruses. (2019) 11:165. doi: 10.3390/v11020165

14. Law M, Seah J, Shih G. Artificial intelligence and medical imaging:
applications, challenges and solutions. Med J Aust. (2021) 214:450-2. doi: 10.5694/
mja2.51077

15. Pohlen T, Hermans A, Mathias M, Leibe B. Full-resolution residual networks
for semantic segmentation in street scenes. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. Honolulu, HI (2017). p. 4151-60.
doi: 10.1109/CVPR.2017.353

16. Lei Z, Qi L, Wei Y, Zhou Y. Infant brain MRI segmentation with dilated
convolution pyramid downsampling and self-attention. arXiv [Preprint]. (2019).
arXiv:1912.12570.

17. Gao X, Qian Y, Gao A. COVID-VIT: classification of COVID-19 from
CT chest images based on vision transformer models. arXiv [Preprint]. (2021).
arXiv:2107.01682.

18. He S, Grant PE, Ou Y. Global-local transformer for brain age estimation.
IEEE Trans Med Imaging. (2021) 41:213-24. doi: 10.1109/TM1.2021.3108910

19. Zhang L, Wen Y. MIA-COV19D: a transformer-based framework for
COVID19 classification in chest CTs. Proceeding of the IEEE/CVF International
Conference on Computer Vision Workshops. Montreal, BC (2021). p. 513-8. doi:
10.1109/ICCVW54120.2021.00063

20. Zhang Z, Sun B, Zhang W. Pyramid medical transformer for medical image
segmentation. arXiv [Preprint]. (2021). arXiv:2104.14702.

21. Xie Y, Zhang J, Shen C, Xia Y. CoTr: efficiently bridging CNN and
transformer for 3D medical image segmentation. Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Strasbourg (2021). p. 71-80. doi: 10.1007/978-3-030-87199-4_16

22. Watanabe S, Ueno T, Kimura Y, Mishina M, Sugimoto N. Generative image
transformer (GIT): unsupervised continuous image generative and transformable
model for [1231] FP-CIT SPECT images. Ann Nucl Med. (2021) 35:1203-13. doi:
10.1007/s12149-021-01661-0

23.Ienca M, Ignatiadis K. Artificial intelligence in clinical neuroscience:
methodological and ethical challenges. AJOB Neurosci. (2020) 11:77-87. doi: 10.
1080/21507740.2020.1740352

Frontiers in Psychiatry

09

10.3389/fpsyt.2022.1011296

24. Brinkmann BH, Wagenaar J, Abbot D, Adkins P, Bosshard SC,
Chen M, et al. Crowdsourcing reproducible seizure forecasting in human
and canine epilepsy. Brain. (2016) 139:1713-22. doi: 10.1093/brain/aw
w045

25. Etminani K, Soliman A, Davidsson A, Chang JR, Martinez-Sanchis B, Byttner
S, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy
bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG
PET. Eur ] Nucl Med Mol Imaging. (2022) 49:563-84. doi: 10.1007/s00259-021-
05483-0

26. Kell AJE, Yamins DLK, Shook EN, Norman-Haignere SV, McDermott JH. A
Task-optimized neural network replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy. Neuron. (2018) 98:630-44.
doi: 10.1016/j.neuron.2018.03.044

27. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-
time object detection. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. Las Vegas, NV (2016). p. 779-88. doi: 10.1109/CVPR.2016.91

28. Yao Z, Jin T, Mao B, Lu B, Zhang Y, Li S, et al. Construction and multicenter
diagnostic verification of intelligent recognition system for endoscopic images from
early gastric cancer based on YOLO-V3 algorithm. Front Oncol. (2022) 12:815951.
doi: 10.3389/fonc.2022.815951

29. Nepal U, Eslamiat H. Comparing YOLOv3, YOLOv4 and YOLOV5 for
autonomous landing spot detection in faulty UAVs. Sensors. (2022) 22:464. doi:
10.3390/522020464

30. Song Q, Li S, Bai Q, Yang J, Zhang X, Li Z, et al. Object detection method
for grasping robot based on improved YOLOV5. Micromachines. (2021) 12:1273.
doi: 10.3390/mil2111273

31. Zhao Z, Yang X, Zhou Y, Sun Q, Ge Z, Liu D. Real-time detection of
particleboard surface defects based on improved YOLOV’5 target detection. Sci Rep.
(2021) 11:1-15. doi: 10.1038/541598-021-01084-x

32. Fan Y, Zhang S, Feng K, Qian K, Wang Y, Qin S. Strawberry maturity
recognition algorithm combining dark channel enhancement and YOLOVS5.
Sensors. (2022) 22:419. doi: 10.3390/522020419

33. Wan J, Chen B, Yu Y. Polyp detection from colorectum images by
using attentive YOLOV5. Diagnostics. (2021) 11:2264.doi: 10.3390/diagnostics1112
2264

34. Mushtaq M, Akram MU, Alghamdi NS, Fatima J, Masood RF. Localization
and edge-based segmentation of lumbar spine vertebrae to identify the
deformities using deep learning models. Sensors. (2022) 22:1547. doi: 10.3390/s2204
1547

35. Qiu Z, Kala S, Guo ], Xian Q, Zhu J, Zhu T, et al. Targeted neurostimulation
in mouse brains with non-invasive ultrasound. Cell Rep. (2020) 32:108033. doi:
10.1016/j.celrep.2020.108033

36. Magsood MH, Mumtaz R, Haq IU, Shafi U, Zaidi SMH, Hafeez M.
Super resolution generative adversarial network (SRGANs) for wheat stripe rust
classification. Sensors. (2021) 21:7903. doi: 10.3390/s21237903

37. Moran MBH, Faria MDB, Giraldi GA, Bastos LE Conci A. Using
super-resolution ~ generative adversarial network models and transfer
learning to obtain high resolution digital periapical radiographs.
Comput Biol Med. (2021) 129:104139. doi: 10.1016/j.compbiomed.2020.10
4139

38. Ledig C, Theis L, Huszar F Caballero ], Cunningham A, Acosta A,
et al. Photo-realistic single image super-resolution using a generative adversarial
network. Proceeding of the IEEE Conference on Computer Vision and Pattern
Recognition. Honolulu, HI (2017). p. 105-14. doi: 10.1109/cvpr.2017.19

39. Lei X. Object Detection for Perceptually-Degraded Environments. Pomona,
CA: California State Polytechnic University (2020).

40. Pan Q, Jia M, Liu Q, Zhang L, Pan J, Lu E et al. Identifying patient-ventilator
asynchrony on a small dataset using image-based transfer learning. Sensors. (2021)
21:4149. doi: 10.3390/s21124149

41. Matsoukas C, Haslum JE Sorkhei M, Soderberg M, Smith K. What
makes transfer learning work for medical images: feature reuse & other factors.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Waikoloa, HI (2022). p. 9225-34.

42. Dai Z, Cai B, Lin Y, Chen J. Up-detr: unsupervised pre-training for object
detection with transformers. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Nashville, TN (2021). p. 1601-10. doi:
10.1109/CVPR46437.2021.00165

43. Li X, Wang W, Hu X, Li J, Tang ], Yang J. Generalized focal loss v2: learning
reliable localization quality estimation for dense object detection. Proceedings of the

frontiersin.org


https://doi.org/10.3389/fpsyt.2022.1011296
https://doi.org/10.1016/B978-0-12-803550-4.00003-3
https://doi.org/10.1042/bj3510001
https://doi.org/10.1016/j.resp.2010.09.016
https://doi.org/10.1111/j.1471-4159.2010.06719.x
https://doi.org/10.1111/j.1471-4159.2010.06719.x
https://doi.org/10.1016/j.nlm.2007.09.010
https://doi.org/10.1016/j.nlm.2007.09.010
https://doi.org/10.1016/0165-0270(89)90150-7
https://doi.org/10.1016/0165-0270(89)90150-7
https://doi.org/10.1038/nature23909
https://doi.org/10.1038/nature15694
https://doi.org/10.1016/j.brs.2013.01.008
https://doi.org/10.1016/j.brs.2013.01.008
https://doi.org/10.1007/s11427-019-1616-6
https://doi.org/10.1080/01926230701320337
https://doi.org/10.1038/nrn1007
https://doi.org/10.3390/v11020165
https://doi.org/10.5694/mja2.51077
https://doi.org/10.5694/mja2.51077
https://doi.org/10.1109/CVPR.2017.353
https://doi.org/10.1109/TMI.2021.3108910
https://doi.org/10.1109/ICCVW54120.2021.00063
https://doi.org/10.1109/ICCVW54120.2021.00063
https://doi.org/10.1007/978-3-030-87199-4_16
https://doi.org/10.1007/s12149-021-01661-0
https://doi.org/10.1007/s12149-021-01661-0
https://doi.org/10.1080/21507740.2020.1740352
https://doi.org/10.1080/21507740.2020.1740352
https://doi.org/10.1093/brain/aww045
https://doi.org/10.1093/brain/aww045
https://doi.org/10.1007/s00259-021-05483-0
https://doi.org/10.1007/s00259-021-05483-0
https://doi.org/10.1016/j.neuron.2018.03.044
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.3389/fonc.2022.815951
https://doi.org/10.3390/s22020464
https://doi.org/10.3390/s22020464
https://doi.org/10.3390/mi12111273
https://doi.org/10.1038/s41598-021-01084-x
https://doi.org/10.3390/s22020419
https://doi.org/ 10.3390/diagnostics11122264
https://doi.org/ 10.3390/diagnostics11122264
https://doi.org/10.3390/s22041547
https://doi.org/10.3390/s22041547
https://doi.org/10.1016/j.celrep.2020.108033
https://doi.org/10.1016/j.celrep.2020.108033
https://doi.org/10.3390/s21237903
https://doi.org/10.1016/j.compbiomed.2020.104139
https://doi.org/10.1016/j.compbiomed.2020.104139
https://doi.org/10.1109/cvpr.2017.19
https://doi.org/10.3390/s21124149
https://doi.org/10.1109/CVPR46437.2021.00165
https://doi.org/10.1109/CVPR46437.2021.00165
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/

Pang et al.

IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN
(2021). p. 11632-41. doi: 10.1109/CVPR46437.2021.01146

44. Wang J, Song L, Li Z, Sun H, Sun J, Zheng N. End-to-end object detection
with fully convolutional network. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Nashville, TN (2021). p. 15849-58. doi:
10.1109/CVPR46437.2021.01559

45. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. SSD: single
shot multibox detector. Proceedings of the European Conference on Computer
Vision. Glasgow (2016). p. 21-37. doi: 10.1007/978- 3-319-46448-0_2

Frontiers in Psychiatry

10

10.3389/fpsyt.2022.1011296

46. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell.
(2017) 39:1137-49. doi: 10.1109/TPAMI.2016.2577031

47. Tahir A, Munawar HS, Akram J, Adil M, Ali S, Kouzani AZ, et al. Automatic
target detection from satellite imagery using machine learning. Sensors. (2022)
22:1147. doi: 10.3390/s22031147

48. Alkentar SM, Alsahwa B, Assalem A, Karakolla D. Practical comparation of
the accuracy and speed of YOLO, SSD and Faster RCNN for drone detection. ] Eng.
(2021) 27:19-31. doi: 10.31026/j.eng.2021.08.02

frontiersin.org


https://doi.org/10.3389/fpsyt.2022.1011296
https://doi.org/10.1109/CVPR46437.2021.01146
https://doi.org/10.1109/CVPR46437.2021.01559
https://doi.org/10.1109/CVPR46437.2021.01559
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3390/s22031147
https://doi.org/10.31026/j.eng.2021.08.02
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/

	Fast identification and quantification of c-Fos protein using you-only-look-once-v5
	Introduction
	Materials and methods
	Image acquisition
	Data pre-processing
	Network system
	Super-resolution reconstruction
	Model training
	Data post-processing
	ImageJ software processing
	Statistical analysis


	Results
	Super-resolution reconstruction of images by super-resolution generative adversarial network
	Precision-recall curve of target protein
	Results of different recognition methods

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


