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Background: Emotions play a key role in psychotherapy. However, a problem

with examining emotional states via self-report questionnaires is that the

assessment usually takes place after the actual emotion has been experienced

which might lead to biases and continuous human ratings are time and

cost intensive. Using the AI-based software package Non-Verbal Behavior

Analyzer (NOVA), video-based emotion recognition of arousal and valence

can be applied in naturalistic psychotherapeutic settings. In this study, four

emotion recognition models (ERM) each based on specific feature sets

(facial: OpenFace, OpenFace-Aureg; body: OpenPose-Activation, OpenPose-

Energy) were developed and compared in their ability to predict arousal and

valence scores correlated to PANAS emotion scores and processes of change

(interpersonal experience, coping experience, affective experience) as well as

symptoms (depression and anxiety in HSCL-11).

Materials and methods: A total of 183 patient therapy videos were divided

into a training sample (55 patients), a test sample (50 patients), and a holdout

sample (78 patients). The best ERM was selected for further analyses. Then,

ERM based arousal and valence scores were correlated with patient and

therapist estimates of emotions and processes of change. Furthermore, using

regression models arousal and valence were examined as predictors of

symptom severity in depression and anxiety.

Results: The ERM based on OpenFace produced the best agreement to

the human coder rating. Arousal and valence correlated significantly with

therapists’ ratings of sadness, shame, anxiety, and relaxation, but not with

the patient ratings of their own emotions. Furthermore, a significant negative

correlation indicates that negative valence was associated with higher

affective experience. Negative valence was found to significantly predict

higher anxiety but not depression scores.
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Conclusion: This study shows that emotion recognition with NOVA can

be used to generate ERMs associated with patient emotions, affective

experiences and symptoms. Nevertheless, limitations were obvious. It seems

necessary to improve the ERMs using larger databases of sessions and the

validity of ERMs needs to be further investigated in different samples and

different applications. Furthermore, future research should take ERMs to

identify emotional synchrony between patient and therapists into account.

KEYWORDS

emotion recognition, process-outcome, video analyses, prediction, facial coding,
software validation, software application

Introduction

Emotions are a central component of human
communication, form the basis of interpersonal relationships,
indicate how we feel, provide feedback about internal states,
and prepare impulses for action (1). Most mental disorders
are characterized by some form of emotional impairment.
Dysfunctional behaviors often result from difficulties in
dealing with unpleasant feelings (2). Especially emotional
disorders (e.g., depression) are characterized by frequent and
intense negative emotions, a diminished sense of control
and negative appraisal of specific emotions, as well as efforts
to avoid emotions (3). Beyond that, patients with mental
disorders seem to have problems expressing their emotions
adequately. For instance, their facial activity is reduced and
their ability to imitate emotional expressions is impaired, which
makes it harder for them to establish healthy relationships
(4–7). Therefore, focusing on emotions is transdiagnostically
relevant to the therapeutic process and outcome over nearly all
psychotherapeutic modalities (8).

In a meta-analysis including 42 studies, an averaged
weighted effect size of r = 0.40 between patients’ emotional
expressions and treatment outcome was found (9) indicating
that stronger expressions of affect were associated with better
outcomes. However, the authors point out that direct evidence
of causality cannot be demonstrated with this correlational
approach. Further findings suggest that emotions contain
information about a patient’s underlying needs and motives (10)
and that emotional empathy fosters the therapeutic relationship,
which is associated with better treatment outcomes (11).
Additionally, the affective experience during therapy which is
a predictor of symptom reduction (12) has been shown to be
characterized by negative valence and high arousal (13).

Since emotions are a central element of human interaction,
emotion research has a long tradition. Wundt (14) was one
of the first to distinguish between the two different aspects
of valence (ranging from feeling pleasant to unpleasant) and
arousal (ranging from feeling quiet to active). Many other

definitions of significant emotion features followed, which differ
primarily in the number of dimensions and their labeling (15).
The circumplex model of emotions (16) is one of the most
established theoretical models and describes emotions as a
specific combination of the dimensions arousal and valence.
These two dimensions are arranged orthogonally, resulting
in a coordinate system in which emotions can be mapped.
This model integrates non-verbal information multimodally,
allowing easy determination of emotional expressions (17).

Besides these theoretical considerations of emotion
classifications, there is a great variety of methods to assess
emotions (e.g., self-reports, physiological measures, external
observations of salient emotional cues). Regarding patients’
emotions–and their change over the course of therapy–research
has so far been based mainly on subjective self-reports. Here,
evidence for the association between patient emotions and
treatment success was found (18–20). However, a problem with
examining emotional states via self-report questionnaires is that
the assessment usually takes place after the actual emotion has
been experienced which might lead to biases. For a detailed
review of possible reasons for faulty memories of emotional
experiences, see Levine et al. (21). Their findings suggest that
diagnostic and experimental tests based on self-reports of past
emotions, and testimony concerning the emotional impact of
past events, should be interpreted with caution, particularly
when an individual’s report follows major changes in his or
her goals and beliefs. Moreover, during the therapy session,
emotions are usually expressed non-verbally and determined
based on salient non-verbal cues. In particular, facial expression
has proven to be a helpful indicator for emotion recognition
(22). Manual external observational ratings of emotional
expressions yielded results superior to self-report ratings [for
an overview see (15)], however, they have to be considered a
time-consuming procedure (23).

In this context, modern automated external observational
methods such as artificial intelligence (AI) video analysis
software seem a promising way to examine emotions. They are
less time-consuming and less expensive than manual ratings,
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more objective than patients’ self-report ratings, and they can
provide continuous ratings with a high number of measurement
time points for the entire length of a psychotherapy session.
Due to the high temporal resolution, the application of AI
video analysis software supplies new opportunities to examine
emotions in the context of psychotherapy. Moreover, AI
video analysis software allows the analysis of psychotherapy
processes without having to implement additional equipment
(e.g., electrodes) in the psychotherapeutic setting. This makes
it possible to recognize emotions in a naturalistic setting
without influencing the therapeutic process. Furthermore, with
the help of video analysis tools, it is possible to examine
expressions of emotion without the previously mentioned
possible distortions in human ratings. Accordingly, once a
suitable emotion recognition model (ERM) for software-based
examination has been trained, it can be applied to an unlimited
number of later recorded therapy sessions. Candra et al. (24),
for example, proposed to use automated emotion recognition
tools give feedback to psychotherapists and thus enable them
to pay more attention on contemplation of emotions in the
reflection of the sessions. Available software varies with regard to
the quality of emotion recognition (25, 26). However, in a review
of deep-learning approaches, recognition accuracy averaged
72% (27). Real-life applications of software solutions for an
automated and continuous emotion recognition still remain
an open challenge as most software’s reliability is limited in
naturalistic settings (28). There are only a few first studies which
use AI-based ERMs in the field of psychotherapy (17). However,
first promising findings indicated high levels of accuracy for
automated continuous emotion recognition and significant
consistency with manual ratings in psychotherapy (17, 24).

To address the challenges of assessing emotions in
naturalistic settings, the open-source software Non-Verbal
Behavior Analyzer [NOVA; (29–32)] has been adapted to
psychotherapy research because it does not interfere with the
therapeutic process. NOVA is a software originally developed as
an interview analysis tool within the EU FP-7 project TARDIS
[2012–2015, (33)]. It was extended to include interactive
machine learning capabilities as part of the ARIA-VALUSA
Horizon project [2015–2018, (34)]. NOVA is an open-source
tool and available on GitHub1. In a pilot study, it was applied to
72 therapy sessions of a test anxiety treatment (29). NOVA was
evaluated as intuitive and ergonomic by trained human raters.
Furthermore, they highlighted the wide range of functions and
its good usability.

In summary, the progressive advancement of AI-based
software solutions enables new assessment methods and fields
of investigation. Continuous video-based emotion recognition
can now be applied resource-efficiently and non-invasively in
naturalistic psychotherapeutic settings. Therefore, this study
aimed to apply NOVA to psychotherapy research and evaluate

1 https://github.com/hcmlab/nova

the validity of this method for assessing emotional expressions.
For this purpose, the associations between the average arousal
and valence of the patient per session determined by means
of NOVA on the one hand, and the emotion assessment by
the patient and therapist as well as symptom severity and
the established process variables emotional, interpersonal and
coping experiences (12), which are based on Grawe’s (35)
process variables, on the other hand were to be examined.
Therefore, we investigated the following hypotheses:

1. Emotion recognition models comparison: Valence and
arousal estimated by the ERM correlate positively with
human coders’ ratings. ERMs using different feature sets
differ in terms of the strength of their correlation with
human ratings of arousal and valence. The best ERM with
the highest positive correlation can be identified.

2. The patients’ emotions (identified using the superior ERM
in NOVA) are related to the patient and therapist ratings
of the patients’ emotions at the end of the session using
the PANAS. We expected higher negative valence to
be correlated with more sadness, shame, anxiety, and
anger. Accordingly, we expected higher positive valence
to be associated with more satisfaction, energy, and
relaxation. Furthermore, we expected higher arousal to
be correlated with more anger, satisfaction, and energy.
Lower arousal was expected to be correlated with more
relaxation and sadness.

3. The patients’ emotions (identified using the superior ERM
in NOVA) are related to the three process variables
affective experience, interpersonal experience, and coping
experience. We expected stronger affective experiences
to be associated with higher arousal and more negative
valence. Furthermore, we expected stronger interpersonal
and coping experiences to be associated with more
positive valence.

4. Emotion recognition models-rated arousal and valence are
predictors of patient symptom severity in the respective
session and the two following sessions (comprising a
period of around 2 weeks). More arousal and more
negative valence are associated with higher symptom
severity.

Materials and methods

Participants and treatment

All patients in this study were treated with integrative
cognitive-behavioral therapy (CBT) between 2017 and 2019
at an outpatient clinic in southwest Germany. The following
inclusion criteria had to be met: (1) At least ten therapy
sessions, and (2) patients older than 16 years. Exclusion criteria
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were: (1) Organic, including symptomatic mental disorders
(ICD-10: F00-F09), (2) primary diagnosis of schizophrenia,
schizotypal, or delusional disorders (ICD-10: F20-F29) because
of expected problems during coding due to the peculiarities
of the affective processing of these disorders (36), (3) physical
limitations that interfere with the expression of emotions (e.g.,
paralysis, prostheses, amputations, dystonia, rigidity, burn, and
disfigurement), and (4) patient transfer to a different therapist
during the course of therapy. In total, videos of 183 patients
(one session/video per patient) were used in this study. Videos
were selected randomly from a sample with high video quality.
One video per patient from a randomly varying session was
included in this study. The training sample consisted of 55
videos, which were coded twice by different coders. The test
sample consisted of further 50 patients who were not part
of the training sample. The final application sample consisted
of the 50 sessions from the test sample plus 78 additional
patients (see Figure 1). Patients in the application sample had
on average 35.68 (SD = 18.47) sessions of psychotherapy. They
were between 18 and 72 years old with a mean of 34.72 years
(SD = 12.77) and 70 (54.7%) of them were female. Detailed
sample characteristics of the training, test, and evaluation
samples can be found in Table 1. All therapists participated in
a 3-year (full-time) or 5-year (part-time) postgraduate training
program with a CBT focus and had received at least 1 year of
training before beginning to see patients. They were supervised
by a senior therapist every fourth session and were supported
by a feedback system monitoring patient outcomes on a session-
by-session basis (37). Therapists were trained in an integrative
CBT approach including interpersonal and emotion-focused
elements (35, 38, 39). All therapists were familiar with various
disorder-specific CBT manuals but individually adapted their
approach depending on patients’ characteristics. Psychometric
feedback was provided to therapists after each session [for a
detailed description of the treatment setting see (40)]. Research
data were routinely collected via a range of instruments and all
therapy sessions were videotaped. The patients were informed in
writing when they registered for therapy and in person during
the first therapy session about the continuous video recording
as well as the collection of psychometric data. They were also
informed about the evaluation of the video and psychometric
data and the anonymized publication. Patients were informed
about their right to withdraw their consent. All patients gave
their written informed consent. This procedure was approved
by the Ethics Committee of the German Psychological Society
(DGPs, 2020-03-20VADM).

Patients were diagnosed based on the Structured Clinical
Interview for DSM-IV Axis I Disorders [SCID-I; (41)]
conducted by intensively trained independent clinicians before
actual therapy began. The interviews were videotaped and
subsequently interviews and diagnoses were discussed in expert
consensus teams comprised of four senior clinicians. Final
diagnoses were determined by the consensual agreement of at

least 75% of the team members. For the diagnosis of personality
disorders, the International Diagnostic Checklist for Personality
Disorders [IDCL-P; (42)] was conducted in the first sessions
by the therapist.

Automated emotion recognition using
Non-Verbal Behavior Analyzer

Video processing
As a matter of routine, all therapy sessions were video

recorded in the outpatient clinic. A sketch of the setting can
be found in Figure 2. The therapist and patient were recorded
separately by two different cameras. In this study, only the
patient videos were considered. To ensure that the analyzed
material covers the therapeutic interaction only, videos were
checked, and additional video time was cut out. Afterward, video
resolution was standardized to a scaled size of 640:480 and 25
frames per second and converted to mp4 format.

Software
The central instrument for assessing arousal and valence was

the NOVA software (29, 32). With the help of NOVA, arousal
and valence were measured continuously between −1 and +1
with up to 16 decimal places. On the arousal dimension, −1
represents a drowsy state and +1 a state of strong agitation.
On the valence dimension, −1 represents a very negative
valence and +1 a very positive state. Both dimensions were then
aggregated separately to generate mean values of arousal and
valence per session. Without any additional training, NOVA is
able to extract defined features of multiple modalities, such as
the face and the body, so-called feature streams. In this study,
different feature streams are used: OpenFace (43), a feature set
that contains facial landmarks, head orientation as well as 17
actions units, OpenPose (44), a 2D skeleton tracking algorithm,
as well as calculated features on the skeleton data such as the
overall activation and the energy of the movements (31). An
impression of the user interface of NOVA is given in Figure 3.

Rater training
To improve NOVA’s recognition performance, the

algorithms were trained with manually rated videos (human
coder ratings). The arousal and valence dimensions were
scaled so that the values ranged from −1 to +1. All four raters
(two female, two male) have graduated in psychology and
underwent 30 h of training (consisting of technical instructions,
information on common emotional theories with a special focus
on the circumplex model, as well as video training material to
train coding skills). Monthly supervision sessions were held
with a licensed psychotherapist. Raters did not start rating in
the project until their agreement in the example material was at
least Cronbach’s α = 0.70.
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FIGURE 1

Flowchart of the sample distribution.

TABLE 1 Sample characteristics of the training, test, and evaluation sample.

Training (n = 55) Test (n = 50) Evaluation (n = 128)

Mean (SD) or % Range or N Mean (SD) or % Range or N Mean (SD) or % Range or N

Patient age (years) 32.88 (13.34) 18–69 34.64 (13.42) 18–65 34.72 (12.77) 18–72

Patient sex (female) 65.45 36 44 22 54.7 70

Therapy duration (sessions) 34.70 (36) 10–90 30.65 (13.86) 10–68 35.68 (18.47) 10–86

Drop-out rate 16.36 9 10 5 11.7 15

Comorbidity 52.73 29 44 22 39.8 51

Primary diagnosis

Affective disorder 45.45 25 46 23 45.3 58

Anxiety disorder 10.91 6 8 4 10.3 13

Adjustment disorder 14.55 8 16 8 10.2 13

PTSD 9.09 5 8 4 7.8 10

Personality disorder 3.64 2 2 1 0.8 1

Other 16.36 9 20 10 25.6 33

Therapy duration refers to the complete length of the therapies from which the analyzed sessions originate.

Psychometric questionnaires

Hopkins Symptom Checklist-11
The Hopkins Symptom Checklist-11 (HSCL-11) (41) is a

short questionnaire based on the HSCL-25 (45), which is a
short version of the Symptom Checklist-90 (46). It contains
items from the subscales depression and anxiety. The HSCL-
11 is a self-report questionnaire, which consists of 11 items,
all structured as a 4-point Likert scale ranging from 1 (not
at all) to 4 (very). In this study, the mean score for the
whole questionnaire and scores for the subscales anxiety and
depression were used. The internal consistency of the HSCL-
11 (Cronbach’s alpha) was α = 0.85 (47). The mean of the 11
items is highly correlated with the Global Severity Index (GSI) of

the Brief Symptom Inventory [BSI; r = 0.91; (12)]. Furthermore,
psychometric properties are comparable to the BSI (45).

Subjective emotion rating
As a subjective emotion rating, an adaptation of the Positive

and Negative Affect Schedule [PANAS, (48)] was carried out at
the end of each session. The patient and therapist had to rate on
a scale from 0 (not at all) to 100 (extremely) how sad, ashamed,
frightened, angry, satisfied, energetic, and at ease the patient felt
during the therapy session.

Session Report
At the end of each session, a short form of the Session

Report (SR) (49–51) was administered. Patients assessed the
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FIGURE 2

Sketch of the structure of a therapy room from two different angles. 1 = video and audio recording equipment (hidden in a cupboard), 2 =
camera that focuses on the therapist, 3 = camera that focuses on the patient, 4 = microphone, and 5 = touchscreen for assessment of the
session reports.

subjectively perceived realization of process variables during
the session. Three subscales, each ranging from −3 (not at
all) to +3 (yes, exactly), were created from the 12-item version
by averaging items of a scale: coping experiences (6 items),
interpersonal experiences (4 items), and affective experiences
(2 items; for more details see Rubel et al. (12)). The internal
consistency (Cronbach’s alpha) was shown to be α = 0.89 for
coping experiences, α = 0.90 for interpersonal experiences, and
α = 0.85 for affective experiences (12).

Data analytic strategy

Hypothesis 1: ERM comparison – Identifying the best NOVA
ERM

The human and automated codings each resulted in
continuous time series. In the first step, several ERMs were
trained in the training data. Then, they were tested in the
training as well as in the test data for their agreement with
human ratings by correlating automatic (via NOVA) and human
ratings for each session. Correlation coefficients were averaged
over all sessions. Furthermore, the model fit indices mean
squared error (MSE) and root mean square rrror (RMSE) were
considered. The best performing ERM in training and test data
was then applied to the application sample.

Hypotheses 2–4: Evaluating the best NOVA ERM

In the application sample, session scores for arousal and
valence were calculated by taking a mean per session for each of
the two emotion dimensions. Following hypothesis 2, Pearson
correlations between the mean values of arousal and valence in
NOVA and the subjective assessment of the patients’ emotions
were carried out. Afterward, following hypothesis 3, mean
session scores for arousal and valence were correlated with

the patient assessment of the three process variables coping
experiences, interpersonal experiences, and affective experiences
using Pearson correlations. Furthermore, the predictive value
of arousal and valence was tested using linear regression.
Here, the dependent variable HSCL-11 (mean session scores
as repeated measures of symptom severity) at session t, t+1,
and t+2 was regressed on arousal and valence at session t as
predictors (hypothesis 4).

Results

Human ratings’ reliability and test
assumptions

The human coder ratings that were used to train the ERMs
showed acceptable to excellent agreements on average for both
arousal (Cronbach’s α = 0.73, ranging from α = 0.61 to α = 0.89)
and valence (Cronbach’s α = 0.74, ranging from α = 0.60 to
α = 0.90). Curves estimations indicated linearity of the data
(all linear terms p < 0.05, all other terms p > 0.10). The
Durbin Watson value of 1.774 for valence and 1.745 for arousal
showed no evidence of autocorrelation of the predictor. The
Shapiro–Wilk test showed that the residuals were normally
distributed (valence: p = 0.302, arousal: p = 0.159). Homogeneity
of variances was asserted using Levene’s test, which showed that
equal variances could be assumed (all p > 0.10).

Hypothesis 1: Valence and arousal estimated by the ERM
correlate with human coders ratings. A best ERM can be
identified.

Different models based on different feature sets were
evaluated. As expected, there were differences in the chosen
models regarding their fit to the human codings. The model
comparison showed that in both the training and test samples,

Frontiers in Psychiatry 06 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1026015
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1026015 October 26, 2022 Time: 11:18 # 7

Terhürne et al. 10.3389/fpsyt.2022.1026015

FIGURE 3

Exemplary representation of therapy videos in Non-Verbal Behavior Analyzer (NOVA). 1 = original video, 2 = schematic representation of the
OpenFace feature points (not shown to raters during rating), 3 = time series for arousal/valence, and 4 = graphical representation of the arousal
and valence characteristics/graphical interface for the rating of arousal/valence.

the OpenFace model produced a higher agreement (training
sample: rvalence = 0.26, rarousal = 0.38; test sample: rvalence = 0.37,
rarousal = 0.44) to the human rating than the other models (see
Table 2). Only in the test sample was a slightly higher agreement
for valence (r = 0.42) for the OpenFace-Aureg ERM than for
the OpenFace ERM (r = 0.37). However, the performance of the
OpenFace ERM was close to the agreement for valence of the
OpenFace-Aureg ERM and the OpenFace ERM outperformed
all other models in assessing arousal. Therefore, this ERM was
considered the best performing model.

Hypothesis 2: The patients’ emotions (identified using the
superior ERM in NOVA) are related to the patient and
therapist ratings of the patients’ emotions at the end of
the session.

No significant correlations were found between the patient
rating of his/her own emotions and the emotions recognized
with the help of ERM. The therapist ratings of their patients’
emotions were significantly correlated with ERM-rated valence
for sadness (r = −0.18, p < 0.049), shame (r = −0.23, p = 0.011),
and anxiety (r = −0.21, p = 0.023), indicating that more positive
ERM-coded emotions were associated with less sadness, less
shame, and less anxiety of the patient rated by the therapist.
Furthermore, ERM-rated arousal was significantly associated
with the therapists’ assessment of their patients relaxation
(r = −0.19, p = 0.039).

Hypothesis 3: The patients’ emotions (identified using the
superior ERM in NOVA) are related to the three process

variables affective experience, interpersonal experience,
and coping experience in the same and the two following
sessions.

In the third step, we examined the correlation between
automatically recognized ERM-rated arousal and valence and
the three processes of change interpersonal experiences, coping
experiences, and emotional experiences. Significant associations
could be found between valence and affective experience
(r = −0.23, p = 0.010) and arousal and affective experience
(r = 0.18, p = 0.044), indicating that more negative emotions
and higher emotional arousal during the session were correlated
with a higher level of emotional experience. Further results can
be found in Table 3.

Hypothesis 4: ERM-rated arousal and valence are
predictors of patient symptom severity in the respective
session and the two following sessions (comprising a time
period of around 2 weeks).

In the last step, the predictive value of ERM-recognized
arousal and valence for symptom severity in the same (t) and
the two following (t+1 and t+2) sessions was examined. There
was no significant predictive effect for the HSCL-11 mean score
measured at sessions t and t+2. There was a significant effect
indicating that positive valence at session t predicted lower
symptom severity in the following session (t+1; b = −5.38,
β = −1.98, SE = 2.72, t(126) = 1.98, p = 0.046). Valence and
arousal did not predict symptom severity on the HSCL-11
subscale depression at any of the three time points. However,
valence proofed as a stable predictor for the symptom severity
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TABLE 2 Emotion recognition model (ERM) comparison for the
emotion dimensions arousal and valence based on different
feature streams.

Pearson CC MSE RMSE

Valence

OpenFace 0.26 <0.01 0.07

0.37 <0.01 0.06

OpenFace-aureg 0.26 <0.01 0.08

0.42 <0.01 0.06

Openpose-activation 0.05 <0.01 0.09

0.05 <0.01 0.07

Openpose-energy <0.01 <0.01 0.09

−0.03 <0.01 0.07

Arousal

OpenFace 0.38 <0.01 0.10

0.44 0.01 0.11

OpenFace-aureg 0.34 <0.01 0.10

0.10 0.02 0.13

Openpose-activation 0.05 0.01 0.11

0.31 0.02 0.13

Openpose-energy 0.17 0.01 0.11

0.20 0.01 0.12

The first line indicates the correlation between human rating and Non-Verbal Behavior
Analyzer (NOVA) in the training sample. The second line indicates the correlation
between human rating and NOVA in the test sample. Due to the large number of data
points, p-values are not shown. Pearson CC, Pearson correlation coefficient; MSE, mean
squared error; RMSE, root mean square error. Bold values indicate the best performing
ERM.

on the HSCL-11 subscale anxiety over all three sessions (session
t: b = −4.97, β = −0.20, SE = 2.39, t(126) = −2.08, p = 0.038;
t+1: b = −5.32, β = −0.18, SE = 2.88, t(113) = −1.85, p = 0.066;
t+2: b = −5.94, SE = 0.27, β = −0.21, t(109) = −2.20, p = 0.026).
Arousal did not predict the HSCL-11-score on the subscale
anxiety to any of the three time points.

Discussion

The automated recognition of emotions in psychotherapy
enables novel insights into psychotherapy processes beyond
self-report questionnaire data. AI-assisted emotion recognition
allows for a cost-effective and time-saving emotion recognition
over the course of entire naturalistic psychotherapy sessions.
The present study demonstrated a potential application of

the NOVA software and its contribution to expanding our
understanding of mental processes and their correlates. In a
first step (hypothesis 1), it could be shown that the ERM which
was based on the whole OpenFace stream was best performing
in the training and test sample except for valence in the test
sample where the OpenFace-Aureg ERM performed slightly
better. There was no noteworthy difference in performance of
ERM between arousal and valence. All in all, the benefits of the
OpenFace stream for emotion recognition, which have already
been shown in several earlier studies (52–54) were confirmed.

Additionally, this study has shown the benefit of
continuous recognition of arousal and valence in a naturalistic
psychotherapy setting. Although there were no significant
correlations between the patients’ ratings of their own emotions
and the automated recognized dimensions of arousal and
valence, arousal and valence correlated significantly with
therapists’ ratings of sadness, shame, anxiety, and relaxation
(hypothesis 2). This implies that the assessment of emotions
using the NOVA software is most closely related to the external
assessment of emotions, which is also consistent with the
results of a previous study (55). This result was expected,
as NOVA was trained with the help of external ratings and
so reflects an external emotion recognition. Furthermore,
it is known from previous studies that patients with mental
disorders in particular find it difficult to adequately perceive,
assess, and reflect emotions (4, 5, 7, 56). This might lead to
limited results when it comes to self-report measurements. It is
therefore questionable to what extent patient self-assessments
can be used to validate the ERMs and we rather argue that
what the AI-based ERMs assess goes beyond self-report data.
Furthermore, it is noticeable that the emotions associated with
the NOVA-rated valence all have negative connotations. One
reason might be that the OpenFace ERM works well, especially
with strong negative emotions. However, emotions such as
joy, expressed rather reservedly in psychotherapy, are not yet
adequately recognized. These findings should be a reason to
further improve existing ERMs in NOVA. Another reason
might be that human raters reacted more sensitive to strong
negative emotions during the training process. Here, a further
refinement of the training process for the recognition of positive
valence could also contribute to the improvement of the ERMs.

Related to hypothesis 3, a significantly negative correlation
between valence and the affective experience as well as a
significantly positive association between arousal and the

TABLE 3 Correlation between automatically recognized emotion dimensions and processes of change.

Valence Arousal Interpersonal experience Coping experience Affective experience

Valence 0.24** 0.10 0.01 −0.23*

Arousal 0.24** 0.11 0.02 0.18*

Interpersonal experience 0.10 0.11 0.42** 0.21*

Coping experience 0.01 0.02 0.42** 0.13

Affective experience −0.23* 0.18* 0.21* 0.13

N = 128; *p ≤ 0.05, **p ≤ 0.01.
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affective experience was found. These findings correspond to
earlier results (13). They further support the interpretation
that affective experience takes place when the patients’ problem
is addressed in an affectively engaging way, resulting in high
emotional involvement (12). At the same time, the ERM used
in NOVA seems able to capture the affective experience as
a combination of high arousal and negative valence which
supports the validity of the used software and OpenFace ERM.

The predictive value of valence determined with NOVA
for symptom severity could be shown for the anxiety subscale
of the HSCL-11 over the respective and the two following
sessions. This result shows that emotion recognition using
NOVA has a predictive benefit for symptom severity that goes
beyond the session itself. In particular, the anxiety scale of
the HSCL-11 is associated with feeling strong emotions that
are also expressed externally. It stands to reason that there is
a correlation to this scale in particular. The depression scale,
which is more associated with a reserved expression of emotions,
shows no correlations with the emotion dimensions determined
by NOVA. Therefore, NOVA could be used to assess and predict
anxiety symptomatology based on the emotional expressions in
patients’ faces only.

Limitations

The results indicate that the used ERM should be improved.
Therefore, it seems reasonable to increase the data sets used
to develop and test the models. So far, it is not clear to
what extent an overlap between human and machine ratings
can be achieved since both might measure slightly different
components of emotional expressions. The determination of the
best ERM is based on descriptive differences between model
fits, in particular due to the large number of data points. In
future studies, the formulation of critical differences between
correlation coefficients could be useful (57). It is possible that
ERMs might capture emotions in a different way than human
raters (hypothesis 1) or patients themselves (hypothesis 2).

Furthermore, it remains unclear whether it is more
beneficial to train generalizable models in large heterogeneous
multi-site samples or to train them on more selective
homogeneous samples for each new population. While
this study controlled for some diagnoses, some diagnostic
heterogeneity was not avoidable. There could be certainly an
effect of different diagnoses of interest that was not possible to
examine in this feasibility sample. Furthermore, there might be
differences in different psychotherapeutic settings. Therefore,
in future studies, other settings like inpatient settings or online
interventions could be an interesting field of application. This
study has focused on between-patients statistics rather than
within-patients statistics, which does not allow an assessment
of individual changes or the computation of intra-individual
effects. It was found that the level of group average compared

to individuals can even lead to opposite relationships (e.g.,
relationship between self-efficacy and performance), showing
that considering only group statistics can lead to wrong
conclusions about the process that takes place within the
individual (58–60). Hence, it might be helpful to investigate
within-patients effects over the time of therapy to differentiate
between time-varying effects and stable personality traits such
as the individual expression of emotional states. The individual
change in emotion during a therapy might be an important
information correlated to outcome or therapeutic interventions.
Finally, the present study does not consider interpersonal events
between the two interaction partners. It is conceivable that, in
addition to the intrapersonal emotional events of the patient,
the interpersonal emotional fit between patient and therapist
plays an important role in the therapeutic process and thus also
for clinical improvements.

Conclusion and future directions

Overall, this study can be seen as a step into a
promising, innovative field of research in which methods
of computer science can be used in naturalistic settings of
psychotherapy. Further adaptations and validations of the
underlying algorithms should take place. For this purpose, it
may certainly be useful to combine data from different research
institutions worldwide. For further validation, other constructs
such as the recording of arousal via skin conductance could
be used in future studies. Nowadays, physiological data can
easily be collected with the help of a smartwatch, so that it
is also possible to collect data in a natural therapy setting
without any disturbing wiring (61). In addition to emotional
facial expressions, para-verbal and verbal features from speech
and text analysis (62, 63) as well as body movement data (64)
might improve the accuracy and validity of emotion detection.

In the future, further validation studies should also be
conducted to examine the different quality of EMRs in
heterogeneous and homogeneous patient samples. It is possible
that the correlation between ERMs coded emotional experience
and treatment outcome varies as a function of the diagnostic
group and initial symptom severity. From studies on therapist
effects it is known that differences between therapists in
their patients’ treatment outcome are dependent on initial
impairment (65). Therapist effects have been shown to be
larger for highly impaired patients compared to less impaired
patients. Similarly, emotion expression might have a higher
predictive value for more severely distressed patients, for whom
the effectiveness of treatment may vary more than for less
distressed patients.

Following the growing research in the field of interpersonal
synchrony (64, 66–71), future research should go beyond the
isolated consideration of patient emotions and instead compare
time series of arousal and valence of the two dyadic partners,
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patient and therapist. Synchrony between patient and therapist,
and its relation to therapeutic outcome and process variables has
already been shown for movements (67, 72, 73), speech content
and prosodic features (62, 74) as well as physiological measures
(70, 75). Regarding emotions, it can also be assumed that it
might be beneficial if patient and therapist are attuned to each
other. At least, interpersonal emotional synchrony may provide
important further insight into therapeutic processes.
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