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Depressive Disorder is a common mood disorder or affective disorder that

is dominated by depressed mood. It is characterized by a high incidence

and recurrence. The onset of depression is related to genetic, biological

and psychosocial factors. However, the pathogenesis is still unclear. In

recent years, there has been an increasing amount of research on the

inflammatory hypothesis of depression, in which cyclo-oxygen-ase 2 (COX-

2), a pro-inflammatory cytokine, is closely associated with depression.

A variety of chemical drugs and natural products have been found to exert

therapeutic effects by modulating COX-2 levels. This paper summarizes the

relationship between COX-2 and depression in terms of neuroinflammation,

intestinal flora, neurotransmitters, HPA axis, mitochondrial dysfunction and

hippocampal neuronal damage, which can provide a reference for further

preventive control, clinical treatment and scientific research on depression.

KEYWORDS
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Introduction

Depression is a mental disorder. It is often characterized by depressed mood,
loss of interest, decreased energy, self-denial, diminished ability to think, and sleep
disturbances, etc. According to statistics, 350 million people worldwide suffer from
varying degrees of depression, and more than 1 million people commit suicide each
year because of depression (1). The pathogenesis of depression is complex, and
current pathogenesis includes the monoamine hypothesis, changes in the hypothalamic-
pituitary-adrenal axis, the inflammation hypothesis, neuroplasticity and neurogenesis,
changes in brain structure and function, and the interaction and influence of
genes and the environment (2). Recent studies have revealed the important role of
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the inflammation hypothesis, especially neuroinflammation, in
the pathogenesis of depression (3).

Cyclo-oxygen-ase (COX) is an inflammatory mediator that
regulates the inflammatory response and a key rate-limiting
enzyme in the initial steps of prostaglandin (PGs) synthesis (4).
PGs have a central role in the induction of the inflammatory
response and can be synthesized in inflamed and damaged
tissues, thus they are associated with the development of
acute inflammatory swelling and painful symptoms (5). Among
them, PGI2 and PGE2 are involved in vascular permeability,
tissue swelling and gastric mucus secretion, which are typical
symptoms of inflammation (6). COX has three isoforms, COX-
1, COX-2 and COX-3 (6), of which COX-2 is usually induced
by inflammatory stimuli in most tissues and is the only
isoform responsible for propagating the inflammatory response.
Current studies have demonstrated that COX-2 activation is
an important factor mediating the development of depression
(7, 8). Here, the present study summarizes recent research
advances to further describe the link between depression and
COX-2, aiming to provide new therapeutic ideas for the
treatment of depression.

Cyclo-oxygen-ase-2 roles in the
pathogenesis of depression

Neuroinflammation

Inflammation is a defense response of the immune system
against tissue damage caused by inflammatory factors such
as biological, physical, or chemical factors, foreign bodies, or
necrotic tissue. One of the inflammatory responses in the
brain is called “neuroinflammation.” Neuroinflammation is
a protective response of the central nervous system (CNS),
which is composed of neurons, microglia, oligodendrocytes
and astrocytes. The entry of any foreign pathogen activates
glial cells (astrocytes and microglia) and the over-activation of
these cells triggers the release of various neuroinflammatory
markers (NM), such as tumor necrosis factor-α (TNF-α),
interleukin-1β (IL- 1β), interleukin-10 (IL-10), nitric oxide
(NO), COX-2, etc. Various studies have shown the importance
of neuroinflammatory markers in the development, diagnosis
and treatment of depression (9–11).

In recent years, an increasing number of scholars have found
that neuroinflammation is an important pathological factor
triggering central neurological disorders such as depression,
and inhibiting central neuroinflammation is a key way to
effectively alleviate the onset and progression of depression
(12–16). It was found that upregulation of pro-inflammatory
cytokines (IL-6 and TNF-α) was seen in the hippocampus
and cortex of Lipopolysaccharide (LSP)-induced depressed
mice (17). Inflammatory cytokines in the blood can activate
the hypothalamic-pituitary-adrenal (HPA) axis, and HPA

dysfunction leads to corticotropin releasing hormone (CRH),
adrenocorticotropic hormone (ACTH), increased secretion of
corticosterone (CORT) and its negative feedback dysfunction,
upregulate the release of glucocorticoids(GC) and cortisol
in the adrenal cortex as well as cause dysregulation of
monoamine transmitters, while inflammatory factors decrease
the release of glucocorticoids and cortisol through activation
of indoleamine-2,3-dioxygenase (IDO) enzyme, IDO activation
reduces tryptophan and increases toxic metabolites of the
kynurenine pathway, which leads to damage to astrocytes,
microglia, and neurons, triggering neuroinflammation, which
is positively associated with Major Depressive Disorder (MDD)
(18–20). In addition, inflammatory factors can also induce
damage to the blood-brain barrier (BBB) and enter the brain
(21, 22). Damage to the hippocampal BBB, an important
portal for maintaining a homeostatic environment for neurons
and glial cells, would allow increased permeability and
trigger neuroinflammation (23), which may be an important
pathological factor in triggering depression (24). COX-2 is
expressed in the central nervous system and is associated
with neuroinflammation (25). Prabhakaran et al. used PET
imaging to directly measure brain COX-2 levels, which
showed that COX-2 can be induced to be upregulated during
neuroinflammation, causing elevated COX-2 levels in vivo (26).
The anti-neuroinflammatory effect is mediated by modulation
of COX-2 levels to produce PGE2. The novel GPR55 receptor
antagonist KIT10 may reduce neuroinflammation in microglia
by inhibiting COX-2/PGE2. It has been shown that KIT10
inhibits the onset of depression by inhibiting protein synthesis
of mPGES-1 and COX-2 and reducing PGE2 levels (26, 27).
Neuroinflammation can mediate the onset of depression by
affecting the reduction of monoamine neurotransmitters or
changes in the number and sensitivity of their receptors.
Venlafaxine, a serotonin-norepinephrine reuptake inhibitor,
is a clinical agent used in the treatment of depression. It
has anti-injurious and anti-inflammatory activity by inhibiting
pro-inflammatory cytokines, and studies have shown that
venlafaxine significantly reduced the mRNA expression of TNF-
α, IL-6, IL-1β, and COX-2 (28) (Figure 1).

Intestinal flora dysbiosis

Intestinal flora are normal microorganisms that reside in
the human gastrointestinal tract for a long time and exist
on the surface of the intestinal mucosal layer and in the
intestinal lumen. These symbiotic flora synthesize a variety of
vitamins essential for human growth and development, and
also use protein residues to synthesize essential amino acids
and participate in the metabolism of sugars and proteins,
as well as promote the absorption of minerals such as iron,
magnesium, and zinc and metabolize toxins (29). The brain
and the gut are closely linked and various aspects of brain
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FIGURE 1

The role and mechanism of COX-2 in depression. The role of COX-2 and depression involves several aspects, including neuroinflammation,
intestinal flora, neurotransmitters, HPA axis, deregulation of mitochondrial functions and neuronal damage of hippocampus.

development, function, mood and cognition may be influenced
by the symbiotic flora (30). The gut microbiota and CNS are
connected through multiple bidirectional pathways involving
neural, endocrine, and immune signaling, and dysbiosis
of the gut flora can cause psychiatric disorders, such as
depression (31–33). Current studies suggest that intestinal flora
dysbiosis can mediate depression by causing an inflammatory
response (34, 35). Inflammatory bowel syndrome (IBS) is
a chronic, debilitating functional gastrointestinal disorder in
which patients have impaired intestinal blood barrier integrity
and leaky gut occurs, leading to the entry of intestinal contents
such as immune cells and microbiota into the bloodstream,
resulting in low-grade systemic inflammation, and circulating
inflammation-related cytokines disrupt the blood-brain barrier,
permitting infiltration of peripheral immune cells into the
brain, leading to central inflammation in the brain, which
central inflammation is associated with depression (36). Liu
et al. (37) gave Chronic Unpredicted Mild Stress (CUMS)
model rats Zhi Zhi Tang (ZZCD) for intervention and found
that ZZCD promotes butyrate production by modulating
the gut microbiota, and butyrate acts on the gut-brain
axis, thereby It was found that ZZCD promotes butyrate
production by regulating intestinal microbiota, and butyrate
acts on the gut-brain axis, thus further regulating inflammation,
neurotransmitters, endocrine and brain-derived neurotrophic
factor (BDNF) to achieve antidepressant effects.

Intestinal barrier dysfunction is accompanied by increased
intestinal permeability, permitting translocation of bacteria or

their cell wall component LPS to the bloodstream, leading
to persistent systemic inflammation (38). LPS is commonly
used for modeling animal models of depression (17, 39).
Rubab et al. (40) developed curcumin- nanostructured lipid
carriers CUR-NLCs carriers (CUR-NLCs) and replicated the
depression and anxiety model with LPS to study their
neuroprotective effects in this model, and from histological and
immunohistochemical analyses, CUR-NLCs improved brain
tissue structure, inhibited the expression of p-NF-κB, TNF-α,
and COX-2 in brain tissue, and enhanced the neuroprotective
effects of curcumin, which could be used as a treatment
for depression and anxiety as a potential drug. Natural drug
substances can improve the levels of oxidative stress and
neuroinflammation in depression, Muhammad et al. (41) used
carvacrol to treat rats with depressive-like behavior induced
by LPS, and significant neuronal alterations as well as elevated
levels of inflammatory cytokines, such as TNF-α, COX-2 and
c-Jun N-terminal kinase (p JNK). lPS stimulates microglia
activation and inflammatory responses and upregulates mRNA
and protein expression of inflammatory mediators such as
COX-2 (42, 43). These inflammatory mediators can further
mediate changes in the intestinal flora and disturbances in
their metabolites, affecting brain function and depression.
Estrogen deficiency can cause depression-like behavior, and
Huang et al. (44) found in their experiments that estrogen
deficiency-induced depression was associated with intestinal
flora imbalance and inflammatory response in mice undergoing
ovariectomy (OVX), where intestinal flora imbalance caused
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leaky gut and central inflammation (downregulation of COX-
2 expression) to suppress BDNF expression in hippocampal
neurogenesis, resulting in depressive behavior in OVX mice.
BDNF is a neuroprotective molecule that plays a key role in
neuroplasticity, neuroinflammation, learning and memory (45).
There is growing evidence that modulation of BDNF expression
levels can exert antidepressant effects (46–48), where BDNF-
cAMP response element binding protein (CREB) signaling is
one of the most attractive signaling pathways for the treatment
of depression (49, 50). In summary, gut flora and COX-2-
mediated inflammatory responses are strongly correlated, but
there are fewer studies on how COX-2-mediated pathways and
gut flora-brain centers interact and thus mediate depression, and
further research is needed (Figure 1).

Neurotransmitter disorders

To date, neurotransmitter dysregulation has an important
role in the pathogenesis of depression. Among these, the
traditional monoaminergic theory (serotonergic, noradrenergic
and dopaminergic dysregulation) has received the most
attention in the treatment of depression, and most of the
available antidepressants target these monoaminergic systems,
such as serotonin and/or noradrenergic reuptake inhibitors and
antipsychotic compounds that antagonize dopamine D2 (51).
However, the exact pathophysiological mechanisms underlying
serotonergic, noradrenergic, and dopaminergic dysfunction
in depression remain unclear, and it has been hypothesized
that inflammatory mechanisms may be involved in the
pathogenesis of depression.

5-hydroxytryptamine (5-HT) is a monoamine
neurotransmitter, which is mainly distributed in the pineal
gland and hypothalamus, and abnormalities in 5-HT levels
and functions in the central nervous system may be associated
with the development of various disorders such as psychosis
and migraine. Studies have shown that 5-HT and the onset
of depression are closely related (52, 53). Overproduction
of inflammatory cytokines affects the function of the 5-HT
system by inhibiting cellular inflammatory factors thereby
decreasing IDO activity. IDO degrades tryptophan (TRP) in
the blood, a precursor of 5-HT, and its decrease reduces 5-HT
synthesis, therefore, increasing 5-HT synthesis by inhibiting
the IDO/5-HT/TRP signaling pathway can promote and
improve hippocampal cognitive dysfunction and exert anti-
inflammatory and antidepressant effects (54, 55). COX-2, as an
inflammatory cytokine, inhibition of COX-2 expression reduces
oxidative stress, inflammatory factor release, upregulates
5-HTlA receptors in hippocampal tissue, ameliorates cortical
inflammatory response damage, reestablishes monoamine
transmitter system homeostasis, and attenuates depression-like
behavior (56). COX-2 overexpression leads to an increase in
the pro-inflammatory cytokines IL-1β, IL-6 and TNF, which

increases the activity of the 5-HT transporter protein SERT,
increases the affinity of the 5-HT receptor 5-HT1A, and
mediates depression through an IDO mechanism that alters
tryptophan metabolism (57). Su et al. (58) found that the
acidic sphingomyelinase inhibitor acidic sphingomyelinase
inhibitors blocked interferon-α-induced 5-HT uptake in T cells
through a COX-2/Akt/ERK/stat-dependent pathway. Clinical
trials and experimental studies have demonstrated that COX-2
inhibitors can produce adjuvant antidepressant therapeutic
effects against selective 5-HT reuptake inhibitors (59), while
chronic selective 5-HT reuptake inhibition improves the
endothelium-dependent hyperpolarization-like pathway of the
small arteries in the fraction of endothelial function and COX-2
levels, modulating endothelial dysfunction and oxidative status
in a chronic mild stress model in depressed rats (60).

In addition to the monoamine transmitter 5-HT, the
functions of other brain neurotransmitters such as histamine
(HA), dopamine (DA), acetylcholine (ACh), gamma-
aminobutyric acid (GABA), and glutamate are thought to
be closely related to various brain disorders such as depression,
schizophrenia, and anxiety disorders. Venkatachalam et al. (61)
found that histamine H3R and dopamine D2R/D3R antagonist,
ST-713, improved autistic-like behavior in BTBR T + tf/J mice
by attenuating the protein expression levels of NF-κB p65,
COX-2 and iNOS in the hippocampus and cerebellum of BTBR
mice. Klawonn et al. (62) found that the COX-2/activation
of the PGs/EPR pathway increased neuronal peak potential
spacing, decreased membrane electrical resistance and posterior
hyperpolarization (fAHP), and simultaneously inhibited the
GABA and DA signaling pathways, which in turn inhibited DA
transmitter production and transmission, thereby triggering
negative mood and depression (61). Emerging preclinical
and clinical findings suggest that maladaptive glutamatergic
neurotransmission may underlie the pathophysiology of MDD
and that the neurobiological mechanisms of stress-induced
impairment of AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid)-glutamatergic neurotransmission in
the brain may provide new insights into the pathogenesis of
MDD (51). In summary, inhibition of the pro-inflammatory
cytokine COX-2 in the inflammatory response has an effect
on CNS and 5-HT, HA, GABA, DA and glutamatergic
neurotransmission, further affecting the onset of depression,
and this effect needs to be further evaluated, which should
include clinical trials in a larger number of patients (Figure 1).

Hyperfunction of the
hypothalamic-pituitary-adrenal axis

The hypothalamic-pituitary-adrenal axis (HPA) axis is an
important component of neuroendocrinology, and patients with
depression often show hyperfunction of the HPA axis (63).
Stress leads to hyperactivation of the HPA axis and disruption
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of the end product of HPA axis secretion, GC, which acts
on glucocorticoid receptors (GR) in the hippocampus and
hypothalamus, among other sites, after crossing the blood-
brain barrier, causing disruption of the negative feedback
regulation of the HPA axis, which in turn mediates the onset
of depression (64–67). It has been shown that glucocorticoids
and inflammatory responses are closely related and synthetic
glucocorticoids (GCs) are widely used in a variety of
inflammatory diseases, and the anti-inflammatory effects of
GCs are achieved in part through the inhibition of a large
number of pro-inflammatory cytokines (68, 69). Among them,
GC correlate with the expression levels of the pro-inflammatory
cytokine COX-2 (70, 71). The HPA axis acts as a negative
feedback loop in which: stressors cause CRH production in the
hypothalamus; CRH causes ACTH secretion in the pituitary;
ACTH stimulates cortisol secretion in the adrenal cortex;
and cortisol reversibly inhibits corticosteroid secretion (72).
It has been shown that the HPA axis maintains the balance
between cortisol and inflammation by regulating GR, and
stress activates pro-inflammatory cytokines such as COX-2,
which further stimulates the HPA axis to secrete cortisol (73),
leading to depression (74, 75). overexpression of COX-2 leads to
increased synthesis of prostaglandins, which in turn increases
tissue sensitivity to catecholamines. stimulates the activity of
the HPA axis through pro-adrenocorticotropin-releasing factors
and leads to a surge in the production of pro-inflammatory
cytokines (57). Acupuncture can exert anti-inflammatory effects
through the HPA axis in order to reduce COX-2) and PGE2)
levels and enhance the sympathetic nervous system (76).
Chronic administration of corticosterone (CORT) in rodents
is used to mimic stress-related dysregulation of the HPA axis
and is a well-recognized approach in depression modeling, and
Kv et al. (77) administered corticosterone to mice to replicate
a depression model in which the pathogenesis of depression is
increased levels of pro-inflammatory cytokines such as COX-2,
which promotes GC resistance due to an overactive HPA axis,
thereby increasing susceptibility to inflammatory responses that
further leading to the development of depression. Therefore,
COX-2 overexpression can affect the level of glucocorticoid and
its receptor-mediated HPA axis function, which leads to the
development of depression (Figure 1).

Mitochondrial dysfunction

As an energy-supplying organelle of the body, mitochondria
have numerous physiological functions such as synthesizing
ATP, providing energy to cells, participating in the tricarboxylic
acid cycle, oxidizing phosphate, and storing calcium ions.
Studies have reported that inflammation negatively affects
mitochondria, leading to excitotoxicity, oxidative stress, and
energy deficit, and that dysfunctional mitochondria may drive
or propagate the inflammatory response, thus creating a vicious

cycle (78). Numerous basic studies in recent years have found
that the onset of depression is associated with mitochondrial
dysfunction in brain regions (79, 80). Mitochondrial
dysfunction includes reduced ATP synthesis, oxidative
respiratory chain dysfunction, abnormal mitochondrial
structure and excessive occurrence of apoptosis (81).

It has been found that reduced mitochondrial function as
well as impaired oxidative metabolism and COX expression
levels in hippocampal tissue are closely linked, and the
mechanism of action may be related to reduced mitochondrial
membrane potential and cell death due to reduced energy
production (82, 83). Metabolomic and proteomic analyses
further revealed that disruption of mitochondrial energy
metabolism is one of the pathophysiological symptoms
of depression, and that changes in subunit proteins of
cytochrome c, ATP synthase or NADH dehydrogenase and
a decrease in oxidative phosphorylation due to reduced
electron transport chain activity in chronic mild stress
(CMS) model rats stimulate biochemical dysregulation in
the process of ATP production (84). Wang et al. (85), based
on the theory that mitochondrial dysfunction mediates
the generation of depression, hypothesized that healthy
mitochondrial transplantation could improve depressive
symptoms, and their study demonstrated for the first time that
mitochondrial transplantation produces antidepressant-like
effects in lipopolysaccharide-induced depression. Isolated
mitochondria significantly reduced hippocampal astrocyte and
microglia activation and neuroinflammation (i.e., 1L-1β, TNF-
α, and COX-2), increased BDNF expression, and restored ATP
production dysfunction and oxidative stress in LPS-induced
depression. Furthermore, impaired synaptic mitochondrial
function in the hippocampus and amygdala has a key role in the
pathophysiological impairment of depression, and scholars have
studied the potential dysregulation of synaptic mitochondrial
proteins in the hippocampus and amygdala of CMS rats based
on proteomics coupled with mass spectrometry, respectively,
and these proteins are associated with impaired oxidative
phosphorylation of synaptic mitochondria in the hippocampus
and impaired glutamatergic transmission in the amygdala,
which can lead to synaptic morphological and functional
abnormalities and, therefore, synaptic mitochondria may be a
key therapeutic target during depression (86, 87). Studies have
shown that non-ylphenol (NP) exposure can induce altered
synaptic morphology, reduce learning and memory capacity,
and increase the incidence of depression in fetal rats. Xu
Weihong et al. (88) and Angrand et al. (89) studied depression-
like behavior in rats by NPonly or NP + high-fat diets and
showed that exposure to NP only or both NP and high-fat
diets can lead to mitochondrial damage and dysfunction
in hippocampal neurons. affecting synaptic morphological
plasticity and COX-2 expression in the hippocampus, further
leading to the development of depression. Therefore, disruption
of mitochondrial energy metabolism, impairment of synaptic
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plasticity and altered COX-2 levels are key causes of the
development of depression.

The occurrence of depression is associated with stressful
stressful events, and stress leads to a disturbance in the redox
homeostasis of the body (brain tissue is the main target),
producing a state of oxidative stress, which is manifested
by increased levels of reactive oxygen species (ROS) clusters
in the body. Mitochondria are the main organelle for ROS
production (90, 91) and an antioxidant defense system exists
in mitochondria to repair oxidative damage, which helps
to maintain cellular integrity. Under normal conditions,
several antioxidant enzymes such as superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidise (GPx), and
glutathione reductase (GR) maintain the physiological levels of
ROS. However, when stimulated by external stresses such as
stress, the mitochondrial redox buffering system is disrupted
and oxidative stress occurs (92, 93). High levels of ROS
are one of the hallmarks of mitochondrial oxidative stress.
NADPH oxidase is an electron transport membrane protein
that is mainly responsible for ROS production (94) and
contributes to ROS production and COX/PGE expression
in neuropsychiatric disorders (95). Inhibition of microglia
NADPH oxidase activation and nitric oxide synthase reduces
ROS and RNS production and exerts neuroprotective effects
by ameliorating oxidative stress thereby achieving a therapeutic
effect on depression (93). And studies have found that
neuroinflammation, common in the brains of depressed
patients, has a strong impact on ROS production, and there
is evidence that inflammatory factors increase the risk of
depression (96). Among these, there is a positive correlation
between the expression level of the inflammatory factor COX-
2 and ROS concentration (97–99). An increasing number of
studies have shown that inflammation leads to increased ROS
production and that mitochondrial oxidative stress plays an
important role in the pathophysiology of depression (78, 100).
In summary, mitochondrial dysfunction is one of the pathogenic
mechanisms of depression, and mitochondrial dysfunction
can affect COX-2 levels, which in turn affects depression
by mediating neuroinflammation in the brain. In addition,
studying the interaction between COX-2 and mitochondria
facilitates the study of the mechanisms of neuroinflammatory
response to depression (Figure 1).

Hippocampal neuronal damage

Hippocampal microglia (MG) are the first line of defense
of the CNS and are intrinsic immune cells in the brain,
accounting for 5–12% of CNS cells, which regulate neuronal cell
viability and dendritic spine density (101), provide neurological
protection, and address inflammation through phagocytosis
and tissue repair (102). Under normal conditions, MG is in
a “resting” state and performs its immunosurveillance role. In

contrast, changes in the cellular environment (e.g., oxidative
stress leading to MG activation) alter its cellular morphology
and function, and affect neuronal cell viability, function, and
synaptic plasticity through exocytosis of inflammatory and other
cytokines (103). MG activation is an important marker of
hippocampal neuronal injury in depression.

Hippocampal neuronal damage is an important etiology
mediating cognitive dysfunction and depression-like behavior
(104). It has been reported that inflammation can induce
neuronal apoptosis, impairment of synaptic plasticity and
reduced excitability, among other impairments. As a typical pro-
inflammatory factor, IL-1β induces neuronal apoptosis through
the STAT3 pathway (105), while TNF-α and NO cause impaired
neuronal viability through activation of the NF-κB pathway
(106). Conversely, inhibiting the production of inflammatory
factors or increasing the secretion of anti-inflammatory factors
helps to maintain neuronal cell activity (107). In addition,
inflammatory factors impair neuronal synaptic plasticity and
thus cause abnormal neuronal function (108), e.g., IL-6 reduces
neuronal synaptic plasticity and accelerates depression (109).
MG is an important source of COX-2, and Strekalova et al.
(57) found an increase in the number of iba-1 positive cells
in the hippocampal region and a decrease in the number of
ki67 positive cells in the granular subregion of depressed mice.
positive cells, suggesting that MG activation in depressed mice
inhibits cell proliferation, which in turn leads to overexpression
of COX-2 in hippocampal CA1 areas as well as in dentate
gyrus neurons, and that these changes mediate susceptibility to
stress-induced lack of pleasure (a core symptom of depression).
Recent studies have shown that activation of MG promotes
the synthesis of more PGs by COX-2, which can act as
a direct messenger factor between MG cells and neuronal
cells (62). These PGs are secreted extracellularly by MG and
further bind to prostaglandin receptors (EPR) on neuronal
cell membranes, which in turn leads to decreased neuronal
excitability and induces depression (61, 62, 110). It is thus
evident that the inflammatory mediator CO can cause a decrease
in neuronal excitability by mediating the synthesis of PGs, thus
suggesting that inflammation is extensively involved in neuronal
injury. Therefore, MG activation mediates COX-2/PGs pathway
to decrease hippocampal neuronal excitability may be an
important mechanism to trigger depression (62) (Figure 1).

Cyclo-oxygen-ase-2 inhibitors

Cyclo-oxygen-ase-2 (COX-2) can regulate the occurrence
and development of depression. In recent years, COX-2
inhibitors have been widely used in the treatment of depressed
patients, and the drugs commonly used in clinical practice as
COX-2 inhibitors are non-steroidal anti-inflammatory drugs
(NSAIDs), all of which have varying degrees of efficacy
in depression (111–113). Some natural compounds such
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as xanthines, alkaloids, astragals, flavonoids, terpenoids and
quinones also have the ability to inhibit COX-2 activity.

Non-steroidal anti-inflammatory
agents

Cyclo-oxygen-ase-2 (COX-2) is widely involved in
the inflammatory response and plays a crucial role in the
inflammatory pathway, which can be improved by inhibiting
it with NSAIDS, which can reduce the production of key pro-
inflammatory mediators PG by inhibiting COX-1 and COX-2
(114). Long-term use of NSAIDS predisposes to gastrointestinal
and cardiovascular diseases, which may be caused by gastric,
renal, and platelet cell dysfunction due to COX-1 inhibition
(115). Through research experts have found that selective
COX-2 inhibitors have less side effects than non-selective
COX-2 inhibitors. Among them, celecoxib is a selective COX-2
inhibitor, which is clinically the first-line drug in NSAID, Song
et al. (116) found that CUMS exposure leads to increased
COX-2 levels and that excess COX-2 converts arachidonic acid
to PEG2 thereby leading to increased PEG2 expression, and
that PEG2 production is associated with increased expression
of the pro-inflammatory cytokines IL-1β, TNF a and IFN-γ
(8), and celecoxib downregulates the production of these
pro-inflammatory cytokines in the DG region, in addition
to effectively attenuating mitochondrial ROS production
and attenuating oxidative DNA oxidative damage, thereby
potentially ameliorating the depressive phenotype resulting
from neuroinflammation and apoptosis in the DG region of
the hippocampus. Celecoxib also modulates COX-2 to improve
indoleamine 2,3-dioxygenase activity, an enzyme that drives
the metabolism of tryptophan and kynurenine in the CNS and
degrades 5-HT (112, 117). The non-steroidal anti-inflammatory
agent NS-398 is neuroprotective against excitotoxicity and
neuroinflammatory injury, and it was found that NS-398
blocked the neuroinflammation-induced decrease in small
albumin PVB in the prefrontal cortex reducing depressive
effects (118). 5-LO, like COX-2, is a key enzyme in AA
metabolism, and elevated levels of 5-LO and COX-2 expression
accelerate inflammatory Inhibiting the inflammatory pathway
arachidonic acid-cyclooxygenase-2/lipoxygenase (AA-COX-
2/5-LO) pathway can regulate neurotransmitter metabolism,
and the selective COX-2 inhibitor meloxicam is an inhibitor
of this pathway, and Huang (119) gave meloxicam to CUMS
rats, which improved cortical and hippocampal elevation
of the biogenic amine neurotransmitters 5-HIAA, DOPAC
and HVA in CUMS rats, which exert neuronal protective
effects and inhibit inflammatory responses through inhibition
of the AA/COX-2/5-LO pathway to achieve therapeutic
effects in depression.

Diaryl-substituted heterocyclic compounds (e.g., thiazole,
imidazole, triazole, oxazole, oxadiazole, pyrrole, thiophene)

have been extensively studied as selective COX-2 inhibitors,
and researchers have synthesized a series of COX-2 inhibitors
with higher selectivity by improving the compounds, and
thiazole derivatives can exert anti-inflammatory effects
well as dual COX-2 and 5-LOX inhibitors. Zhang (120)
synthesized a novel 5-aminothiazole ring-containing nuclear
COX-2 inhibitor with higher anti-inflammatory effect than
meloxicam. Hamoud MMS and other researchers (121)
synthesized 1,3,4-oxadiazolyl derivatives (8a-g) and 1,2,4-
triazolyl derivatives (10a,b and 11a-g), and through further
experiments the newly designed compounds were found to
have potent COX-2 inhibitory effects, possessing powerful
with potent anti-inflammatory and antioxidant activities,
capable of inhibiting TNF-α, NO and ROS production, and
have the potential to be promising therapeutic agents for the
treatment of inflammation-related psychiatric disorders. Novel
chalcone compounds have excellent COX-2 inhibitory activity,
can effectively suppress EGFR expression levels, and can
overcome gastrointestinal side effects (122, 123). Novel COX-2
inhibitors 5-diaryl pyrrole nitrooxyethyl sulfide and related
compounds, which could achieve potent anti-inflammatory
effects with an overall safety profile and reduced gastrointestinal
toxicity (124).

New targeted preparation

In addition to improving the structure of compounds,
experts have also enhanced the effectiveness of drugs
as well as attenuated their side effects by creating novel
formulations. Schmied et al. (125) used novel cellulose-
based particles as adsorbent carriers to prepare celecoxib
solid self-nanoemulsifying drug delivery system (SNEDDS),
SNEDDS can improve the oral bioavailability and stability
of low-soluble lipophilic drugs, enhance the release of their
active ingredients, and further develop controlled release
dosage forms. Sipos et al. (126) combined the NSAIDs
meloxicam with novel nanomedicines to develop mucosal
adherent nanoemulsions containing meloxicam, which has
advanced drug transportability and stability to further increase
the absorption and bioavailability of meloxicam in humans
to systemic administration and nasal-to-brain delivery.
They performed cytotoxic effects of the formulation on an
NIH/3T3 mouse embryonic fibroblast cell line and the results
supported the safe nasal suitability of the novel agent. Long-
term administration of NSAIDs has adverse effects such as
gastrointestinal, cardiovascular function and to ameliorate
this side effect, some researchers designed celecoxib into a
celecoxib a microsphere-microcrystal-gel delivery system for
intra-articular injection using an ultrasound approach (127).
Thus, the use of novel agents can improve the bioavailability
and stability of NSAIDs and also attenuate their toxic side
effects, but there are fewer studies on the use of modified new
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dosage forms of NSAIDs for the treatment of depression and
further in-depth studies are needed.

Natural products and their derivatives

Bangpungtongsung-san (BTS) is a Korean medicine with
antidepressant effects consisting of 18 herbs. Park et al. (128)
evaluated the antidepressant and anti-neuroinflammatory
effects of BTS using an in vivo model of lisinopine-induced
depression and an in vitro model of LPS-stimulated BV2
microglia. The results showed that BTS may exert antidepressant
effects by affecting mood-related hormones, neuronal activity
and neuroinflammation in lisinopine-induced depression in
mice. In vitro experiments showed that BTS may achieve
depression-inducing effects by downregulating Nos-2 and Cox-
2 to inhibit NO production, stimulating pro-inflammatory
cytokine production and inducing neuroinflammatory
responses in microglia. Kaixin San (KXS) is a well-known
herbal formula for treating depressed mood and improving
various learning and memory disorders, which was found
to have antidepressant effects in a previous study by Dong
et al. (129). Further studies found that KXS can reduce
glucocorticoid secretion by regulating the levels of serum
cytokines (such as COX, IL-2, and TNF-α) while inhibiting
HPA axis hyperactivity and inhibiting apoptosis and thus
treating depression.

Studies have shown that herbal monomeric components
have therapeutic effects on depression, and these monomeric
components are the direct material basis for the efficacy of
herbal medicines. Flavoprotein (FX) is an edible brown seaweed
rich in natural carotenoids, and FX can prevent LPS-induced
depression-like behavior in mice by modulating the AMPK-NF-
κB signaling pathway and downregulating pro-inflammatory
cytokines (IL-1β, IL-6, and TNF-α) as well as overexpression
of iNOS and COX-2 in the hippocampus, frontal cortex, and
hypothalamus (130). Dihydromyricetin (DMY) is an important
flavonoid extracted from Daphyllostachys, and Wei et al.
(131) found that DMY could inhibit neuroinflammation and
improve LPS-induced depression-like behavior in mice by
decreasing the secretion of pro-inflammatory factors TNFα,
IL-6, IL-1β, COX-2, and iNOS in vivo. Trans-cinnamaldehyde
(TCA) is an excellent CNS COX-2 inhibitor and is the main
component of the traditional Chinese medicine Cinnamomum
cassia. Lin et al. (132) constructed a depression model in
BALB/c mice and gave TCA intervention treatment. TCA
significantly decreased COX-2, TRPV1 and CB1 protein
levels in the hippocampus, increased 5-HT levels in the
hippocampus and decreased the Glu/GABA ratio. Studies
have demonstrated that TCA has some effect in governing
depression-like behavior, and these findings suggest that TCA
treatment has antidepressant effects and that it mediates
depression levels by mediating COX-2 levels and regulating

neurotransmitters. Tao et al. (133) showed that luteolin
containing PA methanolic extract mediates depression levels
by balancing excitatory (glutamate) and inhibitory (GABA)
brain monoamines, the voltage-gated ion channels (NaK/Ca-
ATPase) and inhibition of NF-κB/TLR-4 pathway ameliorated
neuroinflammation (TNF-α, IL-1β and COX-2) and improved
seizure-complicated depression-like behavior in experimental
epileptic mice. Catalpol, a highly active cyclic enol ether terpene
glycoside, is a major constituent of Dictyostelium, which is rich,
nutritious, and has excellent medicinal and nutritional value,
and is reflected in classical clinical antidepressant formulas in
Chinese medicine (134, 135).The antidepressant mechanism
of catalpol involves ERK1/2/Nrf2 upregulation due to HO-
1 activation and downregulation of factors related to the
COX-2/iNOS/NO pathway suppressing neuroinflammation and
triggering upregulation of the BDNF/TrkB pathway to enhance
neurotrophy (136).

Conclusion and future directions

The activation of the inflammatory response system is
an important mechanism in the pathogenesis of depression,
and patients with depression are associated with increased
levels of central or peripheral inflammatory factors. COX is
inextricably linked to the above hypothesis and pathological
manifestations. However, the current research on COX-2 is
mainly focused on tumor and cancer-related aspects, and the
pathophysiological studies in central nervous system diseases
such as depression are relatively weak. The evidence emphasizes
that the inflammatory response mediated by COX-2 activation
is a key pathological component of depression, and the use
of COX-2 as a therapeutic target will become a new strategy
for the prevention and treatment of depression in the future.
Significantly improved depression in rats and mice, mainly by
reducing the pro-inflammatory mediator PG and other pro-
inflammatory factors associated with inflammation, thereby
ameliorating neuroinflammation, intestinal flora disorders,
neurotransmitter imbalance, mitochondrial dysfunction, and
neuronal damage. In the pathogenesis of depression, these
pathological links can in turn interact with each other to
exacerbate the pathogenic process. Although animal and
clinical experiments have shown positive effects of COX-2
inhibitors on these links, further experimental studies are
needed to validate them in large clinical samples and to
determine whether COX-2 inhibitors also exert antidepressant
effects through other pathways. At present, the development
of antidepressant applications of COX-2 inhibitors is still
relatively weak. Clinically, some common COX-2 inhibitors can
have side effects such as cardiovascular and gastrointestinal
diseases after long-term use, thus, it is important to fully
understand the role of COX-2 and its related pathways in the
development of depression, and to use COX-2 inhibitors as lead
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compounds to synthesize compounds with high bioavailability,
good stability performance, safety, and significant biological
activity. This will provide a reliable basis for the development
of antidepressant drugs by using COX-2 inhibitors as lead
compounds to synthesize excellent compounds and dosage
forms with high bioavailability, good stability, safety, and
significant biological activity.

In recent years, scholars have discovered another novel
isozyme of COX, which is a new structural isoform of COX
derived from COX-1. Unlike COX-1, which is mainly found in
vascular, gastric and renal tissues, COX-3 is expressed in the
heart and brain, more in the brain, and it is widely involved
in the anti-inflammatory pathway. the site of inhibition of
inflammatory mediator PG by COX-3 is different, it mainly
inhibits central nervous system sites and weakly inhibits
peripheral PG synthesis, and one study found that COX-1
and COX-3 mRNA levels can induce depression by leading
to impaired oxidative metabolism and reduced mitochondrial
function (83). Thus, it is clear that COX-3 may be an important
target for anti-inflammatory and antidepressant effects, but
the related literature is poorly reported and needs to be
explored in depth, and anti-inflammatory therapy against the
target COX-3 would be another new avenue for depression
treatment. In addition, different sites have different sensitivity
to COX inhibitors. Hippocampus plays an important role in
the development of depression, and hippocampal region is
an important anatomical region associated with depression,
while MG is the main source of COX, so the study of COX
inhibitors in hippocampal MG may provide further new ideas
and targets for the prevention and treatment of depression.
Furthermore, the amygdala plays an important role in stress-
related psychiatric disorders and may be affected in chronic
stress (137, 138). Surprisingly, there is no information on the
role of COX-2 in the amygdala in rodent studies, so further
attention to COX-2 changes in the amygdala in rodent models
could provide another new idea and target for the prevention
and treatment of depression.
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