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Transforming user check-in data into graph structure data is a popular and

powerful way to analyze users’ behaviors in the field of recommendation.

Graph-based deep learning methods such as graph embeddings and

graph neural networks have shown promising performance on the task

of point-of-interest recommendation in recent years. Despite e�ectiveness,

existing methods fail to capture deep graph structural information, leading

the suboptimal representations. In addition, they lack the ability of learning

the influences of both global preference and user preference on the

check-in behavior. To address the aforementioned issues, we propose a

general framework based on preference-aware graph di�usion, named PGD.

We first construct two types of graphs to represent the global preference

and user preference. Then, we apply a graph di�usion process to capture

the structural information of the generated graphs, resulting in weighted

adjacency matrices. Finally, graph neural network-based backbones are

introduced to learn the representations of users and POIs on weighted

adjacency matrices. A learnable aggregation module is developed to learn the

final representations from global preference and user preference adaptively.

Extensive experiments on four real-world datasets demonstrate the superiority

of PGD on POI recommendation, comparedwith themainstream graph-based

deep learning methods.

KEYWORDS

point-of-interest recommendation, user preference, graph convolutional network,

temporal context, spatial context

Introduction

Location-based social networks (LBSNs) have attracted a large number of users

to share their experience on the Internet in recent years. For example, users may

submit comments about a restaurant when they visit that place in Yelp, a famous

location-based social network (1, 2). That restaurant is called point-of-interest (POI),

which means a place that attracts a user’s interest. As the scale of LBSNs increases,

more and more users tend to record their activities on the platform, accumulating
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enormous check-in data. Such large amount of data offers

the opportunities to provide the personalized recommendation

service for users when they do not know where to go. This

recommendation service is called POI recommendation, which

has been a popular service of an LBSN over the past decade.

In the field of POI recommendation, the activities of users

are recorded as check-in records, which are usually represented

by graph structured data. Thus, graph-based deep learning

methods are popular and powerful tools to capture the user

preference in this application scenario. A general idea of graph-

based deep learning (3) methods is to transform the check-in

records into a variety of graphs, such as the user–timestamp

graph, to model the user preference from various perspectives

of factors (e.g., temporal influence). Graph embeddings (4, 5)

are typical methods for learning the representations of users and

POIs. These methods use the techniques of graph representation

learnings, such as Deepwalk (6) and LINE (7), to learn the latent

representations of nodes in the generated graphs.

Despite effectiveness, existing methods share two

common weaknesses:

(1) Hard to capture the deep structural relations of POIs

from the generated graph. Existing methods mostly apply

or design graph representation methods on the original

generated graphs. Although effective for learning node

representations, the generated graphs only hold on the

relevance of POIs and their immediate neighbors, hard

to preserve deep structural relations. Classical graph

embeddings (6–8) only pay attention to a limited range

of neighbors. Even though stacking several graph neural

networks can relieve this impact, the over-smoothing

problem (9–12) of graph neural networks will also lead to

suboptimal representation.

(2) Unable to learn presentations of users from global and

personalized preferences. Graphs are constructed using

check-in records of all users in most graph-based deep

learning methods. Such graphs only preserve the global

preference, ignoring the personalized preference of a unique

user (13, 14). This drawback could affect the model

performance for personalized recommendation.

To address the aforementioned issues, we propose a general

graph neural network framework for POI recommendation

based on preference-aware graph diffusion, named PGD.

We first construct two types of graphs to preserve global

and personalized preferences, respectively. Then, we conduct

the graph diffusion process on generated graphs to capture

deep graph structural information, which resulted in a

series of weighted matrices. Finally, a graph neural network-

based backbone is applied to learn the representations of

POIs according to the weighted matrices. We propose a

learnable aggregation module to learn the user preference

from both global and personalized aspects. We conduct

extensive experiments on three widely used datasets from real-

world LBSNs. The experimental results have demonstrated the

superiority of PGD, compared with existing graph-based deep

learningmethods. The contributions of this article are as follows:

• We propose PGD, a general framework, for POI

recommendation. The choice of a graph neural network as

the backbone is arbitrary.

• We conduct the graph diffusion process to capture

deep structural information, which is neglected in most

existing methods.

• We propose a learnable aggregation module to learn

the user preference from both global and personalized

aspects adaptively.

• We conduct extensive experiments on real-world datasets

to validate effectiveness of the method. The results show

that our proposed PGD outperforms existing graph-based

deep learning methods.

The rest of the article is organized as follows: In Section

Related work, we briefly review the related works on graph-

based deep learning methods for POI recommendation. In

Section Preliminaries, we provide some key definitions of terms

used in this article, including the definitions of graphs and

LBSNs. In Section Proposed framework, we detail our proposed

method, including the key designs and learning methods

of model parameters. In Section Experiments, we introduce

the settings of experiments and report the results. Finally,

we conclude this article and outline the future directions in

Section Conclusion.

Related work

In this section, we review graph-based deep learning

methods for the task of POI recommendation. The goal

of graph-based deep learning methods, including graph

embeddings and graph neural networks, is to learn the low-

dimensional representation feature vectors of users and POIs

from the graph-structured data generated by the check-in

records of users. Then, the representation vectors are used to

calculate the rank scores of all unobserved user–POI pairs.

Finally, the recommendation list is created according to the rank

scores from high to low.

GeoMF (15) utilizes the geography of POIs to construct

the potential regions to learn the influence of POI locations

on user preference. Then, a learning method based on matrix

decomposition is developed to learn the representation vectors

of users and POIs. POI2Vec (16) leverages the rank-based

embedding method to incorporate both the geographical

influence and sequential transition influence. Geo-PFM (17)

conducts the Poisson distribution to capture the user mobility

behaviors and takes various factors into the model for learning

user preferences precisely. GE (5) is one of the typical

embedding-based methods for POI recommendation. GE first

transforms the check-in records into four graphs to capture the

Frontiers in Psychiatry 02 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1012980
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Shu et al. 10.3389/fpsyt.2022.1012980

features from the aspects of geography, time, check-in pattern,

and semantics. Then, a joint training method is proposed

to learn the representations from the aforementioned impact

factors. STA (4) defines the spatiotemporal context, which

combines the location and timestamp of check-in records. Such

a novel definition of the context makes it possible to capture

the characteristics of users’ check-in behaviors carefully. Based

on this, STA utilizes the knowledge graph embedding method

(18) to model the user preference through the translation-based

methods. Zhang et al. (19) considered the category translation of

check-in records and proposed a model named HCT to capture

the dynamic preference of users according to the POIs and

their categories. JLGE (20) uses a three-step strategy to learn

the representation of users and POIs: First, JLGE constructs a

series of graphs to represent the interactions of between users

and various influence factors, such as temporal factors. Then,

a graph embedding-based module (7) is applied to learn the

representations of nodes. Finally, a ranking score function is

used to calculate the scores of users and POIs according to

the learned representation vectors. Xiong et al. (21) introduced

the graph embeddings to jointly learn the representation

vectors for different graphs to preserve the dynamic preference

of users.

Despite their effectiveness, embedding-based methods are

weak to learn more useful structural information from the

check-in graphs. Thanks to the amazing ability of graph neural

networks (GNNs) for learning the powerful representation

from the graph-structured data, many related works have been

proposed to introduce GNNs into the POI recommendation

models in recent years. Wang et al. (22) utilized the GNNs to

learn long- and short-term preferences of users according to

the check-in graphs. Xu et al. (23) utilized the graph attention

network (24) to learn the user preference from the POI and

ROI levels. GGLR (25) leverages the graph neural network to

learn the representations of POIs according to the newly defined

two types of geographical influences: ingoing and outgoing

influences. STP-UDGAT (26) develops a masked self-attention

option based on the original graph attention network to exploit

personalized user preferences. Zhang et al. (27) combined

GNNs and long short-term memory (Bi-LSTM) to learn the

user preference from the users’ sequential check-in behavior,

involving geographical and temporal features. For more related

works, we refer to the survey (28) about deep learning-based

models for POI recommendation.

The aforementioned graph-based deep learning methods

are conducted on the interaction networks generated by the

check-in records. However, they ignore the deep structural

information on such graph-structured data, causing them

to learn the suboptimal representations of users and POIs.

Our proposed framework PGD utilizes the graph diffusion

process to preserve the structural information of the generated

graphs, further improving the effectiveness of graph-based deep

learning methods.

Preliminaries

Definitions in LBSN

Suppose there are two sets U = {u1, ..., um} and P =

{p1, ..., pn} representing users and POIs in an LBSN. A POI pi is

associated with longitude and latitude coordinates, denoted lpi .

Then, we have the following definitions:

Definition 1 (Check-in record): Check-in records Du are

denoted by a tuple (u, p, l, t) that represents the check-in

behavior of the user u who visited the POI p at the time t in the

location l.

Definition 2 (User–POI graph):The user–POI graphGup =

(Vup,Eup) is a bipartite graph whose node set consists of two

disjoint parts Vup = U + P. Eup denotes the edge set. If the user

u visited the POI p, there will be an edge between nodes u and p,

reflecting users’ check-in records.

Definition 3 (Global activity graph): The global activity

graph Gga = (Vga,Ega) is a POI-POI interaction graph, where

Vga = P. If a user first visits the POIpi and then visits pj within

a time frame 1t, there will be an edge between nodes pi and pj.

Gga is a weighted graph that describes the check-in pattern of

all users. The higher the frequency of pi and pj, the greater the

weight of the edge epipj .

Definition 4 (Personalized activity graph): The

personalized activity graph Gpa = (Vpa,Epa) is similar to

Gga. The difference between them is that Gpa is changed for

each user, describing the check-in pattern of a unique user.

POI recommendation

Given the check-in records, the location l, and the timestamp

t, the task of POI recommendation is generating a list of

POIs {p1, ..., pk} for a user u, where k is the length of the

recommendation list. These recommended POIs do not appear

in the history check-in records of the user u.

Proposed framework

In this section, we detail our proposed PGD. It consists of

three stages: (1) generating the weight matrices based on graph

diffusion, (2) learning the representations of users and POIs, and

(3) optimizing the parameters.

Graph di�usion operation

Most of the existing graph-based deep learning methods

only utilize the information of immediate neighbors on the

graphs generated by check-in records of users. For example,

graph embeddings sample the node sequence based on the
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link relations between nodes. GNNs aggregate the information

according to the adjacency matrix. Information from limited

neighbors will lead to the suboptimal representations.

To address this problem and capture the graph structural

information deeply, we conduct a graph diffusion operation on

the generated graphs. We first produce a global activity graph

to hold the global preference based on the definition in Section

Definitions in LBSN. We produce a series of personalized

activity graphs for users based on their unique check-in records

to preserve the user preference according the definition in

Section Definitions in LBSN.

Then, we define the graph diffusion process. Given a graph

G and its corresponding adjacency matrixA, a generalized graph

diffusion (29) operation is defined as (30, 31) as follows:

Diff (G) =

∞∑

x=0

θxT
x. (1)

where T is the transition matrix, produced by a normalized

version of A, that is, symmetric normalization. Equation (1) is

a general form. In practice, we apply the personalized PageRank

to conduct the diffusion process by setting θx=α(1− α)x, where

α ∈ (0, 1) denotes the teleport probability. Let S denote the result

of Diff (G) and S a weighted graph, where the weight of an edge

describes the structural information bias between two nodes

on the graph. The large weight represents the strong topology

similarity so that S preserves deeply structural information

compared with the original adjacency matrix.

The motivation to conducting the diffusion operation is

that the result of the diffusion process provides a more precise

description of the similarity between two nodes, which is

beneficial for learning the representations of users and POIs

from the generated graphs based on check-in records. For each

user, the adjacency matrix of the personalized activity graph is

different from that of other users so that the resultant matrix

of the diffusion matrix is also different, thus preserving the

personalized preference of users.

GNN-based backbone

After the graph diffusion process, we obtain the weighted

matrices of the generated graphs, SGga from the global activity

graph Gga and SGpa from the personalized activity graph Gga.

We use the row normalization method to normalize them since

we only consider the relations of the central node and their

neighbors. We further learn the representations of users and

POIs based on the aforementioned matrices through a GNN-

based backbone.

For a user u, we have two matrices, SGga and SG
u
pa .

These matrices preserve the relations of POIs from global

and personalized perspectives. For learning the representation

of POIs, we apply GNNs on the aforementioned matrices.

It is noteworthy that the selection of GNNs is arbitrary,

demonstrating the flexibility of our proposed method. In

this article, we use two GNNs, GCN and GAT, to learn

the representations of users and POIs. The GCN and GAT

are popular and powerful GNNs for learning the node

representations of graphs. Note that our proposed PGD is a

general framework, and most GNNs could be introduced into

PGD for POI recommendation.

GCN (32): The GCN is a typical GNN that utilizes the first-

order Laplace smoothing for aggregating the information from

neighbors. A GCN layer is defined as follows:

H(l+1) = σ (SH(l)W(l)), (2)

whereH denotes the representations of POIs andW denotes the

learnable parameter matrix. Since there are no raw features for

POIs, we randomly use a matrix as the input of the first layer of

the GCN.

GAT (24): Different from the GCN that aggregates

information based on the node degree, the GAT introduces the

attention layer to guide the aggregation process. A GAT layer is

defined as follows:

H(l+1) = σ ((S⊙M)H(l)W(l)), (3)

where M is the attention matrix of node pairs and ⊙ denotes

the element-wise multiplication. We modify the original GAT

layer to introduce the diffusion matrix into the aggregation of

the GAT.

After the GNN backbone, we obtain the representation of

POIs from the global graph SGgaand personalized graph SG
u
pa ,

denoted as HGga and HGu
pa , respectively. We use HGga as the

final representations P for POIs for the reason that the global

graph contains more information than the personalized graph.

For calculating the representations of users, we define a

learnable aggregation module to learn the final representations.

Suppose the visited list of POIs in the check-in records of the

user u is C={p1, ..., pc}, we develop the following strategy to learn

the representation U:

Uu =
1

|C|

∑

p∈C

LA(HGga , HGu
pa ), (4)

LA(HGga ,HGu
pa ) = βga ·H

Gga + βpa ·H
Gu

pa . (5)

where LA(·) denotes the learnable aggregation module, and βga

and βpa are learnable scalars for calculating the representations

of users adaptively. We further use the SoftMax function to

guarantee the values of βga and βpa are in the reasonable range.

Intuitively, the representation of a user comes from the

global preference and personalized preference. The function

LA(·) is capable of preserving the preferences from the previous

two aspects by introducing the learnable aggregation factors.
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TABLE 1 Statistics of datasets.

Dataset Users POIs Check-in records

Yelp 24,655 15,213 689,410

Foursquare 21,037 21,408 828,132

Gowalla 14,654 26,794 962,013

Parameter optimization

To learn the parameters of the proposedmodel, we adopt the

general optimization framework, Bayesian personalized ranking

(33), for its wide usage in the field of recommendation (13,

14, 34). The objective function of proposed method is defined

as follows:

L=-

m∑

u=1

∑

pi∈Du

∑

pj /∈Du

Inϕ(Uu · P
τ
pi − Uu · P

τ
pj )+ ζ ||2||2 (6)

where ϕ(·) denotes the sigmoid function, ζ denotes the

regularization coefficient, and2 denotes the parameters of PGD.

By minimizing Equation (6) with the stochastic gradient descent

algorithm, we can learn the representations for users and POIs.

Experiments

In this section, we introduce the experiments conducted

in this article. We first introduce the experimental settings,

including datasets, evaluation metrics, and baselines. Then, we

report the results of experiments and provide related analyses.

Datasets

We use three popular real-world datasets, namely, Yelp (27),

Foursquare (27) andGowalla (27), for experiments in this article.

These three datasets are collected from the famous LBSNs: Yelp,

Foursquare, and Gowalla, respectively. For each dataset, we

perform the data cleaning process and produce the check-in

records, obeying the format described in Section Definitions in

LBSN. In addition, we remove the users whose check-in records

are <20. We also remove the POIs whose visitors are <20. The

statistics of datasets are reported in Table 1.

We split each dataset into three sets according to the check-

in timestamp: the former 60% is the train set, the latest 20% is

the test set, and the remaining 20% is the validation set.

Evaluation metrics

In this article, we choose the widely used evaluation metrics,

precision (27) and recall (35), to measure the recommendation

performance of all models:

Precision =
|Dtest ∩ Top_k|

|Top_k|
(7)

Recall =
|Dtest ∩ Top_k|

|Dtest|
, (8)

where Dtest denotes the test set and Top_k denotes the

recommendation list of POIs. We set the length of the list to

10 for experiments. Precision denotes the ratio of successfully

recommended POIs in the recommendation list. Recall denotes

the ratio of the ratio of successfully recommended POIs in all

unvisited POIs.

Baselines

In this article, we select the following methods as the

baselines for experiments:

GeoMF (15): GeoMF utilizes the latent factor model to

capture the influence of geographical factors on the check-in

behavior of users.

Geo-PFM (17): The geographical probabilistic factor

model adopted Poisson distribution can effectively

model the user mobility patterns by capturing the

geographical influences.

POI2Vec (16): POI2Vec is a ranking-based model that

utilizes the sequential influence of check-in records and jointly

learns the preference of POIs and sequential transition.

GE (5): GE is a generic graph-based embedding model,

which jointly captures the sequential effect, geographical

influence, temporal cyclic effect, and semantic effect in a

unified way.

STA (4) STA introduces the translation-based model to

capture the spatiotemporal context for learning the check-in

pattern of users.

For the proposed method PGD, we provide two variants

implemented by GCN and GAT, namely, PGD-GCN and PGD-

GAT, respectively.

For baselines, we use the recommended settings of the

hyper-parameters from previous studies. For PGD, we use the

grid search method to find the suitable values of the coefficient

ζ of the regularization in Equation (6) and the learning rate lr of

the optimizer. The research spaces are ζ ∈ {0.005, 0.001, 0.0005}

and lr ∈ {0.01, 0.005, 0.001}. In this article, we set ζ=0.0005 and

lr=0.001 for experiments.

Impact of time threshold

In this section, we study the influence of the time threshold

1t, determining the construction of Gga and Gpa.

The time threshold 1t controls the density of the graph. If

we set a small value 1t, we will get a relatively sparse graph,
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FIGURE 1

Impact of time threshold on Yelp.

FIGURE 2

The impact of time threshold on Foursquare.

which means there are less interactions between POIs. Also, it is

hard to learn the meaningful representations on a sparse graph.

But if we set a large value 1t, the edges in the constructed graph

are unable to accurately capture the relations of POIs from the

check-in pattern of users. Thus, we conduct the experiments to

study the influence of the time threshold 1t. The settings of

three datasets are different due to the different check-in data.

For Foursquare and Gowalla, we set 1t from {4, 8, ..., 24}. For

Yelp, we set 1t from {24, 48, ..., 144}. The unit of 1t is hour; the

reason is that Yelp is a reviewer dataset, and the check-in time

is recorded by day. Foursquare and Gowalla are the real-time

check-in datasets; thus, we have more information on the check-

in time on these datasets. So, the value of 1t on Foursquare

and Gowalla is smaller than that on Yelp. We use the GCN

as the backbone of experiments. The results are reported in

Figures 1–3.

From the results of Figures 1–3, we can observe that the time

threshold makes a great influence on the model performance.

The reason is that the time threshold determines the quality

of the generated graphs. A suitable time threshold is beneficial

to construct a graph with high quality to describe the relations

of POIs, further improving the model performance. We can

also observe that the value of achieving the best performance is

FIGURE 3

Impact of time threshold on Gowalla.

TABLE 2 Results of all methods on Yelp.

Method Precision Recall

GeoMF 0.0223 0.0327

Geo-PFM 0.0281 0.0415

POI2Vec 0.0354 0.0514

GE 0.0432 0.0643

STA 0.0439 0.0652

PGD-GCN 0.0481 0.0711

PGD-GAT 0.0509 0.0754

TABLE 3 Results of all methods on Foursquare.

Method Precision Recall

GeoMF 0.0319 0.0423

Geo-PFM 0.0322 0.0441

POI2Vec 0.0373 0.0536

GE 0.0491 0.0693

STA 0.0521 0.0732

PGD-GCN 0.0587 0.0786

PGD-GAT 0.0595 0.0798

sensitive to the datasets. This is because different datasets exhibit

different check-in patterns of users. Based on the results, we set

1t to 48 on Yelp. For Foursquare, we set it to 16. For Gowalla,

we set it to 12.

Comparison of methods

We run all methods on three datasets with 10 random seeds

and report the average of all evaluation metrics. The results are

summarized in Tables 2–4.

From Tables 2–4, we can observe that our proposed

methods PGD-GCN and PGD-GAT consistently outperform

other baselines, demonstrating the superiority of the proposed
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TABLE 4 Results of all methods on Gowalla.

Method Precision Recall

GeoMF 0.0459 0.0636

Geo-PFM 0.0471 0.0678

POI2Vec 0.0644 0.0916

GE 0.0693 0.0983

STA 0.0702 0.0994

PGD-GCN 0.0733 0.1092

PGD-GAT 0.0745 0.1125

TABLE 5 Results of variants on Yelp.

Method Precision Recall

PGD-GCN-0 0.0442 0.0661

PGD-GCN-1 0.0451 0.0675

PGD-GCN 0.0481 0.0711

TABLE 6 Results of variants on Foursquare.

Method Precision Recall

PGD-GCN-0 0.0512 0.0709

PGD-GCN-1 0.0541 0.0755

PGD-GCN 0.0587 0.0786

TABLE 7 Results of variants on Gowalla.

Method Precision Recall

PGD-GCN-0 0.0708 0.0998

PGD-GCN-1 0.0721 0.1054

PGD-GCN 0.0733 0.1092

TABLE 8 Results of variants on Yelp.

Method Precision Recall

PGD-GCN-RW 0.0436 0.0648

PGD-GCN 0.0481 0.0711

framework. In addition, PGD-GAT outperforms PGD-GCN,

which indicates that introducing the attention mechanism

benefits learning the representation vectors of users and POIs.

Considering the best results of three datasets, the lowest one is

from Yelp. This is because the dataset of Yelp is most sparse,

compared with Foursquare and Gowalla. This phenomenon

also implies that the data sparsity has a great influence on the

performance of the POI recommendation task.

TABLE 9 Results of variants on Foursquare.

Method Precision Recall

PGD-GCN-RW 0.0498 0.0699

PGD-GCN 0.0587 0.0786

TABLE 10 Results of variants on Gowalla.

Method Precision Recall

PGD-GCN-RW 0.0703 0.0996

PGD-GCN 0.0733 0.1092

Ablation study

In this section, we first design ablation studies to measure

the contribution of the proposed learnable aggregation module

to themodel performance.We also use the GCN as the backbone

model. We propose two variants, PGD-GCN-0 and PGD-GCN-

1. PGD-GCN-0 denotes that only the global preference is

considered in the model. PGD-GCN-1 means that the learnable

aggregation is removed. The results are reported in Tables 5–7.

The results of Tables 5–7 have demonstrated that our

proposed learnable aggregation module is helpful to learn the

precise representations of users.

Then, we design experiments to validate the effectiveness

of the graph diffusion process. As mentioned before, the

diffusion process is helpful to capture the deep graph structural

information and further promote to learn the relations of POIs.

We consider a variant of PGD where the graph diffusion process

is removed, PGD-GCN-RW. The GCN backbone is also applied

in experiments. The results are reported in Tables 8–10.

The results from Tables 8–10 have proved that the

graph diffusion process is necessary to learn the powerful

representations of users and POIs. With the graph

diffusion process, the performance of the model has been

significantly improved.

Discussion of results

In the experiments, we first study the influence of the

settings of the time threshold. The results show that a suitable

value of the time threshold can help model improve the

recommendation effectiveness. Then, we compare our proposed

PGD with baselines on real-world datasets. The results indicate

the superiority of PGD for the POI recommendation task.

Finally, we conduct ablation studies to explore the gain of

key designs of PGD, that is, graph diffusion and learnable

aggregation module. The results show that all key designs are

beneficial for improving the model performance.

Frontiers in Psychiatry 07 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1012980
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Shu et al. 10.3389/fpsyt.2022.1012980

Conclusion

In this article, we propose a general GNN-based framework,

named PGD. PGD first constructs two types of graphs to

preserve the global and personalized preferences. Then, a

graph diffusion process is applied to capture the deep graph

structural information. Finally, a GNN-based backbone is

developed to learn the representations of POIs. For the

representations of users, we propose a learnable aggregation

module to learn the features from both global and personalized

aspects adaptively. We conduct extensive experiments on

three real-world datasets. The experimental results show

that our proposed method outperforms the mainstream POI

recommendation methods.

PGD is a general framework, and it can utilize most

GNNs to learn the representations of users and POIs and

show its high flexibility. The superiority of PGD demonstrates

that the graph diffusion process is beneficial for learning the

powerful representations, which reveals that leveraging high-

order structural relations is a crucial point for improving the

model performance.

For the future directions, although PGD utilizes the graph

diffusion process to preserve the structural information, it relies

on the rich check-in records of users. It is hard to capture the

relations of unobserved POIs based on the graph diffusion so

that we plan to introduce various similarity-based techniques

to estimate the semantic relevance between all POIs. Such

pre-computed similarities are helpful to relieve the impact of

data sparsity.
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