
fpsyt-13-1012428 October 14, 2022 Time: 6:58 # 1

TYPE Original Research
PUBLISHED 14 October 2022
DOI 10.3389/fpsyt.2022.1012428

OPEN ACCESS

EDITED BY

Frederike Schirmbeck,
Academic Medical Center, Netherlands

REVIEWED BY

Jessica Ann Wojtalik,
Case Western Reserve University,
United States
Jing Sui,
Beijing Normal University, China

*CORRESPONDENCE

Chuanjun Zhuo
chuanjunzhuotjmh@163.com;
chuanjunzhuo@nankai.edu.cn
Hongjun Tian
thj-home@163.com
Deguo Jiang
jdgjl@yahoo.cn

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Schizophrenia,
a section of the journal
Frontiers in Psychiatry

RECEIVED 05 August 2022
ACCEPTED 26 September 2022
PUBLISHED 14 October 2022

CITATION

Zhuo C, Chen G, Chen J, Yang L,
Zhang Q, Li Q, Wang L, Ma X, Sun Y,
Jia F, Tian H and Jiang D (2022)
Baseline global brain structural
and functional alterations at the time
of symptom onset can predict
subsequent cognitive deterioration
in drug-naïve first-episode
schizophrenia patients: Evidence from
a follow-up study.
Front. Psychiatry 13:1012428.
doi: 10.3389/fpsyt.2022.1012428

COPYRIGHT

© 2022 Zhuo, Chen, Chen, Yang,
Zhang, Li, Wang, Ma, Sun, Jia, Tian and
Jiang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Baseline global brain structural
and functional alterations at the
time of symptom onset can
predict subsequent cognitive
deterioration in drug-naïve
first-episode schizophrenia
patients: Evidence from a
follow-up study
Chuanjun Zhuo1,2,3*†, Guangdong Chen2†, Jiayue Chen1†,
Lei Yang1, Qiuyu Zhang1, Qianchen Li1, Lina Wang3,
Xiaoyan Ma3, Yun Sun3, Feng Jia3, Hongjun Tian1* and
Deguo Jiang2*
1Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab),
Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin
Medical University Affiliated of Tianjin Fourth Center Hospital, Tianjin, China, 2Department
of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China, 3Department of Psychiatry,
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Alterations in the global brain gray matter volume (gGMV) and global

functional connectivity density (gFCD) play a pivotal role in the cognitive

impairment and further deterioration in schizophrenia. This study aimed

to assess the correlation between alterations in the gGMV and gFCD at

baseline (1gGMV and 1gFCD), and the subsequent alterations of cognitive

function in schizophrenia patients after 2-year antipsychotic treatment.

Global-brain magnetic resonance imaging scans were acquired from 877

drug-naïve, first-episode schizophrenia patients at baseline and after two

years of antipsychotic treatment with adequate dosage and duration, and

200 healthy controls. According to 1gGMV at baseline, schizophrenia patients

were divided into mild, moderate, and severe alteration groups. The MATRICS

consensus cognitive battery and Global Deficit Score (GDS) were used to

assess cognitive impairment. We found that 1gGMV and 1gFCD at baseline

were significantly correlated with the severity of the cognitive deterioration

(1GDS). The correlation coefficient indicated a significant positive correlation

between baseline 1gFCD and subsequent cognitive deterioration, with a

relatively stronger relation in the mild alteration group (r = 0.31). In addition,

there was a significant positive correlation between baseline 1gGMV and
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subsequent cognitive deterioration, with a stronger relation in the moderate

and severe alteration groups (r = 0.303; r = 0.302, respectively). Our

results showed that 1gGMV and 1gFCD are correlated with the severity of

cognitive deterioration after completion of a 2-year antipsychotic treatment

in schizophrenia patients. These findings suggest that baseline alterations in

gGMV and gFCD hold potential for predicting subsequent cognitive decline

in schizophrenia.
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Introduction

The neurodevelopment hypothesis of schizophrenia,
suggesting that disruption of brain development in early life
increases the risk of later developing of schizophrenia, was
initially proposed in the early years of the 21st century. In
the past 30 years, this hypothesis has matured sufficiently to
incorporate childhood and adult adversity, urban living and
migration, as well as heavy cannabis use, as important risk
factors (1–3). Currently, the neurodevelopmental hypothesis of
schizophrenia has morphed into the developmental risk factor
model, after taking into account multiple lines of evidence
that schizophrenia is not a discrete disease entity rather the
severe end of a broader multidimensional psychosis spectrum
(3–5). Numerous studies have demonstrated that there exists a
continuum of subclinical psychotic symptoms, often associated
with subtle cognitive deficits, extending into the general
population and that the same factors that influence risk of
schizophrenia also influence the prevalence of minor psychotic
symptoms in the general population (6–9). Recent studies have
provided further evidence in support that subtle cognitive and
motor impairments appear early in life and that an abnormal
neural maturation process increases the risk of developing
schizophrenia spectrum disorders (10–14).

At present, cognitive impairment is viewed as a central
feature of schizophrenia, affecting approximately 80% of
patients, and impaired cognitive functioning represents one
of the main obstacles to clinical and functional recovery (15–
17). Interestingly, brain structural and functional alterations
were observed in any stage of schizophrenia, and usually
accompanied with cognitive impairments (18–26). Mounting
evidence converges that cognitive impairment arises before the
onset of psychotic-like symptoms and may play a pivotal role in
the onset, development and prognosis of schizophrenia (10–14,
27). However, identifying cognitive impairments that precede
the onset of illness is arduous, because cognitive deficits at
the early stages of disease are subtle, but become increasingly
pronounced as the patient’s progress from the prodromal phase

to the first episode of psychotic symptoms (28–30). The rate
at which patients show cognitive deterioration has been shown
to differ among schizophrenia patients from the first episode
of psychotic symptoms, experiencing mild to severe cognition
impairment, especially over the first two years of antipsychotic
treatment, even with adequate dosage and duration (27, 31–36).

The past three decades of research have witnessed
substantial advances in magnetic resonance imaging
(MRI) and functional magnetic resonance imaging (fMRI)
techniques which allowed examining of the course of
cognitive deterioration, enabling to identify of pre-onset brain
abnormalities associated with the subsequent development of
cognitive deficits. Therefore, it has been proposed that brain
abnormalities preceding the onset of cognitive decline can be
detectable with neuroimaging techniques; these biomarkers can
be potentially used for early identification and prevention of
progressive cognitive impairment in patients with schizophrenia
(31, 37–40).

Cognitive impairment refers to deficits in the
neurocognitive domains, including complex attention, executive
function, learning, and memory, language, perceptual-motor,
and social cognition (36, 41, 42). Based on neurodevelopment
hypothesis of schizophrenia, cognitive impairment can be
viewed as a reflection of the brain’s functional and structural
abnormalities, especially within the brain circuits involved in
information processing (43–45). Many neuroimaging studies
support the notion that brain gray matter volume (GMV)
abnormalities and brain functional connectivity density (FCD)
disturbances in the whole brain can be the neural basis of
cognitive impairments (18, 24, 25, 29–40, 46–54). However,
until now, few studies have reported the relationship between
the baseline global brain gray matter volume (gGMV) and global
functional connectivity density (gFCD) and the subsequent
cognitive deterioration in drug-naïve first-episode patients with
schizophrenia following a two-year antipsychotic treatment
with adequate dosages and adherence. Understanding the
associations between the baseline gGMV and gFCD alterations
and subsequent illness-associated cognitive deterioration in
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patients with schizophrenia can potentially provide clinically
meaningful information that can optimize treatment strategies
and slow down (or delay) further cognitive deterioration.
Therefore, in the present study we explored the relationship
between baseline neuroimaging parameters and subsequent
illness-associated cognitive deterioration with the aim to
identify possible prognostic biomarkers for patients with
schizophrenia.

The global brain GMV alterations (1gGMV) represent the
entire brain gray matter abnormalities, and 1gGMV has been
shown to be associated with cognitive impairments (46, 55,
56). The entire brain gFCD refers to the functional connection
number in the entire brain, can reflect the information
communicates capability of the entire brain, and play a pivotal
role in the cognitive processing, the gFCD alterations (1gFCD)
represent the entire brain function abnormalities (57–59).

In the present study, using 1gGMV and 1gFCD as indices,
we aimed to determine the relationship between the baseline
1gGMV and 1gFCD values and the subsequently occurred
cognitive deterioration following antipsychotic treatment with
adequate dosage and duration in drug-naïve first-episode
schizophrenia patients. We were interested in testing the
following hypotheses: (1) Baseline 1gGMV or 1gFCD
may be correlated with the subsequently occurred cognitive
deterioration; (2) The relationship between 1gGMV/1gFCD
and deterioration of cognitive function as detected with
changes of Global Deficit Score (1GDS) from baseline may
have consistent correlation tendency in the patients with
schizophrenia. The findings through conducting this study
may provide a clue for predicting deterioration of cognitive
function following initiation of antipsychotic treatment,
and thereby assist psychiatrists in the future in finding
optimal treatment strategies for cognitive deficits at early
stages of the illness.

Materials and methods

Participants and procedures

Nankai University Affiliated Tianjin Fourth Center
Hospital approved this study. A total of 1000 drug-naïve
first episode patients with schizophrenia and 200 healthy
controls were enrolled in this study. At baseline, qualitative
MRI and fMRI data were acquired from 877 patients and 171
healthy controls. The social-demographical characteristics,
illness information, and cognitive performance of the 877
patients and 171 healthy controls were presented in Table 1.
After acquiring the MRI and fMRI data, all the patients
received antipsychotic agents according to the Chinese
Guidelines for the Prevention and Treatment of Schizophrenia.
Upon completion of 2-year antipsychotic treatment with

adequate dosage and duration, the patients were assessed for
the secondary emerged cognitive impairments. A post hoc
analysis was performed to examine the severity of cognitive
deterioration.

The symptom severity in schizophrenia was assessed by
the Positive and Negative Syndrome Scale (PANSS), a well-
established tool and widely used in the assessment of the
illness severity and the efficacy of antipsychotic treatments for
schizophrenia (60, 61). Cognitive impairments were evaluated
by the MATRICS consensus cognitive battery (MCCB) (62),
and the Global Deficit Score (GDS) was used for classification
of overall impairment status on the MCCB battery plus a
modified battery that included only those MCCB and added
tests that were most sensitive to differences between patients
with schizophrenia and healthy controls (35). MCCB was
developed by The National Institute of Mental Health of the
United States (NIMH) (63), and the tool evaluating seven
cognitive domains that cover a wide range of neurocognitive
functions is indeed a comprehensive reliable measurement
to assess cognitive deficits in schizophrenia (64, 65). Several
previous studies have used the MCCB to evaluate the levels
of cognition in patients with schizophrenia due to its ideally
psychometric properties (27, 66–68). In the past decades,
many studies used MCCB to investigate the relationship
between the cognitive performance and brain structural and
functional alterations in the patients with schizophrenia
(69–75). The Chinese version of the MCCB includes the
following tests: Trail Making Test (TMT) Part A; Brief
Assessment of Cognition in Schizophrenia (BACS) Symbol
Coding; Form 1 of Hopkins Verbal Learning Test-Revised
(HVLT-R), learning trials 1,2,3 and delay recall; Wechsler
Memory Scale - Third Edition (WMS-III) Spatial Span; Form
1 of Neuropsychological Assessment Battery (NAB) Mazes;
Form 1 of Brief Visuospatial Memory Test-Revised (BVMT-
R), learning trials 1,2,3 and delay recall; Category fluency
(animal names); Mayer-Salovey-Caruso Emotional Intelligence
Test (MSCEIT) Managing Emotions; Continuous Performance
Test-identical pairs version (CPT-IP). The MCCB coves
seven cognitive domains: attention, information processing
speed, verbal learning and memory, visual learning and
memory, working memory, reasoning, problem solving, and
social cognition (64, 66). GDS method can be described
briefly as follows: demographically corrected T-scores were
converted to deficit scores according to the following criteria:
T > 39 = 0 (normal), 39 ≥ T ≥ 35 = 1 (mild impairment),
34≥T≥ 30 = 2 (mild to moderate impairment), 29≥T≥ 25 = 3
(moderate impairment), 24 ≥ T ≥ 20 = 4 (moderate to
severe impairment), T < 20 = 5 (severe impairment). Deficit
scores were summed across the test battery and then divided
by the number of individual measures to compute the
GDS. The GDS can be analyzed as a continuous variable
indicating number and severity of neurobehavioral deficits
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TABLE 1 Social-demographical and clinical characteristics of all the study subjects.

Schizophrenia patients
(n = 877)

Healthy controls
(n = 177)

ANOVA/
ACONAV

P

Age (mean± SD), years 28.2± 3.5 27.5± 4.0 0.036

Gender (male/female) 625/252 115/62 0.028

Education level (years) 14.2± 5.0 16.8± 2.5 0.017

Illness duration (mean± SD), days 107.2± 35.5

PANSS (mean± SD) at baseline 74.27± 5.45

PANSS (mean± SD) after two years treatment 53.24± 2.48

MCCB (mean± SD at baseline) 39.40± 2.77

MCCB (mean± SD) after two years treatment 32.85± 2.93

GDS (mean± SD) at baseline 0.95± 0.27

GDS (mean± SD) after two years treatment 0.68± 0.32

gGMV (total altered voxel number, mean per person, which at baseline when
compared to healthy controls)

19529.14± 1637.3

gFCD (total altered voxel number, mean per person which at baseline when
compared to healthy controls)

20071.29± 1300.83

across the entire test battery, or as a cut-off of ≥ 0.50
that can be used to classify overall neuropsychological
impairment (76, 77). 1GDS was defined as changes in
GDS from baseline.

Magnetic resonance imaging
acquisition and analysis

An MRI scan was performed on a 3.0-Tesla MR system
(Discovery MR750, General Electric, Milwaukee, WI, USA).
T1-weighted images of all study participants were acquired
with the following scanning parameters: repetition time (TR),
8.2 ms; echo time (TE), 3.2 ms; inversion time (TI), 450 ms; flip
angle (FA), 12◦; field of view (FOV), 256 × 256 mm; matrix,
256 × 256; slice thickness, 1 mm, no gap; and 188 sagittal
slices (78). Resting-state (rs)-fMRI data were acquired using
a gradient-echo single-short echo planar imaging sequence as
reported previously, and the parameters were as follows: TR/TE,
2000/45 ms; FOV, 220× 220 mm; matrix, 64× 64; FA, 90◦; slice
thickness, 4 mm; gap, 0.5 mm; 32 interleaved transverse slices;
and 180 volumes. During MRI scans, the patients and healthy
controls received instructs to ensure safety and effective imaging
as described previously (78).

Gray matter volume calculation

T1-MPRAGE images were processed automatically using
the Computational Anatomy Toolbox 12 (CAT12) extension
of Statistical Parametric Mapping 12 (SPM12) running in
MATLAB [2018b, Math Works, Natick, MA, United States,
(79, 80)]. Image processing included bias field correction,

skull dissection, alignment with the Montreal Neurological
Institute standard space (MNI-152 template), and segmentation
into GM, white matter (WM), and cerebrospinal fluid (CSF).
A group-specific template was generated using the DARTEL
algorithm (81). Segmented images in native space were
then subjected to non-linear warping and normalized to
match the DARTEL templates. Before preprocessing, all scans
were visually inspected regarding artifacts and anatomical
abnormalities by an experienced clinician. Structural MRI data
were preprocessed using default parameters as implemented in
the CAT12-Toolbox (Computation Anatomy Toolbox for SPM,
build 1184. Structural Brain Mapping group, Jena University
Hospital, Germany) building on SPM12 (Statistical Parametric
Mapping, Institute of Neurology, London, UK), providing
bias-corrected, tissue classified, and normalized data ratings.
During preprocessing, images were segmented into GM, WM,
and CSF. Images were spatially registered, segmented, and
normalized using a DARTEL algorithm. All scans underwent
the automated quality assurance, using the CAT12 “check data
quality using covariance” procedure. After preprocessing and
completing the quality assurance, we excluded 123 patients
and 29 healthy controls due to major artifacts or anatomical
abnormalities, or not fulfilling the CAT12 quality criteria,
leaving 877 patients and 171 health controls for analysis in
the current study.

Functional magnetic resonance
imaging image processing

Resting-state (rs)-fMRI scans were preprocessed using the
Statistical Parametric Mapping (SPM) software, SPM12. To
allow the signal to reach equilibrium and the study subjects
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to adapt to the scanning noise, the first 10 volumes for
each participant were discarded. Subsequently, the volumes
were corrected for the delay in acquisition time between
slices, followed by realignment to correct the motion between
time points. All rs-fMRI data were within the thresholds of
the defined motion (i.e., translational or rotational motion
parameters less than 2 mm or 2◦). Frame-wise displacement
(FD), which indexes the volume-to-volume changes in head
position, was calculated. Several nuisance covariates were
regressed out, including six motion parameters, first-time
derivations, and average BOLD signals of the ventricular and
white matter. Given the recent report that the signal spike due
to head motion affected the final rs-fMRI data (82), we further
regressed out spike volumes if the FD of the specific volume
was greater than 0.5. The datasets were then band-pass filtered
in a frequency range of 0.01–0.08 Hz. During normalization,
the structural images were linearly co-registered with the mean
functional image, and then linearly co-registered to MNI space.
With co-registration parameters, each filtered functional volume
was spatially normalized to MNI space and resampled into a
3-mm cubic voxel.

Global functional connectivity density
calculation

The data preprocessing for resting-state fMRI was
performed by the Statistical Parametric Mapping (SPM12)1 in
MATLAB 2014a (Mathworks, Inc., Natick, MA, United States).
The first 10-time points were discarded, slice-timing correction,
head motion estimation, normalization to standard Montreal
Neurological Institute (MNI) EPI template and spatial
smoothing with a 6-mm, and full-width-at-half-maximum
Gaussian kernel were performed for the remaining 240-time
points. Nuisance covariates regression was applied including
six-direction head motion parameters, white matter, and
cerebrospinal fluid (83). The full low frequency (FLF) of
0.01–0.08 Hz was performed for functional connectivity
analysis. Based on the study of Rogachov et al. (84) and
our previous study (85) on frequency-related neuroimaging
studies of chronic pain, three different frequency band-based
filters were selected for analysis, including Slow-5 band (0.01–
0.027 HZ), Slow-4 band (0.027–0.073 Hz), and Slow-3 band
(0.073–0.198 Hz).

Global functional connectivity density
calculation

The FCD was calculated by the BRANT toolkit in MATLAB
2014a. The FCD of each voxel was calculated according to the
method described by Tomasi and Volkow (86–88). The gFCD
value for a given voxel is the total number of active functional

connections possessed by the voxel. Fisher Z-transformed
version of correlation coefficient was the normalization method
for FCD matrix. Pearson linear correlation analysis was
performed to calculate the linear correlation between a given
voxel (i) and all other voxels in the whole-brain as the number
of global functional connections k (i), at a given voxel (i). Voxel
pairs with a correlation coefficient of r0 > 0.6 were considered
a significant connection. The gFCD calculations were limited to
the cerebral gray matter mask (Nvoxels) region, setting a signal-to-
noise ratio greater than 50% to minimize the adverse effects of
signal loss and artifacts associated with magnetic sensitivity (89).

Group analysis was applied using a random-effects model at
different frequency bands. First, a voxel-based paired t-test was
performed to measure the change in gFCD before and after the
treatment in the VA or SA groups. Second, the brain regions
that decreased or increased significantly after the treatment
in the VA group compared with the SA group were explored
by RMANOVA. Age was considered as a covariate in the
statistics. For brain regions explicitly associated with pain in
the previous studies that could not be corrected by family-wise
error (FWE), a small-volume (anatomical structure) correction
based 3dClustSim was taken by AFNI version 18.0.25 (90). The
threshold of voxel-wise p < 0.005 and p < 0.05 FWE corrected
at cluster level (more than 20 consecutive voxels) was applied for
all the analyses.

1gGMV and 1gFCD calculation

The main objectives of the present study was to investigate
the relationship between the secondary emerged cognitive
deterioration and the baseline global brain GMV or functional
features of the drug-naïve schizophrenia patients at the time
of their first episode of psychosis. We calculated 1gGMV and
1gFCD in the whole brain at baseline using the following
formula:

1gGMV = Increased GMV voxels (compared to the healthy
controls at baseline) + decreased GMV voxels (compared to
healthy controls at baseline). The severity of 1gGMV was
stratified by baseline 1gGMV, compared to healthy controls,
0.5 ≤ 1GMV < 1% defined as mild gGMV alterations,
1 ≤ 1gGMV < 2% defined as moderated gGMV alterations,
1gGMV ≥ 2% defined as severe gGMV alterations. Similarly,
the following formulation was used to calculate 1gFCD:

1gFCD = Increased gFCD voxels (compared to the healthy
controls at baseline) + the decreased gFCD voxels (compared
to healthy controls at baseline). Secondary emerged cognitive
deterioration calculation In this study, the secondary emerged
cognitive deterioration was calculated as follows:

Baseline MCCB scores transformed GDS score before
treatment – MCCB score transformed GDS score after two
years of treatment with adequate dosage of antipsychotic
agents and duration.
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The following formulation was used to calculate 1PANSS:

1PANSS = PANSS at baseline− PANSS after two

years of treatment.

1GDS = GDS at baseline− GDS after two years of treatment.

Statistical analysis

The statistical analysis was conducted using the statistical
package SPSS Statistics version 25.0 (IBM Corp., Armonk,
NY, USA). An analysis of variance (ANOVA) was used
to determine the difference of means of the different
groups: the mild 1gGMV group (n = 259); the moderate
1gGMV group (n = 385); the severe 1gGMV group
(n = 233), and the healthy control group (n = 117). The
variables evaluated were age, gender, education level. PANSS,
total cumulative dosage of antipsychotic agents within the
two years of normalized antipsychotic treatment, cognitive
impairment differences (1GDS), and baseline brain altered
differences. Differences of 1gGMV or 1gFCD between
groups were examined using one-way analysis of covariance
(ANCOVA), where age, sex, and the mean FD were used
as covariates. Regarding post hoc analyses, ANOVA were
performed on significant group effects identified by ANCOVA.
The family-wise error (FWE) was used to correct for
multiple comparisons in both the ANCOVA and the post hoc
analyses (q < 0.05) as described previously (91). Pearson
correlation analysis was conducted to examine relationship
between the baseline brain structural and functional alterations
and the subsequent cognition impairment after two years
of treatment with adequate antipsychotic agents in the
schizophrenia patients.

Results

Baseline cognitive impairment
subsequently deteriorated after
antipsychotic treatment

All 877 schizophrenia patients showed a decrease in 1GDS,
indicating subsequent deterioration of cognitive function after
two years of antipsychotic treatment with adequate dosage and
duration. After 877 patients, 259 patients (259/877, 29.53%)
had cognitive deterioration as detected with 1GDS ≥ 0.5
(mean, 0.52; SD, 0.14); 385 patients (385/877, 44.92%)
showed deterioration of cognitive function as examined
with 1 ≤ 1GDS > 0.5 (mean, 0.73; SD, 0.09); and the
remaining 233 patients (233/877, 26.57%) had cognitive

deterioration as detected with 1GDS ≥ 1 (mean, 1.24; SD,
0.10). Despite 2-year antipsychotic treatment with adequate
dosage and duration and effective amelioration of their
psychotic symptoms (PANSS baseline – PANSS after two
years of treatment) in nearly 63% of patients, there was
a sharp decline in the cognitive function of these patients
(Tables 1, 2).

Subsequent cognitive deterioration
after completion of treatment was not
correlated with the therapeutic effects
on psychotic symptoms

We performed a Spearman correlation analysis, and
unexpectedly the resulting data did not demonstrate any
significant correlation between therapeutic effects on psychotic
symptoms/the cumulative dosage of antipsychotic agents within
the two years of normalized treatment and the subsequent
cognitive deterioration in the drug-naïve first-episode
schizophrenia patients. Subsequent cognitive deterioration
after completion of treatment was positively.

Correlated with
baseline1gGMV/1gFCD

Correlation analysis was carried out to examine the
relationship between subsequent cognitive deterioration after
completion of treatment and altered 1gGMV/1gFCD at
baseline in the different severity of brain alteration groups.
As shown in Figures 1–3, the correlation coefficient indicated
a positive correlation between baseline 1gGMV/1gFCD and
subsequent cognitive deterioration. More interestingly, in this
group, 1gFCD demonstrated a relatively stronger relation than
1gGMV was found in schizophrenia patients with mild brain
alterations [Figure 1, r = 0.31(1gFCD) vs. r = 0.091(1gGMV)].
Furthermore, there was a positive correlation between baseline
1gGMV and subsequent cognitive deterioration, and a stronger
relation was observed in schizophrenia patients with moderate
[Figure 2, r = 0.148(1gFCD) vs. r = 0.303(1gGMV)]
and severe brain alterations [Figure 3, r = 0.165(1gFCD)
vs. r = 0.336(1gGMV)]. Collectively, the data revealed
different degrees of correlation between baseline 1gGMV
and subsequently deterioration of cognitive function after
antipsychotic treatment with adequate dosage and duration
among drug-naïve first episode schizophrenia patients.

Discussion

The present study with a relatively large sample size has the
following major novel findings that may lead future studies to
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TABLE 2 Clinical characteristics of patients in different groups and healthy controls.

Patients with mild
1 gGMV
(n = 259)

Patients with moderate
1 gGMV
(n = 385)

Patients with severe
1 gGMV
(n = 233)

ANOVA/ACONAV
P

1PANSS
(mean values of per person, which
compared to baseline and two years)

24.27± 9.45 19.00± 9.59 14.87± 7.36 0.003

TCDA (mg, The accumulative dose of two
years treatment, Chlorpromazine
equivalent)

288457.52± 132122.43 375259.50± 1691542.91 596039.07± 299005.75 < 0.0001

1gGMV
(mean voxel numbers of per person which
compared between baseline and after two
years treatment)

4529.14± 1637.52 6610.07± 1700.53 8887.62± 2003.44 < 0.0001

1gFCD
(mean values of per person, which
compared to baseline and two years
treatment)

8256.72± 2459.04 52551.12± 2306.42 4007.25± 34300.85 < 0.0001

1MCCB (mean values of per person,
which compared to baseline and two years
treatment)

3.56± 0.98 5.28± 1.36 7.00± 0.98 0.007

1GDS
(mean values of per person, which
compared to baseline and two years)

0.52± 0.14 0.73± 0.09 1.24± 0.15 0.013

Data were presented as mean± standard deviation (SD). TCDA, total cumulative dosage of antipsychotic agents within the 2 year normalized treatment, Chlorpromazine equivalent.

FIGURE 1

The correlation between 1GMV/1gFCD and the cognitive deterioration in the mild whole-brain alteration group. Correlation analysis was
performed to determine the relationship between subsequent cognitive decline after two years of treatment and baseline 1gGMV/1gFCD in
the drug-naïve first-episode schizophrenia with 0.5 ≤ 1gGMV < 1% at baseline in the mild whole-brain alteration group. (A) Relationship
between 1gGMV and 1GDS; (B) Relationship between 1gFCD and 1GDS; (C) The mild whole-brain alteration group with 0.5 ≤ 1gGMV < 1%
at baseline; (D) 1gFCD in the mild whole-brain alteration group.
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FIGURE 2

The correlation between 1GMV/1gFCD and cognitive deterioration in the moderate whole-brain alteration group. Correlation analysis was
carried out to evaluate the relationship between subsequent cognitive decline after two years of antipsychotic treatment and baseline
1gGMV/1gFCD in the drug-naïve first-episode schizophrenia with 1 ≥ 1wGMV < 2% at baseline in the moderate whole-brain alteration group.
(A) Relationship between 1gGMV and 1GDS; (B) Relationship between 1gFCD and 1GDS; (C) The moderate whole-brain alteration group with
1 ≥ 1wGMV < 2% at baseline; (D) 1gFCD in the moderate whole-brain alteration group.

clues for predicting and understanding subsequent cognitive
deterioration after antipsychotic treatment in drug-naïve
first-episode schizophrenia patients: (1) The cognitive function
of the patients with schizophrenia demonstrated a tendency
of subsequent deterioration from psychotic symptom onset
to completion of two years of antipsychotic treatment despite
adequate antipsychotic medication dosages and treatment
duration; (2) Baseline altered values of global brain GMV
(1gGMV) were correlated with the subsequent deterioration
of cognitive function after two years of antipsychotic treatment
with adequate dosage and duration; (3) Baseline whole-
brain functional alterations (1gFCD) were also correlated
with the subsequently occurred cognitive deterioration
after two years of antipsychotic treatment with adequate
dosage and duration.

Previous studies reported that some of antipsychotic agents,
especially second generation antipsychotics, can improve the
cognitive function of the patients with schizophrenia (92–
96). Unfortunately, the schizophrenia patients in the present
study who received treatment with the second generation
antipsychotic agents according to the schizophrenia treatment

guideline did not demonstrated improvement of cognitive
function. However, some previous neurocognitive studies
reported that cognitive impairment, once occurred, cannot be
reversed by drugs, even after treatment with neuroprotective
agents, and all the drugs which aimed at improving the cognitive
deficits only had minimal effects delaying the deterioration of
cognitive decline (97–101). Our data have provided evidence
in support of this opinion. At the same time, a number of
previous studies showed that the antipsychotic agents cannot
reverse the cognitive impairment (102–105). Our data did
not support the earlier findings that antipsychotic agents can
reverse the cognitive deficit in patients with schizophrenia,
as it was reported in the randomized controlled trial (RCT)
studies (97–101). Additional studies are needed to gain new
evidence for the protective effect of antipsychotic agents on the
cognitive deficit.

It may merit attention in this study that baseline
altered whole-brain GMV and functional alterations
(1gGMV/1gFCD) were correlated with the subsequent
cognitive deterioration. To the best of our knowledge, the
interesting finding has not been reported, and baseline
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FIGURE 3

The correlation between baseline 1gGMV/1gFCD and cognitive deterioration in the severe whole-brain alteration group. Based on 1gGMV at
baseline, schizophrenia patients were divided into three different severity groups: mild, moderate, and severe brain alteration groups.
Correlation analysis was conducted to examine the relationship between subsequent cognitive deterioration after two years of treatment and
baseline1gGMV/1gFCD in the drug-naïve first-episode schizophrenia with baseline 1gGMV ≥ 2% in the severe whole-brain alteration group.
(A) Relationship between 1gGMV and 1GDS; (B) Relationship between 1gFCD and 1GDS; (C) The severe whole-brain alteration group with
1gGMV ≥ 2% at baseline; (D) 1gFCD in the severe whole-brain alteration group.

1gGMV/1gFCD may provide a clue for predicting decline of
cognitive function even after antipsychotic treatment. Despite
the strength, we think some questions need to be answered.
First, the whole-brain GM structural alterations represented
the sum of increased GMV and decreased GMV. Previous
studies reported that decreased GMV was usually associated
with the decreased cognitive deficit and poor therapeutic
effect. In contrast, increased GMV usually represents the
alleviating of cognitive deficit and is usually associated with a
better therapeutic effect. To date, few studies reported on the
use of increased GMV and decreased GMV in combination
as a general alteration of the whole brain to investigate the
relationship between the whole-brain GMV changes and
the cognitive alterations. Similarly, increased gFCD usually
represents higher information communication, while decreased
gFCD usually reflects lower information communication in
the brain. Few studies have been conducted to assess the
relationship between the whole-brain gFCD changes and
cognitive alterations. Previous studies found that the whole

brain was involved in processing the complex information
(18, 20, 106–108). As aforementioned, cognitive function
involves important information processing, including complex
attention, executive function, learning, and memory, language,
perceptual-motor, and social cognition. It has been considered
that the full cognitive function is a complex phenomenon that
needs many brain regions to coordinate activities, including
functionally activated and suppressed specific brain regions to
ensure understanding and handling information with precision
(18, 20, 106–108). According to the whole brain functional
activity involved in the cognitive processing theory, the whole-
brain structural and functional alterations are anticipated to
influence cognitive information processing, and in turn cause
cognitive disturbance. In light of this view, the correlation
between baseline 1gGMV and 1gFCD and subsequent
cognitive deterioration in this study may have neural and
theoretical basis.

It was also worth noting in this study that the correlation
degree differed among three groups with different baseline
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severity of brain alterations as classified by baseline MRI/fMRI
features. In the severe brain GMV alteration group, the
correlation coefficient between 1gGMV and 1GDS was 0.332,
and that between 1gFCD and 1GDS was 0.165, suggesting
that the cognitive deterioration was mainly correlated to the
baseline whole-brain GMV alterations. In the moderate brain
alteration group, the co-efficient between 1GMV and 1GDS
was 0.303, and that between 1gFCD and 1GDS was 0.148. The
results from correlative analysis in both severe and moderate
brain alteration groups indicated that the whole-brain GMV
alterations at baseline seemed to play the crucial role in the
subsequent cognitive deterioration. However, in the mild brain
alteration group, the co-efficient between 1GMV and 1GDS
was 0.093, and that between 1gFCD and 1GDS was 0.310,
suggesting that the whole-brain functional connection numbers
play a role in the cognitive deterioration in schizophrenia
patients with mild brain alterations at baseline. With these data,
we were inclined to think that the whole-brain GM alteration
(1gGMV) may be the neural basis of the cognitive deterioration,
and the greater value of 1gGMV may predict a higher degree of
cognitive deterioration. In the mild brain alteration group, the
co-efficient between 1gGMV and cognitive decline was lower
than that of the 1gFCD and the cognitive deterioration, for
which we postulated that the 1gFCD might be the functional
compensation (109, 110) to the 1gGMV. Thus the correlation
co-efficient of 1gFCD and 1GDS was higher than that of
1GMV and 1GDS. However, when in the moderate and severe
1GMV groups, the functional compensation of 1gFCD cannot
enough to strength to make up the cognitive deficit caused
by 1gGMV. With our findings and those of others, we are
inclined to think that antipsychotic agents do little to improve
the cognition impairment in patients with schizophrenia,
and even worse than that the medications have been shown
to be associated with worsening in cognitive capacity (100,
111). Notably, mounting studies reported that psychosocial
treatments acquired the cognitive remediation effect in the
patients with schizophrenia. For example, there are several
approaches to cognitive remediation. Core features include
using cognitive training techniques, typically computerized
to enhance neuroplasticity; therapist-guided development and
refinement of problem-solving strategies that can be used
during cognitive training and in daily life; and facilitating
the transfer of cognitive gains and new strategies to daily
life (93, 112, 113). However, the cognition remediation is
not the same as cognition recovery and has limitations. Up
to date, few studies have shown that cognitive remediation
can help recover cognition to the pre-onset level in patients
with schizophrenia. As proposed by the Cognitive Remediation
Expert Working Group (CREW) “Cognitive remediation is now
widely recognized as an effective treatment for cognitive deficits
in schizophrenia. Its effects are meaningful, durable, and related
to improvements in everyday functional outcomes (112).”
Collectively, cognition impairment is worsening progressively

in schizophrenia that has posed therapeutic challenges, and new
effective treatments are needed to improve medical care for
patients with schizophrenia.

We realized a number of limitations in this study. First,
the use of 1gGMV and 1gFCD as brain structural and
functional alterations in this study has not been reported
and will need validation. Second, 1gGMV and 1gFCD in
the present study was calculated as the sum of altered
gGMV and gFCD in the patients compared to the healthy
controls at baseline. Similarly, the validity of the calculation
will be needed in future studies. Third, the threshold values
of 1gGMV for severity classification of three different
brain alteration groups had no references to use, hence
the validity of this method is also needed in a future
study. Forth, we could not explain some observations in
this study, including that there was no relationship between
the cumulative dosage of antipsychotic agents and cognitive
function deterioration. Hence, further in-depth investigations
will be needed in future studies.

Conclusion

Taken together, this is the first report on the relationship
between the baseline brain alterations and the subsequently
occurred cognitive deterioration in drug-naïve first-episode
schizophrenia patients. Our findings have demonstrated that
the altered whole-brain GMV at baseline significantly correlates
with the subsequent decline of cognitive function, especially
moderated to severe cognitive deterioration. Unexpectedly,
the findings have revealed no correlation between cognitive
function deterioration, therapeutic effects, and the cumulated
dosage of anti-psychotic agents during the 2-year normalized
treatment. As such, this study has provided a clue for
a better understanding of the deterioration of cognitive
function in patients with schizophrenia. In addition, the
new findings may have the clinical implication that baseline
altered gGMV and gFCD values hold the potential to predict
subsequent cognitive deterioration in drug-naïve first-episode
schizophrenia patients.
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