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Individual prediction of
hemispheric similarity of
functional connectivity during
normal aging
Yingteng Zhang*
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In the aging process of normal people, the functional activity pattern of brain

is in constant change, and the change of brain runs through the whole life

cycle, which plays a crucial role in the track of individual development. In

recent years, some studies had been carried out on the brain functional

activity pattern during individual aging process from different perspectives,

which provided an opportunity for the problem we want to study. In this

study, we used the resting-state functional magnetic resonance imaging (rs-

fMRI) data from Cambridge Center for Aging and Neuroscience (Cam-CAN)

database with large sample and long lifespan, and computed the functional

connectivity (FC) values for each individual. Based on these values, the

hemispheric similarity of functional connectivity (HSFC) obtained by Pearson

correlation was used as the starting point of this study. We evaluated the

ability of individual recognition of HSFC in the process of aging, as well as

the variation trend with aging process. The results showed that HSFC could

be used to identify individuals effectively, and it could reflect the change rule

in the process of aging. In addition, we observed a series of results at the

sub-module level and find that the recognition rate in the sub-module was

different from each other, as well as the trend with age. Finally, as a validation,

we repeated the main results by human brainnetome atlas (BNA) template and

without global signal regression, found that had a good robustness. This also

provides a new clue to hemispherical change patterns during normal aging.

KEYWORDS

hemispheric similarity of functional connectivity, functional MRI, normal aging,
individual recognition, global signal

Introduction

In recent years, a large number of studies (1–3) have used the combination of pattern
recognition and brain image data to distinguish healthy elderly people from Alzheimer’s
disease (AD) patients, and achieve good results. In addition to using structural MRI
(sMRI) data to explore cortical atrophy and white matter fiber tracts abnormalities in
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specific areas of AD, several studies (4, 5) have also used fMRI
data to explore differences in brain functional activity between
healthy elderly people and AD patients. The above researches
reflect the distribution pattern of brain structure and function
in people with abnormal aging (i.e., suffering from common
nervous system diseases such as AD). However, in the life cycle
of normal people, from youth, middle age to old age, the pattern
of brain functional activity is constantly changing. There is a lack
of relevant research on the change rule with the aging process,
which has always been the focus of attention in the field of
cognitive neuroscience.

To investigate the difference pattern of individual brain
functional activity during normal aging, some scholars (6–
8) study a series of metrics derived from fMRI, such as
regional homogeneity (ReHo), amplitude of low frequency
fluctuation (ALFF) and functional connectivity (FC). Most
of these indicators are studied at the whole brain level,
some specific regions of interest (ROI) or homologous brain
regions, and the correlation of activity patterns between the
left and right hemispheres is not clear. In recent years,
pattern recognition has been applied more and more widely in
neuroimaging and numerous individual recognition methods
are constantly innovating. For example, Finn et al. (9)
used the rs-fMRI and task fMRI (tfMRI) data of a large
sample from human Connectome Project (HCP) in 2015.
Their research demonstrated that functional connectivity, as a
kind of “fingerprinting,” could effectively identify individuals
from large samples, and that the sub-network with the
most significant difference among individuals could well
predict individual differences in fluid intelligence. In addition,
Kaufmann et al. (10) used this fingerprinting method in
2017 to show that delayed brain network development
during adolescence was associated with decreased mental
health. However, the effectiveness of this “fingerprinting”
approach in identifying individuals during normal aging
remains unclear.

Brain changes occur throughout the life cycle and play
a critical role in individual developmental trajectories for
cognition, social functioning, adaptability, personality and
mental health. Due to the great potential of neuroplasticity
and the continuous development of environmental sensitivity,
some scholars hypothesize that functional connectivity
shapes individual differences in individual maturation and
aging mechanisms. In recent years, several studies (11–
13) have made use of Cam-CAN database to study the
brain functional activity pattern of individual aging process
from different perspectives, which provide an opportunity
for our research.

Here, we proposed the metric of the left and right
hemispheric similarity of functional connectivity (HSFC)
to explore whether the hemispheric similarity had the
characteristics of individual differences in groups of different
ages and how it changed during aging. In particular, we used

the Cam-CAN dataset for a population aged 18–88 years and
constructed hemispheric functional connectivity networks for
rs-fMRI data of each individual. Then, the HSFC computed
by Pearson correlation was used as the starting point of this
study to evaluate the individual identification ability of HSFC
in the aging process and its correlation with age. In addition,
we observed a series of results of HSFC at the sub-module
level. Finally, as a validation, we repeated the main results
through another functional template and no global signal
regression (NGSR).

Materials and methods

Subjects

The Cam-CAN Stage 2 dataset1 (14) included 646 subjects
with T1 and rs-fMRI data (age range: 18∼88 years, 314
males) was used. All the subjects were native English speakers,
had normal or corrected vision and hearing, scored 25 or
above on the mini-mental state examination (MMSE), and
had no neurological disorders. It was worth noting that 4
subjects are excluded from this dataset due to incomplete
data collection. Thus, a total of 642 subjects entered the
preprocessing step. Ethical approval was approved by the
University of Cambridge’s Research Ethics Committee. All
subjects gave written informed consent.

All scans were performed using the standard 3T Tim
Trio (Siemens) with 32 channel coils. The rs-fMRI scans
were obtained using EPI sequences: whole brain coverage;
261 volumes, each volume contains 32 axial slices; layer
thickness 3.7 mm with an 20% inter-slice gap; TR = 1,970 ms;
TE = 30 ms; FOV = 192 × 192 mm2; flip angle = 78◦;
voxel size = 3 × 3 × 4.44 mm3. High resolution T1-
weighted structure images were obtained using MPRAGE
sequence, and the parameters were as follows: TR = 2,250 ms;
TE = 2.99 ms; TI = 900 ms; FOV = 256 × 240 × 192
mm3; flip angle = 9◦; voxel size = 1 mm; isotropy; generalized
automatic calibration partial parallel acquisition (GRAPPA)
acceleration factor = 2.

Data processing

Firstly, using the FUGUE tool of the FSL package to
accomplish the fieldmap correction.2 According to the phase
difference image and short TE amplitude images to get rad
images and then used the rad images of EPI image correction.
Then DPABI toolbox was used to preprocess the resultant rs-
fMRI images (15), including the following steps: À removed the

1 http://www.cam-can.org/

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE
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first 10 time points; Á time layer correction; Â head movement
correction; Ã the diffeomorphic anatomical registrations
through exponentiated lie algebra (DARTEL) (16) segmentation
method dealt with sMRI scans and used it to normalize rs-fMRI
scans. Ä standardization; Å regression covariables (including
Friston’s 24 head movement parameters (17), global signal,
average signal of white matter and cerebrospinal fluid); Æ

bandpass filtering (0.01–0.1 Hz). It was worth noting that
there was some controversy over whether the global signal
should be regressed during rs-fMRI data preprocessing (18–
20). In 2009, there existed opposite recommendations about
whether GSR should be used in the processing of rs-fMRI
data (18, 19). Murphy et al. was the first to show that GSR
mathematically mandates the presence of anti-correlations (19).
Because anti-correlations following GSR could be an artifact
of the processing technique, Murphy et al. concluded that
GSR should not be used. However, Fox et al. found that
several characteristics of anti-correlated networks could not
be attributed to GSR. Because GSR enhanced the detection of
system-specific correlations and improved the correspondence
between resting-state correlations and anatomy, they concluded
that GSR can be beneficial (18). Therefore, we also calculated
NGSR in the step of regression covariate to explore the influence
of global signal on the results. In the preprocess, 14 subjects
with a head movement of more than 3 mm and 3◦ and 1
subject with segmentation failure were removed. A total of
627 subjects were included in the analysis. There were 166
subjects in the Young group (18∼39 years old), 197 subjects in
the Middle group (40∼59 years old), and 264 subjects in the
Old group (60∼88 years old). The information of subjects was
shown in Table 1. There was no significant difference in gender
(P = 0.871) and significant difference in age (P < 0.0001). The
statistical analysis of basic information was obtained through
SPSS22.0.

Constructing functional network

The construction process of functional network was shown
in Figure 1A. For Cam-CAN data, we used the atlas of intrinsic
connectivity of homotopic areas (AICHA) (21) to extract the
average time series of each ROI. The atlas divided the brain into
384 regions (192 regions in each hemisphere), containing 344
cortical regions and 40 subcortical regions. It had been used
in some studies to divide the brain for FC and brain network

analysis (22–24). For each subject, we obtained the mean time
series of 384 regions through the time series of all voxels in
each ROI. The FC between two brain regions was obtained
by calculating Pearson correlation coefficients of average time
series. Finally, each subject obtained a 384 × 384 symmetric
FC matrix. Each intra-hemisphere network was a 192 × 192
symmetric FC matrix and had been used Fisher-z transform to
make the statistical normalization.

In order to explore the contribution of different ROI to
individual recognition, we further subdivided the hemispheric
functional network into five sub-modules (i.e., heteromodal,
paralimbic, primary, unimodal and subcortical) based on
functional hierarchy (25). This functional hierarchy was based
on studies of anatomy, electrophysiology, behavior, injury,
and functional imaging in non-human primates and humans.
The heteromodal and unimodal areas were most closely
involved in perceptual elaboration and motor planning. The
paralimbic areas played a critical role in channeling emotion
and motivation to behaviorally relevant intrapsychic and
extrapersonal targets. The primary included primary sensory
cortex, primary motor cortex, primary visual cortex, primary
auditory cortex, primary somatosensory cortex and primary
gustatory cortex and these cortices mainly responsible for the
control of motor, visual processing, auditory processing and
other functions. The subcortical included insula, amygdala,
putamen and thalamus. Among them, the thalamus relays
communication among subcortical and cortical regions and
played a central role in the integration of sensory information.
The cortical distribution of the five sub-modules was shown in
Figure 1C. Many studies had used these sub-modules (26–28).

Individual identification steps for
hemispherical functional networks

The individual identification method used in this paper
was a reference to the work of Finn et al. (9). Finn et al.
used the rs-fMRI and tfMRI data from HCP database and this
research demonstrated that functional connectivity, as a kind
of “fingerprinting,” could effectively identify individuals from
large samples. The difference between the individual recognition
of Finn et al. and ours was that Finn et al. computed the
Pearson correlation between the functional connectivity of the
whole brain of an individual and the functional connectivity
of the whole brain of another scan, while we computed

TABLE 1 Subject demographics.

Young Middle Old P-value

Sample size 166 197 264

Gender (male/female) 79/87 95/102 132/132 0.871

Age (years) 30.56± 5.68 49.21± 5.67 72.71± 7.53 <0.0001

The ages are shown as mean± standard deviation (SD). Columns on the right display P-value by F-test for age and the gender computes P-value by chi-square test.
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FIGURE 1

The process flow chart. (A) Data preprocessing. After a series of preprocessing steps, a 384 × 384 symmetric resting state FC matrix is obtained,
and the left hemisphere and right hemisphere is 192 × 192 symmetric connection matrices, respectively. The Pearson correlation of left
hemisphere and right hemisphere of intra-subject is defined as the hemispheric similarity of functional connectivity (HSFC). (B) Schematic
diagram of individual identification; (C) the cortical distribution of the five sub-modules. LH, Left hemisphere; RH, Right hemisphere.

the Pearson correlation between the functional connectivity
of the left and right intra-hemispheres of an individual to
complete the recognition process. Figure 1B showed the process
of the LH recognizing the RH in individual. First, created

FIGURE 2

The variation trend of HSFC of hemisphere and each
sub-module (heteromodal, parallel, primary, unimodal,
subcortical) in the process of aging.

database matrices containing right hemisphere FC matrices
for all subjects. D = [Xi, i = 1, 2, · · · , N], Xi was a
192 × 192 FC matrix, Subscript i refered to the subject, N
represented the total number of subjects. In the identification
step, the similarities between the target matrix and all the
right hemisphere FC matrices in the dataset were calculated.
These similarities were defined as Pearson correlation between
the target matrix and each FC matrix in the dataset. When
the target matrix (LH) and a matrix (RH) in the dataset
obtained the maximum Pearson correlation value and their
ID was the same [ID = argmax ({r1, r2, · · · , rN})], it
meant correct identification. The upper part of the dataset
matrices in Figure 1B were the FC matrices of RH, that
was, the contralateral hemisphere was used as a test set to
identify individual. And the lower part of Figure 1B also
contained all FC matrices of LH except the target matrix,
namely using ipsilateral and contralateral hemisphere as a
test set to identify individual. Similarly, the steps of the
RH to recognize the LH were consistent with the above
process. In order to evaluate the validity and robustness
of this identification method in statistics, a non-parametric
permutation test was performed. In each recognition process,
we randomly shuffled the subjects’ hemispheres in the dataset,
and then used each target matrix to identify them in
turn, and compared the difference between the obtained
recognition rate and the initial recognition rate. This process
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was performed 1,000 times. In order to explore the contribution
of sub-modules to individual recognition, we carried out
individual recognition for each of the five sub-modules,
and the recognition steps were basically the same as the
hemispheric recognition process. In the following content, we
also defined the hemispheric similarity of each sub-module as
HSFC.

Age-related changes in hemispheric
similarity

A large number of studies (29–32) had shown that
aging could affect the FC between brain regions, not only
the connectivity within functional subnetworks, but also the
connectivity between different functional subnetworks. Aging
caused the brain networks of older people to become less
modular, as well as reduced local efficiency. In order to
investigate the variation trend of HSFC during aging, we
calculated Pearson correlation between subjects’ age and HSFC.
At the same time, the above operations were also performed on
five sub-modules.

Validation analysis

In this study, individual identification and the relationship
between HSFC and age were conducted based on AICHA
template. In order to explore the stability of the calculation
results for atlas, we used the human brainnetome atlas (BNA)3

for validation analysis (33). The BNA was based on a connective
architecture that allowed brain anatomy to be correlated with
psychological and cognitive functions and therefore was suitable
for functional brain network analysis. The atlas divided the
brain into 246 regions (123 for each hemisphere), comprising
210 cortical regions and 36 subcortical regions. It had been
used in some studies to divide the brain for FC and brain
network analysis (34–37). For each subject, referring to AICHA’s
FC matrix construction process, finally we got a 246 × 246
symmetric FC matrix. Each intra-hemisphere was 123 × 123
symmetric FC matrix. The above AICHA’s results were repeated
using the FC matrix obtained by the BNA. At the same time, we
compared the robustness of HSFC between different templates.

3 http://atlas.brainnetome.org/

FIGURE 3

The recognition rate results of hemisphere and each sub-module in different age groups. (A–C) Represents the recognition rate of young,
middle and old, respectively. From left to right in each sub graph, the recognition rate of hemisphere and five sub-modules are in turn. Notably,
Orange indicates that the RH recognizes the LH without Ipsilateral Hemisphere (RH→LH, WOIH). Brown indicates that the LH recognizes the RH
without ipsilateral hemisphere (LH→RH, WOIH). Light blue indicates that the RH recognizes the LH with ipsilateral hemisphere (RH→LH, WIH).
Dark blue indicates that the LH recognizes the RH with ipsilateral hemisphere (LH→RH, WIH). (D–F) Correspond to non-parametric
permutation test of (A–C), respectively.
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FIGURE 4

Pearson correlation between age and HSFC of hemisphere and five sub-modules. (A–F) Represent the hemisphere, heteromodal, paralimbic,
primary, unimodal, subcortical, respectively.

FIGURE 5

Pearson correlation of HSFC of hemisphere and five sub-modules between BNA and AICHA. (A–F) Represent the hemisphere, heteromodal,
paralimbic, primary, unimodal, subcortical, respectively.
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In addition, the above analysis was repeated with NGSR to
explore the effect of global signal on the results.

Results

Hemispheric similarity of functional
connectivity of hemispheres and
sub-modules in different age group

It could be seen from Figure 2 that with the increase of
age, except for subcortical, HSFC in other sub-modules and
hemispheric level showed a decreasing trend, and heteromodal
had the smallest decline. For different age group, the HSFC
of primary always maintained the maximum value, followed
by unimodal and heteromodal. In youth and middle age, the
HSFC of unimodal was higher than that of subcortical, while
in old age, the HSFC of subcortical was slightly higher than
that of unimodal. In addition, the HSFC of paralimbic was
slightly larger than that of subcortical in youth. With the aging
process, the HSFC of paralimbic continues to decline, and the
gap between paralimbic and subcortical was growing.

Individual recognition of hemispheric
similarity of functional connectivity

We first observed the individual recognition results without
ipsilateral hemisphere from Figure 3. It could be found that
the individual recognition results of different age groups were
roughly the same. Among them, the recognition ability of
hemispheric level was the best and that of subcortical was
the lowest. Heteromodal, paralimbic and unimodal had similar
recognition abilities, which were slightly higher than primary.
After adding the ipsilateral hemisphere for recognition, the

recognition ability of each sub-module decreased to varying
degrees, while the hemisphere level recognition had little effect.
In addition, for the difference of LH to recognize RH or RH
to recognize LH, there was little difference at the hemispheric
level, but there were partial differences in different sub-modules.
Given that the identification trials were not independent from
one another, we performed non-parametric permutation testing
to assess the statistical significance of these results. Across 1,000
iterations, the highest success rates achieved were 6/166 (Young
group), 6/197 (Midlle group),6/264 (Old group), neither of
which exceeded 4%. Thus the P-value associated with obtaining
at least correct identifications (the minimum rate we achieved)
was 0.

Age-related changes in hemispheric
similarity

As shown in Figure 4, except for the positive correlation
between HSFC and age in subcortical, the hemispheric and
other sub-modules reflected the negative correlation trend.
In addition, except that the correlation between HSFC and
age was not significant (r = –0.075, p = 0.06 > 0.05) in
heteromodal, HSFC of other sub-modules and hemispheric
showed a significant correlation with age to varying degrees.

Validation analysis of template and
processing method

The HSFC used in the previous main work was based on
AICHA template. In order to understand whether the HSFC
was specific to AICHA template, we recalculated HSFC using
BNA template, and then computed Pearson correlation on the
HSFC obtained from the two templates. As shown in Figure 5,

FIGURE 6

(A) The changes of HSFC with GSR obtained by BNA and (B) the changes of HSFC with NGSR obtained by AICHA in different age groups and
modules.
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the HSFC between templates showed a very significant positive
correlation (r = 0.88, p = 2.65 × 10−199) at the hemispheric
level. The degree of correlation varied for different sub-modules.
The correlation of subcortical was the lowest and the data points
fitting were not strong.

The mean value of HSFC obtained by BNA was shown in
Figure 6A. It seemed some differences when compared with the

HSFC obtained by AICHA (Figure 2). Except for hemisphere
and heteromodal, the mean value and change trend of other
modules were basically similar to the HSFC obtained by AICHA.
The HSFC with NGSR obtained by AICHA was shown in
Figure 6B and the HSFC distribution was different from that
obtained by GSR (Figure 2). Except for heteromodal, the mean
value of HSFC in other modules decreased with aging. In

FIGURE 7

The recognition rate results of hemisphere and each sub-module in different age groups for BNA template with GSR. (A–C) Represents the
recognition rate of young, middle and old, respectively. From left to right in each sub graph, the recognition rate of hemisphere and five
sub-modules are in turn. Notably, orange indicates that the RH recognizes the LH Without Ipsilateral Hemisphere (RH→LH, WOIH). Brown
indicates that the LH recognizes the RH Without Ipsilateral Hemisphere (LH→RH, WOIH). Light blue indicates that the RH recognizes the LH
With Ipsilateral Hemisphere (RH→LH, WIH). Dark blue indicates that the LH recognizes the RH With Ipsilateral Hemisphere (LH→RH, WIH).
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addition, the value of subcortical was higher than that of GSR
and was greater than that of heteromodal in different age groups,
while the HSFC of unimodal was higher than that of primary in
old age. However, the contrast of HSFC between hemisphere and
heteromodal in youth and middle age was opposite to that with
GSR.

In the validation part of recognition rate, first of all,
we observed the recognition rate results obtained from the
BNA template (Figure 7). The individual recognition rates of
paralimbic, primary and subcortical in the elderly were lower
than those in the youth and middle age. In the comparison of
the recognition rate of different templates, it was found that
the recognition rate of AICHA template was better than that
of BNA template, especially at the sub-module level. Next, after
comparing the recognition rate results of GSR (Figure 3) and

NGSR (Figure 8), we could find that the recognition rate of each
module was almost the same.

In the validation part of the correlation between HSFC
and age, similarly, we used the BNA template for validation
(Figure 9) and found that the distribution patterns between the
two templates were similar. The Pearson correlation between the
HSFC and age for heteromodal and unimodal had no significant
difference (heteromodal: r = –0.002, p = 0.96; unimodal: r = –
0.043, p = 0.28). The correlation coefficient obtained by primary
and paralimbic was larger than that of the corresponding sub-
module in AICHA template. In addition, the correlation value
between HSFC and age of primary and subcortical with NGSR
(Figure 10) was higher than that with GSR, and the other
modules were the opposite.

FIGURE 8

The recognition rate results of hemisphere and each sub-module in different age groups for AICHA template with NGSR. (A–C) Represents the
recognition rate of young, middle and old, respectively. From left to right in each sub graph, the recognition rate of hemisphere and five
sub-modules are in turn. Notably, orange indicates that the RH recognizes the LH Without Ipsilateral Hemisphere (RH→LH, WOIH). Brown
indicates that the LH recognizes the RH Without Ipsilateral Hemisphere (LH→RH, WOIH). Light blue indicates that the RH recognizes the LH
With Ipsilateral Hemisphere (RH→LH, WIH). Dark blue indicates that the LH recognizes the RH With Ipsilateral Hemisphere (LH→RH, WIH).
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FIGURE 9

Pearson correlation between age and HSFC of hemisphere and five sub-modules for BNA template with GSR. (A–F) Represent the hemisphere,
heteromodal, paralimbic, primary, unimodal, subcortical, respectively.

FIGURE 10

Pearson correlation between age and HSFC of hemisphere and five sub-modules for AICHA template with NGSR. (A–F) Represent the
hemisphere, heteromodal, paralimbic, primary, unimodal, subcortical, respectively.
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Discussion

In this study, the Cam-CAN datasets with a large age
span were used and the index named “hemispheric similarity
of functional connectivity (HSFC)” was proposed. This index
could effectively identify individuals and reflect the change trend
in the aging process. In addition, the results obtained in different
sub-modules were also different. The results were robust to
different templates and whether the global signal was regressed
or not. This proves that HSFC has unique advantages in aging
research, and also shows that HSFC has the characteristics of
individual differences.

The specificity of the cerebral hemisphere is a sign of
successful neural development (38). Previous studies (39–
41) extracted a series of indicators as features through the
specificity of hemispheric function or the asymmetry of
hemispheric structure and function, and obtained a high
accuracy in the diagnosis of diseases. On the contrary,
some studies (42, 43) found the conclusion of hemispheric
asymmetry through the processing and statistical analysis
of imaging data. The above studies indirectly revealed the
importance of the cerebral hemisphere, suggesting the starting
point of this study.

In the past, the application of pattern recognition in
imaging research was generally by extracting the features of
different levels of the brain and building a classifier for the
prediction of category variables or building a regressor for
the continuous variables of behavior scores. Next, using a
new test set to get the results on the classifier or regressor.
Different from the common pattern recognition methods, this
study based on the “fingerprint” method proposed by Finn
et al. (9) had achieved a very high accuracy at the hemispheric
level, which showed that each individual is unique. For sub-
modules, since the primary module mainly involves primary
cortical areas such as the central gyrus (25), the FC similarity
of homologous brain areas between hemispheres is also very
high and the degree of lateralization is small. Therefore, its
HSFC value was the highest among all modules (Figure 2).
Meanwhile the functional patterns of the primary module
in the LH and RH are very similar so that the individual
differences at the group level are not high, which led to a
low recognition rate (Figure 3). Subcortical module mainly
involves subcutaneous nuclei (25). The segmentation effect of
subcutaneous nuclei in image data preprocessing is poor, which
also indirectly affects the calculation of HSFC, resulting in
its generally low value. Therefore, the individual recognition
ability was not strong. For the difference of recognition rate
in sub-modules, we hypothesized that this might be due
to differences in functional connectivity similarities between
homologous brain regions of different modules, leading to
differences in the degree of lateralization, and thus affecting
HSFC. We believe that HSFC can better reflect the degree of
lateralization in different brain regions. The higher the value

of HSFC, the higher the similarity of functional connectivity of
homologous brain regions in this region, and the smaller the
degree of lateralization. The smaller the value of HSFC is, the
lower the similarity of functional connections of homologous
brain regions in this region, and the greater the degree of
lateralization. This can help us further explore differences in
the degree of lateralization in different regions of the brain.
In different age groups, the results of recognition rate were
basically the same, which also showed that the individual
differences of HSFC were stable in the aging process and had
good robustness.

In the previous study (13), it was found that the changes
of vascular components, head movements and the location of
functional areas would affect the relevant patterns of FC and
aging process, so a series of analysis and processing methods
were proposed. Another study (44) showed that the shrinkage
rate of various regions of the cerebral cortex during aging
was not the same. In this study, based on the relationship
between the HSFC and age, we found that HSFC decreased with
the aging process on the whole. The results showed that the
aging process led to the pattern disorder of many functional
subnetworks, which disrupted the symmetry of hemispheric
functional networks to some extent and further provided
valuable clues for the future study of the development pattern
of hemispheric functional networks in the aging process.

Through the study of the HSFC between different templates,
it showed that HSFC is not only specific to a fixed template,
but also could be extended to more functional templates.
When using BNA template or NGSR, the results obtained
were basically consistent with our main results (i.e., GSR with
AICHA template).

In the outlook of the follow-up work, first of all, the FC
network of this study was calculated by Pearson correlation.
Some studies (45, 46) proposed the processing strategy of
“distance correlation” and its research results were better than
Pearson correlation, which was worthy of our reference in the
future. Second, although this study used a wide range of aging
data, it was limited to rs-fMRI research. In the future, structural
MRI and task fMRI can be added for a more comprehensive
analysis or we can consider applying the HSFC-based method to
HCP datasets with different scans, so as to verify the recognition
stability of HSFC at different time points in the same individual.
Third, this study was aimed at a series of conclusions obtained
in the process of normal aging, and its application prospect
in Alzheimer’s disease and other nervous system and mental
diseases is not clear. Fourth, the continuous optimization of
preprocessing strategy and the realization of large sample data
are still big problems that have been committed to research in
the field of pattern recognition, which still need to be solved.

In this study, the HSFC was proposed for the first time
and it could effectively identify individuals and reflected the
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changes in the aging process. In particular, we found that there
are differences in the recognition rate among sub-modules and
there were also differences in the trend with age. Finally, as
a validation, we repeated the main results through another
functional template and NGSR, which had good robustness.
This also provides new clues for the pattern of changes between
hemispheres in the normal aging process.
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