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Despite extensive research in recent decades, knowledge of the

pathophysiology of depression in neural circuits remains limited. Recently,

the lateral habenula (LHb) has been extensively reported to undergo a series

of adaptive changes at multiple levels during the depression state. As a crucial

relay in brain networks associated with emotion regulation, LHb receives

excitatory or inhibitory projections from upstream brain regions related to

stress and cognition and interacts with brain regions involved in emotion

regulation. A series of pathological alterations induced by aberrant inputs

cause abnormal function of the LHb, resulting in dysregulation of mood and

motivation, which present with depressive-like phenotypes in rodents. Herein,

we systematically combed advances from rodents, summarized changes in

the LHb and related neural circuits in depression, and attempted to analyze

the intrinsic logical relationship among these pathological alterations. We

expect that this summary will greatly enhance our understanding of the

pathological processes of depression. This is advantageous for fostering the

understanding and screening of potential antidepressant targets against LHb.

KEYWORDS

lateral habenula, physiopathology, depression, functional projections, synaptic
transmission

Introduction

Depression is a neuropsychiatric disorder regarded as the most prevalent crippling
and chronic mood disorder (1). The negative symptoms of depression include affective
blunting, anhedonia, and social withdrawal, which profoundly affect an individual’s
quality of life. The triggers of depression are multifaceted, in addition to the most
common stressors, including pain (2), substance use disorders (3), and Parkinson’s
disease (PD) (4). These factors complicate the pathophysiology of depression. Treatment
of depression concomitant with other chronic diseases is challenging.
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Although the precise causes and pathophysiology of
depression are still unknown, the understandings of the
neurobiological mechanisms in depression have rapidly
progressed over the last decades (5). Among these, several
publications have focused on pathophysiological states and
adaptive changes in emotionally regulated brain areas (6). The
habenula has received growing interest due to its unique role
and essential function in neural mechanisms of depression
(7). The habenula is a small bilateral region located in the
posterior-dorsal-medial end aspect of the thalamus, which
can be classified into two nuclear complexes: the medial
habenula (MHb) and the lateral habenula (LHb) (Figure 1).
The LHb is a complex and heterogeneous nucleus that receives
afferent inputs mainly from the limbic forebrain region and
the basal ganglia (8, 9). It sends major glutamatergic projection
to the rostromedial tegmental nucleus (RMTg) and inhibits
monoaminergic nuclei based on the relay function of RMTg.
Furthermore, LHb has attracted considerable interest due to
its exceptional location in modulating both the dopaminergic
and serotonergic system in the raphe nuclei (10–12) and, in
particular, both of which are neurotransmitters that regulate
emotions (13, 14). LHb has been widely reported to be strongly
associated with depression (8, 15, 16) and has emerged as a
crucial determinant of the pathogenesis of depression (17–19).

The dysregulation and major mechanisms of LHb in
depression have been well summarized by Browne et al. (20)
and Gold et al. (21). However, there are still a lot of aspects
remain fragmentary. Few studies have systemically looked
at adaptive changes in the LHb at many different levels,
especially at synaptic function, and analyzed logical cause and
effect relationships between these changes. This review covers
the roles of the LHb in depression and the process from
physiological activation to pathological hyperactivity. The most
recent findings on studies in rodent depression models will be
presented from several aspects, including anatomical base, nerve
excitability, functional projections, synaptic transmission, and
the molecular mechanisms involved. In particular, we attempted
to speculate on the complicated pathological process by which
risk factors for depression result in a series of pathological
alterations in the LHb. This will aid in understanding the
detailed mechanisms of LHb in depression and the screening of
potential antidepressant targets.

The anatomical base of depression
in lateral habenula

Asymmetry in lateral habenula in
physiological and pathophysiological
states

In multiple classes of mammals and humans, the LHb
exhibits structural asymmetry, which might be related to

differential activation and damage on both sides (22, 23). In
contrast to the MHb, the LHb volume on the left side is larger
than that on the right side in healthy individuals (24) and
patients with major depressive disorder (MDD) (25). Analysis
of brain magnetic resonance imaging (MRI) data from patients
with MDD has revealed significantly more habenula-thalamic
fiber connections on the right side than on the left side (26).
This aberrant connectivity has also been observed in subclinical
depression, which is considered a harbinger of MDD (27).
The posterior parietal thalamus where LHb is located showed
increased functional connectivity in resting-state functional
MRI of patients with subclinical depression (28). These findings
corroborate the essential role of asymmetrical projections to the
LHb from thalamic nuclei in depression. Indeed, in addition
to its structure, functional asymmetry in the habenula has
been reported. Stress activates the LHb asymmetrically (29).
The right-side habenula activation in depression is considerably
higher than that in healthy individuals; however, the degree
of activation on the left side positively correlates with levels
of anhedonia (30). In a mouse model of partial transection
of the infraorbital nerve (pT-ION), compared to analgesic and
anxiolytic effects through suppression of bilateral LHb activity,
selective inhibition of glutamatergic neurons in the unilateral
(left side) LHb mitigates pT-ION-induced anxiety-like behaviors
but fails to alleviate neuropathic pain (31).

It is possible to assume that the asymmetry of the habenula
is probably closely linked to the long-term brain stimulation
by MDD; however, the exact intrinsic link remains unclear.
Perhaps this could be explained by the theory of lateralization
of the brain, which organizes brain functions into specific brain
hemispheres and is pervasive in vertebrates (32).

The neural connection network of
lateral habenula

Inputs
The habenula is a conserved and stable bilateral brain

structure that is widely present in multiple species (33). It can
be further divided into the medial subnucleus (LHbM) and
the lateral subnucleus (LHbL), which receives and processes
inputs from the limbic brain region and the basal ganglia
through the fiber tract of the stria medullaris and serves as
the point of intersection of signals from both sources in the
hypothalamus (34, 35) (Figure 2). Specifically, limbic inputs
from hypothalamic structures such as the lateral hypothalamic
area (LHA), paraventricular nucleus (PVN), suprachiasmatic
nucleus (SCN) (36), the lateral preoptic area (LPO) (37), and
the medial dorsal thalamic nucleus (MDT) (38). The second
significant source of neuronal input is the basal forebrain,
including, ventral pallidum (VP) (39), nucleus accumbens
(NAc) (40), substantia innominate (SI) (41), medial septum
(MS) (42, 43), and lateral septum (LS) (44). Central amygdala
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FIGURE 1

The habenula in mice in physiological state. Top, the location of the MHb and LHb is indicated by red circles and red arrows, bar = 500 µm (A).
DAPI staining of the habenula of mice, bar = 100 µm (B).

(CeA) (45) and bed nucleus of the stria terminalis (BNST)
(36), which belong to other limbic areas, also project to
the LHb. Furthermore, there are projecting neurons from
the basal ganglia and cortex, mainly the entopeduncular
nucleus (EPN) (46) and medial prefrontal cortex (mPFC) (47).
The thalamic ventral lateral geniculate nucleus–intergeniculate
leaflet (vLGN–IGL), which is attributed to the visual thalamic
region, also projects to the LHb (18). A recent study reveals more
LHb-projecting neurons along with the type of transmission
through immunohistochemistry and viral tracing methods,
which expands our understanding of inputs to the LHb (48).

Outputs
On the output side, the downstream projections of the

LHb are relatively homogeneous and clear compared to richly
sourced inputs (49). Through the fasciculus retroflexus, also
known as the habenula–interpeduncular tract, the LHb sends
strong projection to GABAergic neurons in RMTg, which
is a GABAergic relay for projections to monoaminergic
nuclei (50). In addition, the LHb sends glutamatergic
projection to the substantia nigra pars compacta (SNc)
(51), periaqueductal gray (PAG) (52), locus coeruleus (LC) (53),
and laterodorsal tegmental nucleus (LDT) (54) and receives
feedback projections from these regions (Figure 2). The LHb
also sends reciprocal projections to the ventral tegmental area
(VTA) (55), dorsal raphe nucleus (DRN), and median raphe
nucleus (MRN) (56–58).

Lateral habenula hyperactivity
during depressive state

Neural excitation

Lateral habenula neural hyperexcitability can be observed
in different rodent models of depression, such as repeated
social defeat stress or chronic restraint stress (CRS) (59, 60),

early life stress (61), aversive stimuli (62), lipopolysaccharide
(LPS) models (59), and learned helplessness (55). Consequently,
depressive symptoms can be improved by reducing neuronal
activity in the LHb (17) or pharmacological inhibition of
LHb function (63). The evoked expression of immediate-
early gene-encoded proteins (c-Fos) is one of the markers
associated with neuronal activity. Acute stress exposure and
chronic social defeat stress (CSDS) resulted in elevated levels
of c-Fos expression in mice LHb (64, 65). A more detailed
study showed that stress selectively activated one of the LHb
subpopulations (66). Approximately 10% of LHb glutamatergic
neurons show an opposite inhibitory response to foot shock
(67). Compared with mice that exhibited social avoidance
from immediately after the repeated social defeat stress, c-Fos
expression in the LHb was higher in those that exhibited social
avoidance only at later periods (68). This demonstrates that the
activity of LHb neurons would perhaps affect different avoidance
strategies to stress. The data above show that the stress effects
on LHb neurons are more complex than just the activated
effect. In human MRI-based studies, patients with depression
exhibit right-sided habenula activation, which is associated with
more severe depressive symptoms and lack of pleasure (30).
These data are in agreement with the asymmetry in the LHb
described previously.

Strangely, the use of selective serotonin reuptake inhibitors
(SSRIs) led to LHb activation, which contradicts their
antidepressant effects (69, 70). One speculation is that the
increase in serotonin (5-HT) induced by these SSRIs acts
on monoamine receptors with neuronal excitatory effects on
the LHb. Sexual dimorphism has been observed in alcohol-
induced anxiety and the LHb stress response (65, 71). This
may be ascribed to sex differences in the stress-responsive brain
regions and related functional networks. The firing rate of VTA-
projecting LHb neurons increased specifically in female mice
after subchronic variable stress (72). A recent study showed
sexual dimorphism of inputs to the LHb in mice, including
more excitatory projection neurons in female mice and stronger
GABAergic projections to the LHb in male mice (44). In

Frontiers in Psychiatry 03 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1043846
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1043846 October 22, 2022 Time: 11:59 # 4

Zhang et al. 10.3389/fpsyt.2022.1043846

FIGURE 2

Summary schematic of neural circuits linking the lateral habenula (LHb) to the pathophysiology of depression. The circuits have experimentally
proven to regulate depressive-like behaviors, including anhedonia, social disorder, passive coping, and aggressive behaviors are represented by
the solid line. Dashed lines represent potential functional circuits, but there is insufficient clear experimental evidence to determine the
regulatory role in depressive-like behaviors. LHb receives primarily glutamatergic input (shown in red) and GABAergic inputs (shown in blue).
The first source is hypothalamic structures, including the lateral hypothalamic area (LHA), paraventricular nucleus (PVN), suprachiasmatic
nucleus (SCN), lateral preoptic area (LPO), and the medial dorsal thalamic nucleus (MDT). The second is the basal forebrain, including the ventral
pallidum (VP), nucleus accumbens (NAc), substantia innominate (SI), medial septum (MS), and lateral septum (LS). Other limbic areas, such as
central amygdala (CeA), and bed nucleus of the stria terminalis (BNST) are also the sources of LHb input. The medial prefrontal cortex (mPFC)
also projects directly to the LHb. Furthermore, LHb receives glutamate/GABA co-releasing projections (shown in purple) from the
entopeduncular nucleus (EPN) located in the basal ganglia and GABAergic projections from the thalamic ventral lateral geniculate
nucleus–intergeniculate leaflet (vLGN–IGL) located in the visual thalamic region. The vLGN–IGL and the SCN can receive light signaling from
retina cells. LHA also sends orexinergic projection (shown in green) to LHb. Based on the strong glutamatergic projections to the rostromedial
tegmental nucleus (RMTg), LHb forms a complex network of projections to both dopaminergic nuclei and the raphe nucleus, which the former
comprises the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), and the latter comprises dorsal raphe nucleus (DRN) and
median raphe nucleus (MRN). Dopaminergic and serotonergic projections are shown respectively in brown and in yellow. Furthermore, LHb
sends glutamatergic projection to the periaqueductal gray (PAG), laterodorsal tegmental nucleus (LDT) and locus coeruleus (LC) and receives
feedback projections from these regions. Hippocampus (Hippo), which is strongly related to depression, shows a potential connection with LHb.

summary, these results indicated a higher sensitivity to stress
in females, which matches clinical observations (73). Moreover,
the nature of different stressors can also affect sex differences in
neural activation patterns of the LHb (74).

It is almost certain that LHb overactivity causes depressive
symptoms. Overexcitation of the LHb may result from
changes in LHb-projecting neurons, dysregulation of synaptic
transmission, and changes in synaptic plasticity.

Burst firing

Enhanced LHb glutamatergic synaptic transmission and an
overall increase in tonic and burst firing are observed in a rat
model of early life stress, indicating an increase in intrinsic
excitability (75). Except for early life stress, CRS can induce
burst firing of action potentials in the LHb neurons, and

knocking out p11 reverses this change (60). As a prodromal
state and significant inducer of depression, early-stress-induced
LHb burst firing is a precursor to depressive symptoms, which
could perhaps improve indirect inhibitory input to downstream
regions and release neuropeptides (76). The most well-known
work is a series of studies from Hu Hailan’s laboratory (19,
77). Hu et al. indicated that N-methyl-D-aspartate receptor
(NMDAR)-dependent burst firing of LHb neurons was observed
in mice with depression phenotypes (77). This process is
complicated and requires the participation of low voltage-
sensitive T-type Ca2+ channels (T-VSCCs) and neuronal resting
membrane potentials, of which the latter is regulated by Kir4.1.
The LHb burst firing is reversed by ketamine, an NMDAR
antagonist (78). A further study by Cui et al. indicated that an
increase in depression-like symptoms was accompanied by the
upregulation of astroglial Kir4.1 in the LHb (19).
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In the study mentioned above, the main outcome measures
of the depression-like phenotype were anhedonia. However,
in a study by Cerniauskas et al. tonic firing was observed in
overactive LHb after chronic stress (79). These mice exhibited
different behavioral phenotypes of motivational impairment.
Although variations in neuronal potential may have resulted
from the different detection methods, implications for LHb
tonic firing could not be easily ruled out (61). The difference
in the projection subtypes of LHb neurons may lead to varied
presentations of depression-like phenotype (79). An important
goal of future studies is to define the mechanism of potential
changes in the LHb. It is well established that LHb burst
firing belongs to a postsynaptic event most probably driven by
presynaptic regulation.

Functional synaptic circuits related
to depression symptoms

The important role of the LHb in the pathophysiology of
depression is largely due to its rich projection neurons (7). The
LHb receives input from stress-responsive and motivation-
related upstream regions and emits inhibitory outputs to
downstream brain regions associated with monoamine
neurotransmitters (20). Stress can activate not only LHb
itself but also the nerve projection network for receiving and
processing stress, which consists of mPFC, BNST, LHb etc. (80).
In fact, neither in a resting state (81) nor under stress (82), LHb
plays multiple crucial roles in the network composed of synaptic
circuits (Figure 2).

Excitatory projections to lateral
habenula

Lateral habenula neurons are primarily glutamatergic.
These glutamatergic neurons receive abundant glutamatergic
projections from the limbic forebrain regions and basal ganglia
and achieve indirect control of the midbrain monoaminergic
nuclei based on strong glutamatergic projections to RMTg
(7). Therefore, glutamate is the most basic signaling molecule
involved in the neural regulatory functions of the LHb.

Basal forebrain
After exposure to stress, different subgroups of parvalbumin

(PV)-positive VP neurons generate excitatory output to the
LHb and inhibitory output to the VTA, causing behavioral
despair/helplessness and social withdrawal, respectively (83).
Stress-activated VP neurons targeting different brain regions
exhibit different depressive symptoms. Topically applied
ketamine and optogenetic inhibition of the VP-LHb circuit
rescued the CSDS-induced depression-like phenotype (39).
This circuit also contributes to cocaine-withdrawal symptoms

(84). The substantia innominate (SI), another subregion of the
basal forebrain adjacent to the VP, receives input from the
CeA processing aversive emotions and sends glutamatergic and
GABAergic projections to the LHb (41, 85). LHb-projecting
SI glutamatergic neurons were confirmed to encode nerve
activation of the LHb after acute aversive stimuli and mediate
depressive-like behaviors after chronic unpredictable mild
stress (CUMS) in mice (41). Silencing SI neurons or reward
consumption can reduce depressive-like behaviors by inhibiting
LHb-projecting SI neurons (41). The NAc can also be activated
by stress and showed a significant neuromodulation effect on
emotion and depression (65, 86). The interaction between the
NAc and the LHb requires further study.

Moreover, glutamatergic projections from LPO neurons
can act together with LHb-projecting GABAergic neurons in
normal reward and aversion processing (37). Similar situations
also exist with projection neurons from MS and to LHb. Co-
dominance of LHb neuron by MS GABAergic and glutamatergic
axons bidirectionally modulate LHb activity and convey both
rewarding and aversive signals to LHb (42, 43). LHb is likely a
hub that converting aversive information to negative emotion.
Given the dysregulation of the reward system that underlies
anhedonia and other depressive symptoms, LHb circuits related
to reward aversion warrant intensive study. LS, which is
contiguous with the MS, relays stress information to LHb
the stress response network through parallel GABAergic and
glutamatergic projections (80).

Lateral hypothalamic area
The glutamatergic LHA-LHb circuit is an essential node in

value processing and escapes behavior after aversive stimuli (87,
88). The LHA transmits stress signals through functional nerve
fibers projecting to the LHb, which drives the depression-like
phenotype in mice by inducing increased activation and burst
firing in the LHb (89). More importantly, a pattern of synaptic
potentiation induced by chronic stress was first discovered in
the LHA-LHb circuit, and artificial induction of this potentiation
can produce depression in naive mice (89).

Medial prefrontal cortex
Activation of the mPFC-LHb circuit is involved in passive

coping behavior and social dysfunction (90, 91). During negative
affective stimuli, increased theta/alpha synchrony within the Hb
and prefrontal cortex-habenula network has been observed in
human participants (92). The lack of extracellular ATP activates
LHb-projecting mPFC neurons through disinhibition of mPFC
GABAergic interneurons, resulting in depressive-like behaviors
in a mouse model of depression induced by CSDS or IP3R2-null
mutation (47). P2 × 2 in mPFC GABAergic interneurons is a
mediating molecule involved in this process.

Median raphe nucleus
Glutamatergic LHb-projecting MRN neurons can be

activated by aversive stimuli and promote burst firing in the
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LHb (56). This activation is aversive and drives aggressive
behavior and anhedonia. Furthermore, MRN connect with the
LHb, VTA, PFC, and hippocampus (Figure 2), making it a key
point for the negative experience and related long-term memory
formation (56).

Paraventricular nucleus
Glutamatergic vasopressin-expressing magnocellular

neurons in PVN project directly to the GABAergic interneurons
in LHb (93). This circuit can be activated physiologically by
water deprivation and inhibit the LHb functional output,
resulting in decreased freezing and immobility during innate
fear and behavioral despair assessments (93). These findings
imply the regulatory potential of vasopressin-expressing PVN
neurons in abnormal outputs of LHb during depressive state.

Suprachiasmatic nucleus
As the principal circadian pacemaker in mammals receiving

light information from the retina, the SCN can innervate
the LHb and largely determines the circadian oscillations of
neuronal activity and firing pattern in the LHb (94, 95).
Moreover, the SCN is likely to modulate the clock gene in
LHb, mainly Per1 and Per2, which have been demonstrated
to be directly correlated with the day-night variation of
depressive-like behaviors in rodent depression models (96,
97). An in-depth study of the SCN-LHb circuit would be
important for elucidating the underlying mechanisms of the
day-night symptom fluctuation and light therapy in patients
with depression or bipolar disorder.

Other glutamatergic projections
Another glutamatergic projection worth studying is the

BNST-LHb. BNST is considered as a way station between
stress regions and brain reward centers (98). Despite the
small number of relevant studies, it cannot be denied
that BNST is the connecting point receiving stress signals
and conveying information to LHb, which might promote
stress-induced anxiety (99). Similar effects can be found
in the LHb-LDT circuit. Activation of LHb glutamatergic
input to LDT GABAergic interneurons can generate fear-like
responses, and prolonged activation of interneurons in LDT can
induce anxiety-like behaviors (54). LDT is also bidirectionally
connected with the LHb and plays a potential role in processing
aversive information (100).

The function of reciprocal excitatory projections between
the PAG and LHb has not been fully elucidated (44, 52).
In a study of patients with irritable bowel syndrome with
chronic recurrent abdominal pain and negative emotions as
the major symptoms, abnormal enhancement of the resting-
state functional connectivity of the LHb-PAG indicated pain-
induced negative emotions are possibly related to the LHb-
PAG circuit (101). LHb also sends glutamatergic projection
to the LC, which is the primary source of norepinephrine in

the central nervous system (CNS) and plays a critical role
in pain-related anxiety or depression (102). Intensive studies
on these two regions contribute to the understanding of
how LHb is involved in processing the emotional component
of chronic pain.

Inhibitory projections to lateral
habenula

Glutamate/GABA co-releasing neurons
Extrinsic GABAergic inputs are the major inhibition

mechanisms in the LHb. Most of the current evidence
indicates that one of the main contributors of GABA in the
LHb is glutamate-GABA co-releasing projecting neurons
from the EPN and VTA (46, 103, 104). The distribution of
vesicular glutamate transporter 2 (VGluT2), vesicular GABA
transporter (VGAT), and glutamic acid decarboxylase (GAD)
were determined in these neurons by in situ hybridization.
GABA and glutamate are released presynaptically into the
respective synaptic vesicles (103). In particular, the balance of
GABA/glutamate signaling was skewed toward a reduction of
GABA in EPN-projecting co-releasing neurons of rats with
congenital learned helplessness, which can be reversed by
SSRI treatment (46). These phenomena are likely one of the
reasons for the increased activity of the LHb among learned
helplessness (55). Chronic exposure to stress can induce
a depressive-like phenotype of motivational impairments
through synaptic adaptations in excitatory EPN inputs to
VTA-projecting LHb neurons, including increased presynaptic
release probability and upregulation of GluR2-lacking α-amino-
3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor
(AMPAR) (79). This mode of GABA/glutamate balance
regulation has also been observed in cocaine-withdrawal
symptoms. The decrease in VGAT in LHb-projecting EPN
neurons switches GABA/glutamate signaling from balance to
excitation, and cocaine-withdrawal symptoms are reversed by
VGAT overexpression (105).

A recent study showed that glutamate/GABA co-packaging
in LHb-projecting EPN neurons is regulated by 5-HT or
adenosine receptor agonists (104). Moreover, hyperactive LHb
may decrease the co-release of VTA-projecting inputs via the
inhibition of glutamatergic projections to the VTA (106). Given
the abundance of reciprocal projecting neurons between the
LHb and VTA, mutual regulation requires further study (107).

Other GABAergic projections
Additionally, the medial portion of the LHb receives

GABAergic inhibitory inputs from the basal forebrain (40, 108),
LPO (37), VP (109), and PV-positive neurons within MDT
(38). Overall, inhibitory innervation in the LHb encodes a
reward (110). vLGN–IGL, a visual thalamic region, provides
a GABAergic input to LHb. This inhibitory pathway receives
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light signaling via retinal ganglion cells expressing M4-
type melanopsin and represses LHb activity, which is one
of the mechanisms underlying the antidepressant effect of
light therapy (18). Indeed, the vast majority of glutamatergic
projections to the LHb are accompanied by parallel GABAergic
axons (44) (Figure 2). Like co-releasing neurons, the imbalance
between glutamatergic projections and GABAergic projections
is probably the pathogenesis of depression and other mood
disorders.

Other regulatory projections

Dopaminergic projections
Reciprocal feedback projections between LHb and

dopaminergic nuclei, mainly the VTA and SNc, are the
main connections between LHb and the dopamine system
(111, 112).

The activity of VTA dopaminergic neurons is inhibited
when the LHb is activated by stress or electrical stimulation
and is involved in the regulation of reward-related behavior
(113). This inhibitory effect is achieved through indirect
projections via GABAergic RMTg neurons (114). Selective
inhibition of VTA neurons has been confirmed to rapidly
produce depression-like behaviors, including behavioral despair
and anhedonia (115). This suggests that the LHb-RMTg-
VTA neural circuits may lead to depression, although this
neural circuit appears unaffected by chronic mild stress (116).
Furthermore, direct glutamatergic projection from the LHb to
the VTA has been observed (117). This excitatory projection
does not contradict the indirect inhibition of VTA dopamine
neurons by the LHb. A higher release probability at synapses
on VTA-projecting LHb neurons enhanced learned helplessness
behaviors in the acute or congenital learned helplessness rat
model of depression (55). One study indicated that the LHb-
VTA circuit favors increased immobility in the tail suspension
test rather than anxiety or anhedonia (79). Individual differences
in behavior and neurophysiological factors may result in
different results (79). Furthermore, LHb neurons can activate
VTA dopamine axons projecting to the mPFC (16). Similar to
RMTg, VTA is also a relay of LHb to control the neurons of other
regions, including upstream regions of LHb.

An additional associated dopaminergic neural circuit is
the LHb-RMTg-SNc. RMTg shifts excitatory glutamatergic
projection of the LHb into inhibitory GABAergic projection
to dopamine neurons in SNc, which has been confirmed to be
involved in aversive and despair-like behaviors (51). Inhibition
of this pathway reversed behavioral despair in CRS depression
model mice (51). In a series of studies by Liu et al. lesions of
the SNc in rats could generate a series of consequences in the
LHb, including an increased firing rate and hyperactivity of LHb
neurons and anxiety-like and depressive-like behaviors (106,
118, 119).

Serotonergic dorsal raphe nucleus projections
The reciprocal connectivity between the LHb and DRN is

the main 5-HT regulatory pathway in the LHb (120). More
specifically, on the one hand, there is a glutamatergic projection
from LHb to the GABAergic interneurons and 5-HT neurons
in the DRN (121). The RMTg is also a major GABAergic relay
between the LHb and the DRN (122). According to brain-
wide imaging data in zebrafish exposed to a stress source,
passive coping strategies presented progressive activation of
neurons in the ventral (lateral) habenula in terms of neuronal
dynamics, and downstream neurons in the 5-HT raphe nucleus
are suppressed by these activations (123). The discrepancy in
the rhythmic discharges of LHb cells projecting to the DRN
between stress-susceptible mice and stress-resilient mice led to
different reactions of the two types of mice to CSDS (124).
DNA hypomethylation in the LHb has been shown to regulate
emotional states by inhibiting DRN 5-HT projecting neurons
(125). Correspondingly, improved depressive-like behavior in
rats and higher 5-HT levels in the DRN after intra-LHb
microinjection of a substance P receptor antagonist showed
antidepressant potentials in this circuit (126). A recent study
showed that one subpopulation of LHb neurons project directly
to glutamatergic DRN neurons projecting to VTA dopamine
neurons and mediate social instigation-induced aggressive
behavior in male mice (127).

In contrast, 5-HT neurons in the DRN project to the
LHb and presynaptically inhibit LHb excitatory neurons, which
depressive-like behaviors in the CUMS rat model were improved
by optogenetic activation of DRN-LHb projections (58). One
study suggested the existence of a 5-HT projection from DRN
to GABAergic interneurons of the CeA, with glutamatergic
neurons in the latter projecting directly to the LHb (128).
Inhibition and activation of the pathway separately produced
and decreased pain-related depression-like behaviors in a mouse
model of chronic pain (128). Increased LHb-DRN pathway
activity may serve as one of the underlying mechanisms of the
comorbidity of pain and depression (13).

Orexinergic lateral hypothalamic area
projections

As the sole source of orexin in CNS, LHA orexin neurons
project to the LHb, releasing orexin into GAD2-expressing
LHb neurons and driving aggressive behaviors in male mice
(129, 130). A further investigation showed that LHA orexin
neurons project not only to GAD2-expressing neurons but also
to glutamatergic neurons directly (131). The LHAOrx-LHbGlu

circuit can be activated by social stress, and pharmacogenetic
activation of orexinergic signaling or optogenetic activation of
this circuit can rescue depressive-like and anxiety-like behaviors
induced by CSDS (131). The LHOrx-LHbGAD2 and LHAOrx-
LHbGlu circuits act as regulators of different dimensions of social
behavior, although the potential connections and interactions
between the two remain unknown.

Frontiers in Psychiatry 07 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1043846
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1043846 October 22, 2022 Time: 11:59 # 8

Zhang et al. 10.3389/fpsyt.2022.1043846

Changes in lateral habenula
synaptic transmission during the
depression state

Synaptic transmission is the vital physiological basis of the
LHb mechanism in depression (110). Synaptic transmission
profoundly affects the intrinsic excitability and potential levels
of LHb neurons. Dynamic changes in synaptic regulate the
balance of excitation and inhibition, including tentatively
potentiated or attenuated synaptic efficacy and long-term
improved postsynaptic receptor sensitivity or long-term greater
presynaptic release. Since depression is a chronic pathological
process, long-term presynaptic or postsynaptic plasticity is more
dominant, namely long-term potation, including long-term
potentiation (LTP) and long-term depression (LTD). Although
the majority are glutamatergic, LHb neurons regulate a variety
of neurotransmitters through abundant projection neurons
(111). Following sections discuss many receptors in the LHb
with modulatory effects on mood and depression, which is
summarized in Table 1.

Glutamatergic system

Abnormal changes in glutamatergic synaptic
transmission

Glutamate is a major neurotransmitter in the CNS. Most
neurons in the LHb are glutamatergic (132). Recently, many
studies have focused on aberrant synaptic transmission in
depression (133, 134). Stress is one of the most severe risk
factors in the pathophysiology of MDD and can profoundly
regulate glutamatergic synaptic transmission in the LHb. After
exposure to CUMS, the results of metabolite analysis showed
that glutamate levels were dramatically increased in the LHb
of rat (135). Several studies have shown that glutamate
transport and clearance barriers can induce depression-like
behaviors in rats (118, 136). Early life stress can also enhance
glutamatergic synaptic strength through postsynaptic and
presynaptic mechanisms, changing the excitation/inhibition
(E/I) balance of LHb neurons and persisting into adulthood (75).

Notably, an individual study has also shown a decrease
in glutamatergic synaptic transmission after stress (137). This
downregulation led to not depressed mood but cognitive deficits
accompanied by a postsynaptic decrease in GluA1 AMPAR.
Given that cognitive impairment is a frequent complaint in
patients with depression (138), two opposing stress-induced
glutamatergic synaptic transmissions are likely to be present in
the LHb simultaneously.

The functional regulation of glutamatergic
receptors

The vast majority of the regulatory strength of glutamatergic
synapses in the LHb is dependent on NMDAR and AMPAR.

Foot-shock-induced excitation of glutamatergic neurons in the
LHb required the involvement of NMDAR and AMPAR (67).
Local injection of GluN2B-containing NMDAR antagonists
or the specific GluN2B antagonist rislenemdaz into the LHb
has been demonstrated to improve alcohol-induced anxiety-
like behaviors (139) and CRS-induced despair-like behaviors
(140). In addition to the aforementioned short-term regulation,
NMDAR can also produce LTD in the LHb. The activation of
synaptic and extrasynaptic NMDARs containing GluN2A or
GluN2B leads to LTD triggered by low frequency stimulation in
the LHb (141). Therefore, synaptic NMDA receptor-dependent
LTD could be blocked by CRS and may be one of the
complex pathological processes of stress-related depressive
symptoms (141).

AMPAR is classified into calcium-permeable GluA2-lacking
(CP-AMPAR) and calcium-impermeable GluA2-containing
(CI-AMPAR) (142). Activation of neurons expressing CI-
AMPAR or blockade of neurons expressing CP-AMPAR
contributes to an increase in the level of extracellular DA
and 5-HT in the mPFC, leading to the improvement of the
depression-behaviors of a PD rat model induced by lesions of
SNc (143, 144). The two types of neuronal may vary widely in
functional features, which may be attributed to differences in
targeted neurons (143). Withdrawal-induced symptoms, such
as depression, could be regulated by LHb AMPAR (145).
Similar to NMDAR, LHb AMPAR can participate in the
long-term regulation of excitatory synapse. CP-AMPARs are
necessary to activate NMDAR-dependent LTD (141). Although
enhancement of LHb AMPAR signaling can increase bursting
activity during emotional processes of depression, local injection
of the AMPAR blocker into the LHb did not produce a rapid
antidepressant effect, similar to the NMDAR blocker (77).

GABAergic system

The internal inhibition of the LHb neurons has always been
worth discussing. One study suggested that GAD2-expressing
neurons in the LHb could suppress LHb neuronal activity
through GABA release to control aggressive behaviors in male
mice (129), although these neurons have been shown to release
glutamate rather than GABA, targeting the midbrain (146).
The lack of VGAT in LHb neurons renders the release of
GABA unclear (147). In summary, GAD2-expressing neurons
in the LHb probably release more than one neurotransmitter
(148). The finding of locally targeting inhibitory LHb neurons
that express PV also further identified internal inhibition in
the LHb (38). The density of PV neurons decreased in the
LHb of adult mice after early life stress (149). PV-positive
neurons are present not only locally but also in projecting
neurons (mainly inhibitory) (83, 150). The blockade of GABA
transporter 1 (GAT1) or GABA transporter 3 (GAT3) in the
LHb upregulated extracellular GABA levels and caused greater
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GABAergic inhibition, downregulating LHb neuronal activity
and firing rate of LHb neurons, resulting in an improvement in
depression-like behaviors in PD rats (119).

Stress inhibition in a small portion of LHb neurons
requires GABAARs (67). Intra-LHb infusion of muscimol
(an agonist of GABAAR) decreased the firing rate of LHb
neurons and produced antidepressant-like effects in rats with
PD (151). Activation of GABAARs can decrease neuronal

firing in the LHb (152). During the resting state, GABABRs
are involved in the physiological suppression of LHb activity.
This inhibition was attenuated by stress-induced blunting of
GABAB-GIRK signaling, in which protein phosphatase 2A
(PP2A) inhibition reversed the changes in GABAB-GIRK
signaling and decreased depression-like phenotype (153). Innate
differences in GABABRs expression levels determine sensitivity
to social stressors in mice (64). A recent study showed that

TABLE 1 Neurotransmitter receptors in LHb that can regulate depression-like behaviors.

Receptor type Location Animal Drug Receptor
function

Model Behavior References

NMDAR Postsynaptic C57BL/6
mice

Ketamine ↓ Congenitally learned
helpless/
chronic restraint stress

Reversed depression-like behaviors in
the FST and SPT induced by burst
firing

(77)

GluN2B-containing
NMDAR

Postsynaptic Swiss albino
mice

Ro25-6981 ↓ Ethanol withdrawal Alleviated anxiety-like behavior in
EPM in ethanol withdrawn mice

(139)

GluN2B-containing
NMDAR

Postsynaptic C57BL/6J
mice

Rislenemdaz ↓ Chronic restraint stress Improved despair-like behavior in
TST and depression-like behaviors in
the FST and SPT

(140)

CP-AMPARs Postsynaptic SD rats Naspm ↓ 6-OHDA lesions of the
SNc

Improved depression-like behaviors
in the FST and SPT

(144)

AMPARs Postsynaptic SD rats (S)-AMPA ↑ 6-OHDA lesions of the
SNc

Improved depression-like behaviors
in the FST and SPT

(143)

AMPARs Postsynaptic SD rats NBQX ↓ 6-OHDA lesions of the
SNc

Promoted depression-like behaviors
in the FST and SPT

GABAARs Postsynaptic SD rats Muscimol
hydrobromide

↑ 6-OHDA lesions of the
SNc

Improved depression-like behaviors
in the FST and SPT

(151)

Picrotoxin ↓ Promoted depression-like behaviors
in the FST and SPT

GABABRs Postsynaptic C57Bl/6J
mice

LB-100
(inhibitor of

PP2A)

↑ Foot-shock exposure Improved depression-like behaviors
in the FST and SPT

(153)

Learned-helplessness Improved depression-like behaviors
in the SPT and increased the rate of
failure to escape after foot shocks

GABABRs * C57BL/6
mice

Baclofen ↑ Chronic social defeat
stress

Relieved the social avoidance
symptoms and the decreased
sociability in the stress susceptible
group

(64)

CGP36216 ↓

D1-like dopamine
receptor

Presynaptic SD rats SKF 38393 ↑ Normal rats Increased anxiety-like behavior in
OFT and decrease the depression-like
behaviors in FST

(156)

SCH 23390 ↓

5-HT 4 receptors * SD rats BIMU-8 ↑ 6-OHDA lesions of the
SNc

Improved depression-like behaviors
in the FST

(163)

GR113808 ↓

5-HT 7 receptors * SD rats AS19 ↑ 6-OHDA lesions of the
SNc

Improved depression-like behaviors
in the FST and SPT

(164)

SB269970 ↓ Improved depression-like behaviors
in the FST and SPT

5-HT 2C receptors * SD rats Ro60-0175 ↑ 6-OHDA lesions of the
SNc

Promoted depression-like behaviors
in the FST and SPT

(165)

The upregulation and downregulation of receptor functions are indicated by ↑ and ↓ arrows, respectively. An asterisk indicates that the distribution of receptors still ambiguous. FST,
forced swim test; SPT, sucrose preference test; EPM, elevated plus maze; TST, tail suspension test; OFT, open field test.
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GABA-LTD is regulated by presynaptic GABABRs in mice
and can be disturbed by social isolation (154). Notably, the
injection of agonists and antagonists of GABABRs resulted in
the remission of stress-induced social withdrawal symptoms
(64). This contradictory result may be due to the functional
divergence of presynaptic and postsynaptic GABABRs.

Dopamine system

Changes in the concentrations of dopamine and 5-HT
were observed across parts of the mesocorticolimbic region
in rats with neonatal habenula lesions (155). Spontaneous
activity in the LHb is enhanced by dopamine receptor
activation (156). Disturbance of dopamine subtype 1 receptor
(D1R) function contributes to increased anxiety-like behaviors
and decreases depressive-like behaviors (157). The use of
dopamine D4 receptor agonists or antagonists caused alterations
in depression-like behavioral responses, and different doses
showed opposite results (158). The analyses of dopamine
neurotransmission-related proteins in patients with MDD also
showed the implication of D1Rs in mediating antidepressant
responses (159).

Serotonergic system

There are seven groups of 5-HT receptors (1–7), and
approximately 15 subtypes are involved in the regulation of
neuronal activity and multiple behaviors (160). Peripheral
administration of the respective agonists activates 5-HT
2A receptors located mainly in astrocytes and 5-HT 2C
receptors located in neuronal cells, which induced mixed
excitatory/inhibitory effects in LHb neurons (161). Importantly,
blocking 5-HT 2A receptors within the LHb has been shown to
inhibit hyperexcitable LHb in depressive states (161). Activation
of presynaptic 5-HT 1B receptors decreased excitatory inputs
to the LHb (162). This was likely due to their differential
distribution. The activation of 5-HT receptors, including 2C,
4, and 7 subtypes, was shown to induce increased discharge
activity in LHb neurons, lower monoamine levels in related
brain regions, and increase depressive-like behaviors in a
PD rat model (163–165). According to the functions of
presynaptic 5-HT 1B receptors, apart from other subtypes, 5-HT
receptors postsynaptically or presynaptically localized may have
different functions.

Opioid system

The habenula complex is the predominant site of expression
of the mu-opioid receptor (MOR) (132, 166, 167). After
selective excitation of MOR, whole-cell patch-clamp recordings

in rats showed inhibition of LHb neurons via postsynaptic
hyperpolarization and presynaptic inhibition of glutamate
release (168). From a functional perspective, the latest study
indicated that nociceptive stimuli activated the LPO projection
to the LHb, producing hyperalgesia and related aversive
emotions, which negative emotions can be strongly inhibited by
specific activation of the LHb MOR, leading to the mitigation
of the above symptoms (169). This showed that the LHb MOR
function improves negative emotional experiences in persistent
neuropathic pain.

The kappa-opioid receptor (KOR) was also detected in
the LHb (170). Functional KOR signaling in the LHb was
first discovered by Simmons et al. There is bidirectional
modulation of KOR in LHb neuronal excitability in two types
of neuron subpopulations by altering presynaptic glutamate
release and presynaptic GABA release (171). This modulation
relies on intact fast synaptic transmission and is inhibited by
decreased KOR expression induced by early life stress (171).
The LHb is a critical brain region for negative emotions during
opioid abstinence (172). As one of the antireward-aversion
centers, the habenula drives negative emotions induced by
opioid withdrawal. Opioid receptor activation supports the
antidepressant effects of ketamine (173).

Molecular mechanisms of lateral
habenula activity regulation and
synaptic function in depression

Depression-related neuropeptides in
lateral habenula

Neuropeptide Y
Neuropeptide Y (NPY) is a peptide neuromodulator

encompassing five histologic subtypes. It is the most prevalent
and extensively distributed neuropeptide in the mammalian
brain and plays an essential role in depression and stress (174,
175). Activation of neuropeptide Y1 receptors leads to inhibition
of excitatory neurotransmission in the vast majority of LHb
neurons via the phospholipase C/protein kinase C-dependent
pathway, while potentiation occurs in a small population of
neurons (176, 177). Despite this overall inhibitory activity,
whether NPY in the LHb can suppress hyperactive LHb to
improve depressive symptoms remains to be investigated. In
fact, NPY expression has been detected in widely upstream
regions of the LHb, although the current results do not provide
evidence that NPY modulates synaptic strength and upstream
projections (178).

Galanin
Multi-species anatomical studies have shown the

distribution of ganglion-like immunoreactive fibers in
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the habenula (179, 180). Galanin (1–15) can improve the
antidepressant-like effects of fluoxetine in an olfactory
bulbectomy model of depression in rats, accompanied by
activation of a functional network that includes the LHb, VTA,
and DRN (181).

Pituitary adenylate cyclase-activating
polypeptide

The neuropeptide pituitary adenylate cyclase-activating
polypeptide (PACAP) is expressed in a small population
of neurons located in the LHb (182). Chemically selective
activation of PACAP-expressing neurons in the LHb can reduce
fear and anxiety-associated behaviors (183). This is different
from the activation effect of most LHb neurons, which is
likely related to internal inhibition of the LHb. PACAP may be
expressed in GAD2-expressing LHb neurons, which have been

confirmed to inhibit the activity of most LHb neurons (129,
184). Given the above, PACAP might be a good breakthrough
point in determining internal inhibition in the LHb.

Depression-related molecular in lateral
habenula

Ca2+/calmodulin-dependent protein kinase II
Ca2+/calmodulin-dependent protein kinase II (CaMKII)

regulates synaptic transmission mainly by postsynaptic
mechanisms that can be activated by physical stress (185).
CaMKII promotes the phosphorylation of S831 in the GluR1
subunit (186, 187) and recruits AMPAR at synapses by
inhibiting the diffusion of surface AMPARs at synaptic sites
(188). Enhanced AMPAR upregulates glutamatergic synaptic

FIGURE 3

A summary figure of the LHb variations and related mechanisms in depression is discussed in this review. Stress and other factors act on
upstream regions. The anomalous projections from the upstream regions to LHb acts on various neurotransmitter receptors in LHb neurons.
This results in neural excitation and burst firing in LHb neurons. Subsequently, overactive projecting neurons in LHb mediate dysfunction in
monoaminergic nuclei via direct or indirect projections. Moreover, these downstream regions also project to LHb or its upstream regions, which
are connected to form a network of neural projections. All the above factors eventually culminate in depressive-like symptoms in rodents.
Related molecules and neuropeptides act on input neurons, receptors, and neurons in LHb and play different regulatory roles in the
pathological processes of depression. The functional significance of parts of the regions remain uncertain are not represented in figure.
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transmission and LHb activity. Numerous studies have shown
that upregulation of LHb βCaMKII could cause depressive-like
symptoms in rodents, including learned helpless rats (17) and
thyroidectomy rats (189), and alcohol-withdrawal rats (187).
Inhibition of αCaMKII neurons in the LHb improves depressive
symptoms (18). In summary, as the hallmark of LHb activation,
CaMKII and LHb activities are tightly linked.

High-frequency stimulation, similar to burst firing, might
open the Ca2+-permeable NMDA receptor channel, leading to
the elevation of postsynaptic Ca2+/CaM complex concentration
and enhancement of CaMKII function (186). More importantly,
due to the persistence of kinase function activity, CaMKII
participation might transform transient action potentials or
burst firing into LTP, potentially an underlying mechanism of
long-standing depressive symptoms in MDD (190).

Endocannabinoids
As an important signaling molecule in emotion regulation

and synaptic transmission, endocannabinoids (eCB) decrease
presynaptic glutamate release probability in the LHb (191).
After chronic and intermittent cannabinoid receptor agonist
administration, the mouse habenula showed a decrease in
cerebral metabolism and weakened functional connectivity with

upstream regions, mainly the PFC and basal ganglia (192).
This weakened the strength of excitatory projections from these
regions to the LHb. In addition to the decrease in excitatory
input, another mechanism of eCB-dependent inhibition of
activity is an increase in the probability of presynaptic GABA
release, which depends on eCB-CB1 receptor signaling (193).
More specifically, the expression of CB1Rs in VTA GABAergic
neurons allows eCB signaling to regulate inhibitory inputs to
the LHb (194). The LHb synapses are repressively regulated
in the normal state and are presented as LTD. In summary,
similar to GABABRs, LHb eCB signaling maintains LTD via
regulatory disynaptic projections during physiological states.
LHb eCB signaling is expressed in astrocytes in addition to
neurons and has been identified as a new therapeutic strategy
for MDD (195).

A previous study indicated that low- and moderate-
frequency stimulations maintain eCB-dependent LTD, which
likely corresponding to silent or tonic firing during the
LHb resting state (191). Exposure to an extreme stressor
disturbs eCB-dependent LTD, which could be explained by the
fact that LHb neurons produce burst firing after activation,
predominantly by aversive or stressful stimuli. Synaptic
transmission subsequently transforms from eCB-dependent and

FIGURE 4

A summary figure of specific mood symptoms dominated by the LHb in different neural circuits. According to specific behavioral manifestations
in studies on LHb circuits, we summarize different mainly depressive symptoms mediated by the neural projections between the LHb and
different nuclei, including anhedonia, social disorders, behavioral despair, aggressive behaviors, appetite loss, and anxiety.
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NMDAR-dependent LTD to CaMKII-dependent LTP. Recovery
of eCB-dependent LTD after αCaMKII inhibition supports
this hypothesis (191). These conjectures could associate
the electrophysiological properties of the LHb and synaptic
plasticity and could be interpreted as one of the possible roles
of LHb burst firing. However, as logical as these conjectures,
insufficient support for this possibility is currently lacking.

Summary and future perspectives

This review provides a comprehensive view of the role
of LHb in the mechanisms of depression (Figure 3). Stress
likely preferentially activates upstream regions and produces
anomalous projections to the LHb, leading to presynaptic
and postsynaptic events through the action of various
neurotransmitter receptors. This results in postsynaptic
action potentials, mainly burst firing in the LHb neurons, in
turn, driving sustained neuronal activation, which induces
physiological changes at the molecular level. Subsequently,
overactive projecting neurons in the LHb mediate dysfunctional
inhibition of monoaminergic nuclei. These changes contribute
to the dysfunctional homeostasis of monoamine levels
in the brain. More importantly, synaptic plasticity and
adaptive modulation of receptors and related molecules
transform temporary firing into persistent overactivity, which
produces prolonged symptoms of depression. In addition,
most secondary depressive symptoms caused by chronic
pain, substance use disorders, and PD can be attributed
to aversive activation or depletion of monoamines in the
LHb, which increases the difficulty of treating depression.
Some specific regions, including the PAG, LC, CeA, and
DRN, perhaps receive pain signals and transmit signals
to LHb, resulting in pain-related negative emotion. The
dysregulation of projections between LHb and the VTA/SNc,
particularly subsequent dopaminergic-system dysregulation,
might be the crucial point of PD-induced depression
symptoms.

Given LHb has been suggested as a key node in the
pathological processes of depression, a growing number of
researches are devoted to exploring new treatment strategies
acting on LHb. Deep brain stimulation (DBS) of the LHb
has received increasing attention since it showed excellent
efficacy on patients with treatment-resistant depression (196).
LHb DBS has been confirmed that can improve depressive-
like behaviors through heightened levels of monoamines
(197), enhanced synaptic efficacy (198), and the regulation
of depression-related molecular (199). Notably, similar to the
complex effect of stress on LHb, DBS potentially alters the
functional connectivity networks centered on LHb (200). This
presented paper contributes to expanding our understanding
of LHb DBS in more aspects. Meanwhile, studies on LHb DBS

provide a clear basis for better elucidating the pathogenesis of
LHb in depression.

The neural connections between the LHb and different
nuclei mediate different mood symptoms. According to
various behavioral methods in studies mentioned in section
“Functional synaptic circuits related to depression symptoms,”
we summarize mainly depression-like behaviors dominated
by the LHb in different neural circuits (Figure 4). These
input and output neurons are likely to be targeted to a
particular subset of the LHb. It should be noted that we
observed the complexity of functional cell subpopulations
in LHb neurons. Specific molecular markers, such as
parvalbumin, enable their identification. The functional
identification of a subpopulation of these neurons is required.
Through a systematic review, we expect to contribute
to the accurate delineation of pathological processes
in the LHb and the screening of therapeutic targets for
depression.
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