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Background: There is limited evidence on the link between gut microbiota

(GM) and resting-state brain activity in patients with chronic insomnia (CI).

This study aimed to explore the alterations in brain functional connectivity

strength (FCS) in CI and the potential associations among altered FCS, GM

composition, and neuropsychological performance indicators.

Materials and methods: Thirty CI patients and 34 age- and gender-matched

healthy controls (HCs) were recruited. Each participant underwent resting-

state functional magnetic resonance imaging (rs-fMRI) for the evaluation

of brain FCS and was administered sleep-, mood-, and cognitive-related

questionnaires for the evaluation of neuropsychological performance. Stool

samples of CI patients were collected and subjected to 16S rDNA amplicon

sequencing to assess the relative abundance (RA) of GM. Redundancy

analysis or canonical correspondence analysis (RDA or CCA, respectively)

was used to investigate the relationships between GM composition and

neuropsychological performance indicators. Spearman correlation was

further performed to analyze the associations among alterations in FCS, GM

composition, and neuropsychological performance indicators.

Results: The CI group showed a reduction in FCS in the left superior

parietal gyrus (SPG) compared to the HC group. The correlation analysis

showed that the FCS in the left SPG was correlated with sleep efficiency

and some specific bacterial genera. The results of CCA and RDA showed

that 38.21% (RDA) and 24.62% (CCA) of the GM composition variation could

be interpreted by neuropsychological performance indicators. Furthermore,

we found complex relationships between Alloprevotella, specific members

of the family Lachnospiraceae, Faecalicoccus, and the FCS alteration, and

neuropsychological performance indicators.
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Conclusion: The brain FCS alteration of patients with CI was related to their

GM composition and neuropsychological performance indicators, and there

was also an association to some extent between the latter two, suggesting a

specific interaction pattern among the three aspects: brain FCS alteration, GM

composition, and neuropsychological performance indicators.

KEYWORDS

chronic insomnia, gut microbiota, resting-state fMRI, functional connectivity
strength, brain function

Introduction

Chronic insomnia (CI), a frequent condition in adults, is
the most common sleep disorder in the human population.
CI exhibits diverse manifestations, including difficulties in
initiating or maintaining sleep and obtaining refreshing sleep, as
well as a hyperarousal state (1, 2). Persistent insomnia disorder
has been associated with chronic conditions like hypertension
(3) but also with cancer (4, 5). In addition, CI can impair social,
cognitive, and behavioral functioning, resulting in a high risk
of suicide (6, 7) and fatal traffic accidents (8). Therefore, CI
significantly impacts human physical and mental health and
impairs social development, and thus has become a major public
health issue worldwide (9). However, the neural mechanisms of
CI have not been fully elucidated.

The potential link between sleep disorders and gut
microbiota (GM) has drawn considerable interest in recent years
(10–13). Studies have found that the microbial diversity and
relative abundance (RA) of specific GM differed significantly
between insomnia patients and healthy individuals (11, 12).
Li et al. further showed that Faecalibacterium and Blautia
can be used as iconic bacteria to distinguish patients with
CI and healthy controls (HCs), whereas the combination of
Lachnospira and Bacteroides was most helpful for identifying
patients with acute insomnia (13). A study found that
sleep quality and the severity of insomnia were the main
factors that drove the variation in microbiome community
structure in patients with major depressive disorder (14).
Another study found RA changes in some members of the
microbiota following two nights of partial sleep deprivation
(15). Using redundancy analysis (RDA), Liu et al. found that
the GM profile at the phylum level was highly correlated
with clinical sleep parameters, including polysomnography
(PSG) parameters, total sleep time, sleep efficiency, and
sleep latency (10), which indicated that GM composition
alterations could be explained by clinical sleep parameters.
The findings of the above studies suggest that the GM is
closely related to insomnia disorder. Some specific flora may
be potential prognostic markers of insomnia symptoms or even
subtypes. The microbiota-gut-brain axis (MGBA) is a well-
known bidirectional communication system that has shown

great potential in exploring the neural mechanisms of CI.
The GM dysbiosis regulates brain physiology, cognition, and
behavior via various pathways, including metabolic, endocrine,
and immune signaling pathways (16–19). Bacterial metabolites,
such as short-chain fatty acids (SCFAs), bioactive compounds,
or neuroactive metabolites, can affect neuronal architecture and
function (20). However, research on whether the GM has an
impact on insomnia through the MGBA is still in its infancy,
and further studies are needed.

Resting-state functional magnetic resonance imaging (rs-
fMRI) is an effective means of studying the MGBA in humans
and is currently an essential technique for studying the
underlying neural mechanisms of insomnia (21). Rs-fMRI can
be used to observe the link between the GM and brain function
and perhaps even explain how the GM affects resting-state
brain activity (22). Rs-fMRI has been applied in several studies
investigating the potential brain-gut interaction mechanisms in
healthy individuals (23, 24) and those with neuropsychiatric
disorders (25–27), including schizophrenia and amnestic mild
cognitive impairment. Rs-fMRI offers a unique perspective
for studying MGBA communication pathways in insomnia.
Functional connectivity strength (FCS), a graph theory-based
data-driven method calculated by degree centrality (DC), can
quantify the strength of network nodes with high connectivity
to neighboring brain regions and thus identify communication
hubs in the human brain (28–30). The FCS method based on rs-
fMRI can be used to directly compute global brain connectivity
and visualize important architectural topology abnormalities
in the brain functional connectome at the voxel level, thus
reflecting the functional interactions of the brain in the resting
state (31). Previous studies based on this method showed that
the brain areas with increased FCS or DC in insomnia patients
were mainly located in the right superior parietal lobe, insula,
cerebellum posterior lobe, precuneus, and left middle frontal
gyrus. In contrast, reduced FCS or DC values were mainly
located in the bilateral frontal lobe, temporal lobe, right inferior
parietal gyrus, insula, right occipital lobe, and right cerebellum
anterior lobe (29, 32–35). With great potential in the study of
GM-brain function interaction pathways in insomnia patients,
the FCS method, which is accurate and highly reproducible,
could compensate for the shortcomings of traditional functional
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connectivity analyses (33, 36). However, to our knowledge,
no investigation has combined an evaluation of brain FCS
and the intestinal flora to explore brain-gut communication
mechanisms in CI patients.

This study aimed to investigate the interconnections
among the three aspects of brain function, the GM, and
neuropsychological performance indicators in patients with
CI. We hypothesized that altered brain function in patients
with CI is related to GM composition and that both are
related to neuropsychological changes. To test this hypothesis,
in addition to recruiting CI patients and HCs for evaluating
neuropsychological performance and studying intergroup brain
functional alterations based on the FCS method of rs-
fMRI, we collected stool samples from the CI group to
analyze the GM composition in CI patients and its potential
association with brain FCS alteration and neuropsychological
performance indicators. An in-depth understanding of the
relationship among the altered brain function, microbiota, and
neuropsychological performance of patients with CI may be
used to screen for new GM-neuroimaging markers for the study
of neural mechanisms of CI and to explore potential future
intervention targets.

Materials and methods

Participants

Informed consent was obtained from each participant
according to the principles of the Declaration of Helsinki.
Ethical approval was obtained from the Ethics Committee of
Guangdong Second Provincial General Hospital. All our tests
were completed on the day of the patient’s first visit. The
stools were collected on the morning of the visit and the
neuropsychological assessments were performed prior to the
MRI scans. The flow chart of our whole study was shown in
Figure 1.

The inclusion criteria for patients with CI were as follows:
diagnosis of CI based on the criteria in the Diagnostic and
Statistical Manual of Mental Disorders, version 5 (DSM-V);
free of other sleep disorders; and no history of receiving
cognitive behavioral therapy or medication. The diagnosis of
CI was confirmed by two psychiatrists with >15 years of
clinical experience. A third opinion was sought to reach a
consensus diagnosis when disagreement happened. HCs were
recruited through local advertisements with the following
inclusion criteria: (a) good sleep quality without difficulty falling
or maintaining asleep; and (b) no history of psychiatric or
neurological disorders. In addition, participants were excluded
if the following criteria were met: (a) T1-weighted and
T2-weighted fluid-attenuated inversion-recovery (T2-FLAIR)
weighted sequences identifying organic brain disease or a
history of head trauma; (b) a history of transient ischemic attack

or stroke; (c) the presence of other systematic diseases, including
severe respiratory, cardiovascular, renal, liver, or endocrine
diseases; (d) pregnancy, lactation, or menstruation in females;
(e) a history of smoking or drug/alcohol abuse; (f) the use of
any psychotropic drug or medication that could affect sleep;
(g) a diagnosis of irritable bowel syndrome; (h) diarrhea while
participating in the study or the use of antibiotics, probiotics,
and prebiotics before sample collection; and (i) rotating shift
work or crossing more than one-time zone within 2 weeks before
the study. According to the strict inclusion/exclusion criteria,
we excluded three patients due to the lack of access to fresh
fecal samples collection. Two patients were excluded after MRI
scanning due to the presence of abnormal hyperintense signals
on T2-FLAIR images. One healthy individual was excluded
because of falling asleep during scanning. Finally, 30 patients
with CI and 34 HCs were included. The two groups were
matched by age, sex, and education. All participants were right-
handed and aged 18–60 years.

Before the MRI scans, neuropsychological tests were
administered by trained psychiatrists to all participants to
evaluate their sleep quality, emotional state, and general
cognitive level. These tests included: the Pittsburgh Sleep
Quality Index (PSQI) and Insomnia Severity Index (ISI)
for the evaluation of sleep; the Self-Rating Depression Scale
(SDS), Self-Rating Anxiety Scale (SAS), and Hamilton Anxiety
Scale (HAMA) for the evaluation of emotional state; and the
Montreal Cognitive Assessment (MoCA), Digit Symbol Test,
and Digit Symbol Substitution Test (DSST) for the evaluation
of the general cognitive level. In addition, information on
sleep efficiency (the percentage of time asleep while in bed
at night) and total sleep time was collected using answers to
individual questions within the PSQI. The above evaluation of
neuropsychological performance was carried out in total by two
trained psychiatrists in a face-to-face, one-to-one approach.

Collection of fecal samples and gut
microbiota analysis

Fresh fecal samples were collected from CI patients into
sterile fecal boxes and stored immediately in −80◦C freezers to
avoid air oxidation and urine contamination during transport.
The subsequent 16SrDNA high-throughput sequencing was
performed on the MiSeq platform. First, DNA was extracted
from fecal samples using a QIAamp DNA Mini Kit (QIAGEN,
Hilden, Germany). After quality control, the amplification of
the 16S rDNA variable region, library construction, sequencing,
and subsequent data analyses were performed. Then QIIME2
software1 was used to filter out the low-quality reads and obtain
the remaining high-quality clean data. FLASH (37) (Fast Length

1 https://qiime2.org/
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FIGURE 1

The study flow chart is depicted. CI, chronic insomnia; HC, healthy controls; rs-fMRI, resting-state functional magnetic resonance imaging; FCS,
functional connectivity strength.

Adjustment of Short, FLASH, v1.2.11) software was used to
assemble paired-end reads for obtaining high-quality sequences.
After that, chimeras were removed using the UCHIME (38)
algorithm based on VSEARCH.

Operational taxonomic units (OTUs) were clustered by
UPARSE software at 97% similarity in the next step. The
OTU representative sequence was compared with the template
sequence from the Ribosomal Database Project (RDP) (39) for
species annotation using a confidence threshold of 0.8. After
OTU classifications, stacked bar figures were generated from

the phylum- and genus -level RA, to visually display the GM
composition of CI patients.

fMRI data acquisition, preprocessing,
and functional connectivity strength
calculation

fMRI data acquisition
All participants were scanned on a Philips 3.0 T MRI

scanner. Image acquisition was performed by two trained
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radiographers. Participants laid supine with their head fixed
by foam pads and body fixed by straps. Noise-canceling
earplugs were provided to minimize scanning noise. During
scanning, participants were asked to remain quiet and to
avoid thinking about anything particular. The radiographers
communicated with the participants through a microphone
to be sensitive to any discomfort that the subjects might
have during the examination. Communication only takes
place when necessary. Finally, self-reports were collected
after scanning to assess patient cooperation. In the presence
of a poor degree of patient cooperation, we rescanned
the participant again to obtain new rs-fMRI datasets for
further analysis.

Imaging parameters for high-resolution anatomical
imaging were as follows: TR/TE: 7.6/3.6 ms; 256 × 256
matrix; FOV: 256 × 256 mm2; flip angle: 8◦; and 185
axial slices with no gap. Rs-fMRI data were obtained via
gradient-recalled echo-planar imaging (EPI) with the following
parameters: TR/TE: 2,000/30 ms; 64 × 61 matrix; FOV:
224 × 224 mm2; flip angle: 90◦; and 33 slices obtained
using an interleaved slice acquisition sequence with a
1.0 mm gap. The scanning time for each participant was
approximately 8 min with 240 time points. T1-WI and T2-
FLAIR images were used to detect organic brain disease or a
history of head trauma.

Data preprocessing and functional connectivity
strength calculation

Data preprocessing was performed in MATLAB by
DPABI_V4.3 software.2 First, initial functional images
were excluded to allow magnetic field stabilization and
the participants’ acclimation to the scanner environment.
Then, time layer correction and motion correction were
conducted. Data with head movement displacement > 1.5 mm
or rotation angle > 1.5◦ were excluded. The remaining
functional images were spatially normalized into a standard
EPI template from the Montreal Neurological Institute
(MNI) and resampled to 3 mm isotropic voxels. Next, the
resampled images were smoothed by a 4 mm full-width
half-maximum Gaussian kernel and detrended to remove
the linear signal drift. After this, nuisance covariates were
removed by regression. All image data were filtered with a
bandpass filter on a frequency range of 0.01–0.08 to remove the
effects of noise.

For preprocessed rs-fMRI data, FCS values were computed
by the DPARSF.3 First, for each participant, the Pearson
correlation of time series between each pair of voxels was
calculated to construct the brain functional connectivity
matrix. Then, Pearson correlation coefficients were corrected

2 http://rfmri.org/dpabi

3 http://rfmri.org/dparsf

by Fisher’s r-to-z transformation to make the data meet the
normal distribution.

For each voxel, FCS was computed as the summed weights
of its connections with the remaining voxels of the brain (40).
The correlation threshold for the FCS calculation was set at 0.25
(41, 42) to eliminate the influence of noise.

Statistical analysis

Statistical analyses for demographic data of the participants
were processed with R software (R Studio software, version
4.1.2) and SPSS 25.0 (SPSS Inc., Chicago, IL, United States). The
Shapiro–Wilk test was applied to test whether the data satisfied
a normal distribution. Continuous variables are presented as
the mean value ± standard deviation (if normally distributed),
and comparisons of the two groups were carried out with
independent sample t-test. The Mann–Whitney U test was used
to compare groups when the data for continuous variables
were not normally distributed. The comparison of sex between
groups was performed with a χ2 test.

To explore the voxel-based FCS differences between CI
patients and HCs, two independent sample t-tests with age,
gender, education, and head movement as covariates were
performed in DPABI software. Two-tailed Gaussian random
field theory (GRF) was used to correct for multiple comparisons
(voxel level p < 0.005, cluster level p < 0.05). At last, the
mean FCS value of brain regions with significant differences was
extracted for subsequent analysis. Then, we used Spearman rank
correlation for the correlation analysis between FCS alterations
and neuropsychological performances in CI patients. The
clinical indicators of neuropsychological performance included
in the correlation analysis were those with significant group
differences and sleep parameters related to the altered brain FCS
in the CI group.

To further demonstrate whether neuropsychological
performance indicators related to CI could explain the GM
composition, in addition to creating stacked bar charts of
the microbiota composition, we performed RDA or CCA
for the RAs in patients with CI. The clinical indicators for
neuropsychological performance included in the RDA and
CCA analysis were as described above. Constrained ordination
technique and detrended correspondence analysis (DCA)
were used to determine the chosen method. The results of
DCA and the specific selection principles of RDA or CCA are
provided in the Supplementary Table 1. Then, the correlation
between the RAs of GM and, neuropsychological performance
indicators, and the RAs of GM and abnormal FCS were
analyzed by Spearman’s rank correlation, respectively. P-values
were corrected for multiple inferences using the Benjamini-
Hochberg false discovery rate (FDR) procedure (43). Finally,
the heatmaps (the absolute value of r > 0.3, significance level
p < 0.05) were plotted by R software to visualize the results.
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Results

Demographic and clinical
characteristics

The analysis of the general data of participants showed
no significant differences (all p > 0.05) in age, gender, or
years of education between groups. Sleep assessments (PSQI
and ISI), mood assessments (SAS, SDS, and HAMA), and total
MoCA scores representing cognition were significantly different
between the CI and HC groups (p < 0.05). Table 1 shows the
general characteristics of the participants.

Relationships between brain functional
connectivity strength alteration and
neuropsychological performance
indicators

The FCS value of the left superior parietal gyrus (SPG)
was significantly reduced in the CI group compared with the
HC group (Figure 2 and Table 2). The correlation analysis
showed that the FCS value of the left SPG was negatively
correlated with sleep efficiency (r = −0.430, p = 0.018), while
no significant correlations were found between the FCS value of
the left SPG and other clinical indicators for neuropsychological
performance (Figure 3).

Gut microbiota composition of chronic
insomnia patients

The RAs of intestinal bacteria at the phylum and genus
levels are shown in Figure 4. Firmicutes and Bacteroidetes
were the dominant bacterial phyla in the CI group, accounting
for 46.50 and 40.78%, respectively. At the genus level, the
predominant genera in CI patients were Bacteroides, Prevotella
9, Faecalibacterium, and Blautia. RAs at other levels in CI
patients are shown in the Supplementary Figure 1.

Gut microbiota composition was
highly correlated with
neuropsychological performance
indicators in the chronic insomnia
group

We found 38.21% (RDA) and 24.62% (CCA) of the variance
could be interpreted by seven environmental factors, in other
words, neuropsychological performance indicators, including
sleep efficiency, PSQI, ISI, SAS, SDS, HAMA, and MoCA scores
(Figure 5).

Associations between gut microbiota,
regional functional connectivity
strength alteration, and
neuropsychological performance
indicators

As shown in Figure 5, we found that the GM composition
at phylum level and genus level were both partially
microbially significantly correlated with the neuropsychological
performance indicators. The RA of GM in CI patients at
the phylum level showed no significant correlation with
reduced FCS in the left SPG (Figure 6A); however, significant
correlations were found at the genus level (Figure 6B).
At the genus level, Alloprevotella (r = −0.366, p = 0.047),
Intestinibacter (r = −0.486, p = 0.007), Lachnospiraceae_UCG-
003 (r = −0.416, p = 0.022), Gordonibacter (r = 0.362,
p = 0.049), Faecalicoccus (r = −0.371, p = 0.043), and
Selenomonas_3 (r = −0.363, p = 0.049) were significantly
correlated with the reduced FCS value of the left SPG.
After FDR adjustment (q-value < 0.05), Intestinibacter (q-
value = 0.048), Lachnospiraceae_UCG-003 (q-value = 0.048),
and Faecalicoccus (q-value = 0.049) were still significantly
correlated. At the same time, Alloprevotella, Gordonibacter,
and Selenomonas_3 showed a trend for a significant correlation
(q-value = 0.050) with the reduced FCS value of the left
SPG. In the dominant florae, we found a negative correlation
between Blautia and MoCa score (see Supplementary Table 2).
In addition, we also found significant correlations between
other specific non-dominant genera and some indicators of
neuropsychological performance as well as altered FCS value.

Among the aforementioned taxa, three taxa, namely,
Alloprevotella, specific members of family Lachnospiraceae,
and Faecalicoccus, were also significantly associated with
neuropsychological performance indicators: Alloprevotella
(r = 0.445, p = 0.014), Faecalicoccus (r = 0.361, p = 0.050),
and Lachnospiraceae_UCG-010 (r = 0.3795, p = 0.039)
were positively correlated with sleep efficiency, and
Lachnospiraceae_FCS020_group (r = −0.4078, p = 0.025)
and Lachnospiraceae_ ND3007_group (r = −0.4038, p = 0.027)
were negatively correlated with the SAS score. The correlation
coefficients and FDR-corrected p-values for the significant
results of the correlation analysis between each bacterium at the
phylum and genus levels and neuropsychological performance
indicators are shown in Supplementary Table 2.

Discussion

In the present study, we used the FSC method based on
rs-fMRI to measure abnormal brain functional connectivity
at the voxel level. The CI group showed lower FCS in
the left SPG than the HC group. The decreased FCS
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TABLE 1 Demographics and clinical characteristics of CI patients and HCs.

Characteristic CIs (N = 30) HCs (N = 34) Statistics P-value

Age (y) 39.50 (26.50∼49.75) 35.00 (29.00∼48.50) 527.00c 0.82

Gender (F/M) 7/23 5/29 1.00b 0.57

Education (y) 15.50 (12.00∼16.00) 16.00 (15.25∼16.00) 412.50c 0.13

PSQI (score) 12.40 ± 2.98 4.35 ± 1.89 12.71a <0.01*

ISI (score) 16.50 ± 5.35 4.14 ± 1.28 12.34a <0.01*

SAS (score) 50.47 ± 9.31 40.32 ± 8.31 4.57.00a <0.01*

SDS (score) 54.00 (48.00∼61.00) 41.00 (38.00∼43.00) 877.00c <0.01*

HAMA (score) 18.50 ± 7.91 2.53 ± 1.05 10.98 <0.01*

MoCA (score) 25.00 (23.00∼27.00) 28.00 (26.25∼29.00) 274.50c 0.01*

DSST (n) 45.50 (37.00∼63.75) 57.00 (48.00∼64) 392.50c 0.12

DST (n) 13.83 ± 2.61 13.65 ± 1.82 0.33a 0.75

Sleep efficiency (%) 72.57 ± 15.75 / / /

Total sleep time (h) 6.00 (5.00∼6.00) / / /

aIndependent two sample t-test; bχ2 test; cMann–Whitney U test; *p < 0.05.
CIs, chronic insomnia patients; HCs, healthy controls; PSQI, Pittsburgh Sleep Quality Index; ISI, Insomnia Severity Index; SAS, Self-Rating Anxiety Scale; SDS, Self-Rating Depression
Scale; HAMA, Hamilton Anxiety Scale; MoCA, Montreal Cognitive Assessment; DSST, Digit Symbol Substitution Test; DST, Digit Span Test; y, year; h, hour; min, minute; s, second.

FIGURE 2

Patients with CI showed decreased FCS value in the left SPG compared to HCs. GRF was used for multiple comparisons, setting the height
threshold at p < 0.005 and the clustering threshold at p < 0.05. CI, chronic insomnia; FCS, functional connectivity strength; SPG, superior
parietal gyrus; HCs, healthy controls; GRF, Gaussian random fields.

TABLE 2 Brain regions with abnormal FCS in CI group compared with HCs.

Brain area Cluster size Peak MNI coordinate Peak t-value P-value

x y z

Parietal_Sup_L 109 −30 −66 51 −4.1618 <0.05

FCS, functional connectivity strength; CI, chronic insomnia; HCs, healthy controls; Sup, superior; L, left; MNI, Montreal Neurological Institute.
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FIGURE 3

Relationships between brain FCS alteration and neuropsychological performances in patients with CI. The FCS value of the left SPG was
negatively correlated with sleep efficiency. FCS, functional connectivity strength; CI, chronic insomnia; SPG, superior parietal gyrus.

in the left SPG was significantly correlated with sleep
efficiency and specific intestinal microbiota. Specifically,
the composition of Intestinibacter, Lachnospiraceae_UCG-
003, and Faecalicoccus were significantly correlated with
the FCS alteration in the left SPG. It is worth noting that
after FDR adjustment, there were still complex relationships
between Alloprevotella and specific members of the family
Lachnospiraceae, Faecalicoccus and the FCS alteration and
neuropsychological performance indicators. These findings
together suggested a complex association among three
aspects: altered regional FCS, neuropsychological performance
indicators, and specific intestinal microbiota. This research is
the first, as far as we are aware, to evaluate the relationship
between the SPG and the GM profile. Our findings may
provide new neuroimaging evidence for MGBA interaction
mechanisms in CI.

Functional connectivity strength
alteration in the left superior parietal
gyrus in chronic insomnia patients

In our study, the FCS value of the left SPG was significantly
reduced in the CI group. In patients with primary insomnia,
the presence of weakened connectivity between the right
SPG and the superior frontal gyrus and other brain regions
(44) and between the bilateral superior parietal lobule and
superior frontal gyrus (45) was confirmed, supporting our
finding of reduced FCS value in the SPG. Previous studies
have shown that altered SPG function is complexly correlated
with sleep quality and cognitive changes, including mood,

memory, and attention (46–50). After sleep restriction, the
functional connectivity variability of the SPG and thalamus
was reduced and was significantly correlated with insomnia
severity (51). This finding is consistent with the significant
negative correlation between the reduced FCS values in the
left SPG and sleep efficiency in our study. In a recent
study, Li et al. (32) found increased DC values in the
right post-central gyrus, rolandic operculum, insula, and
SPG in CI patients using real-time fMRI neurofeedback.
An interventional study by Huang et al. (52) also found
that applying 1 Hz low-frequency repetitive transcranial
magnetic stimulation of the parietal cortex was practical
for the improvement of anxiety and insomnia symptoms
in patients with generalized anxiety disorder and insomnia.
The findings of the studies mentioned above longitudinally
corroborated the relationship between the parietal cortex
and insomnia, suggesting that the potential mechanism of
the involvement of the SPG in insomnia may be due to
the impaired ability of CI patients to regulate top-down
attention and several memory processes. While significant
differences in DSST or DST assessments between insomnia
patients and HCs were not always found in previous studies
(53, 54), it is not surprising that our study did not show
differences in memory and attention assessments between
groups. The differences in sample sizes could contribute to
the discordant results. However, taken together, the FCS
changes in the CI group and their correlation with sleep
efficiency in our study were supported, suggesting that the
SPG is somehow involved in sleep regulation and that its
functional alteration may be an important neurobiological
change in CI patients.
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FIGURE 4

Microbial composition in CI. (A) Relative abundance bar charts of GM in the CI group at the phylum level. (B) Relative abundance bar charts of
GM in the CI group at the genus level. GM, gut microbiota; CI, chronic insomnia.

Associations among the gut
microbiota, altered functional
connectivity strength, and
neuropsychological performance
indicators

In the present study, Firmicutes and Bacteroidetes were the
dominant phyla in the CI group, as supported in other literature
(12). The predominant genera in CI patients were Bacteroides,
Prevotella 9, Faecalibacterium, and Blautia. The genera above
have also been shown to be significantly different between HCs
and CI patients (11–13). Therefore, although GM data from
the HC group were not collected to assess differences between
baseline in our study, the CI group may have dominant bacteria
that differ from those of the HC group.

The results of the subsequent CCA and RDA implied
that the GM profile was highly correlated with the
neuropsychological performance indicators of CI patients,

suggesting that neuropsychological performance indicators
could explain the GM composition (10). Our study showed
results that were similar to those of a previous study (10),
and the results of the genus-level CCA provided additional
support for the correlation of flora with neuropsychological
performance indicators. Follow-up Spearman correlation
analysis results showed complicated relationships between the
reduced value FCS value of the left SPG and genus-level bacteria.
Although the exact mechanism is unknown, to the best of our
knowledge, significant correlations between Intestinibacter,
Lachnospiraceae_UCG-003, and Faecalicoccus bacteria and
left SPG function in CI patients have never been reported
before. Interestingly, among the bacteria associated with FCS
changes in the SPG, Alloprevotella, specific members of the
Lachnospiraceae family, and Faecalicoccus were also correlated
with mood assessment or sleep assessment scores after strict
FDR correction. This finding indicates that mood and sleep
alterations in CI patients may be related to supraparietal gyrus
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FIGURE 5

Gut microbiota composition strongly associated with neuropsychological performances in CI patients. RDA (at the phylum level) and CCA (at
the genus level) demonstrated that 38.21% (A) and 24.62% (B) of the variance could be interpreted by seven environmental factors (in other
words: neuropsychological performances). CI, chronic insomnia; RDA, redundancy analysis; CCA, canonical correspondence analysis.

FIGURE 6

Heatmap of the associations between GM and altered brain FCS and neuropsychological performances in CI patients. Heat maps at the phylum
level (A) and genus level (B) demonstrate the correlation coefficients between these variables. Blue, negative correlation; red, positive
correlation. *p < 0.05, **p < 0.01. GM, gut microbiota; FCS, functional connectivity strength; CI, chronic insomnia.

function, and GM composition also might be involved in sleep
regulation in some way.

Intestinibacter was found to be correlated with the reduced
FCS of the left SPG in CI patients. The latest study found
that Intestinibacter was significantly correlated with sleep
phenotypes, including chronotype and sleep duration, in
different brain aging patterns (55), and another study also
found that Intestinibacter was directly related to sleep quality
independent of depression severity (14). However, no previous
studies have explored the relationship between Intestinibacter
and changes in brain function in patients with CI, while our

study found an association between Intestinibacter and left
SPG function in CI patients. In summary, the present study
found that the RA of Intestinibacter was strongly associated
with the FCS in the left SPG and that this association was
independent of neuropsychological performance, suggesting
that Intestinibacter might somehow be involved in the neural
mechanisms of altered brain function in insomnia.

Alloprevotella and Lachnospiraceae were also found to
be associated with functional alterations of the left SPG in
CI patients. Alloprevotella and Lachnospiraceae are closely
associated with the production of SCFAs (e.g., significant
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positive correlation with metabolic changes in butyrate)
(56, 57) and amino acid metabolism (56). SCFAs can
penetrate the blood-brain barrier, increase neurogenesis,
and improve neuronal homeostasis and function (58).
SCFAs are thought to have a wide range of effects on
neural and behavioral processes (58) and may mediate the
relationship between gut bacteria and the neural mechanisms
of sleep (59, 60). For example, butyrate, according to the
neurochemical basis of the hypersomnia-hyperarousal theory
(61), is a source of sleep- and wakefulness-related signals.
Increasing butyrate by using GABA-rich fermented milk or
other means can increase non-rapid eye movement sleep
and affect sleep duration and sleep onset latency in mice
(62). Therefore, we hypothesized that Alloprevotella and
Lachnospiraceae bacteria could affect brain function in CI
patients by modulating SCFA production. In addition, our
study found that some members of the Lachnospiraceae
family were significantly associated with both mood
assessment and sleep assessment scores in the CI group.
Several previous studies have also implied the interaction
of specific Lachnospiraceae family members with sleep
deprivation, sleep fragmentation, and insomnia severity
(11, 63–65). The abovementioned findings suggest that
Alloprevotella and Lachnospiraceae may be involved in
the MGBA through SCFA metabolism, affecting insomnia
performance and mood changes.

The results of the correlation analysis also showed a
correlation between FCS changes in the SPG and the genera
Faecalicoccus/Faecalitalea, which are all members of the
family Erysipelotrichaceae. Several studies have shown that
Erysipelotrichaceae is associated with not only sleep (15, 66)
but also organismal metabolism, such as lipid metabolism,
in humans and rodents (67–69). Sleep loss (including sleep
restriction, sleep deprivation, and sleep disruption) triggers
GM-related abnormalities in organismal metabolism (64,
70), for example, sleep deprivation may be an important
step in oxidative stress and adenosine triphosphate depletion
(71), which Erysipelotrichaceae is associated with (72). There
have also been studies showing that Erysipelotrichaceae
can influence neurological inflammation. Autoimmune
encephalomyelitis enhances the response of T helper 17 cells
in the gut (73, 74). In addition, the RA of Erysipelotrichaceae
has been associated with impaired cognitive function due to
other diseases (75) like spatial memory performance before
and after treatment in patients with phenylketonuria (73).
The aforementioned studies provided support for those of
our study, in which the genus Faecalicoccus of the family
Erysipelotrichaceae was positively correlated with sleep
efficiency and the genus Faecalitalea was negatively correlated
with SDS. On the basis of these results combined with the
results of our study, we speculate that Erysipelotrichaceae
family members communicate with the parietal gyrus
through the endocrine metabolic and inflammatory stress

pathways of the MGBA, which may be the underlying
neurobiological basis for altered cognitive functions such as
mood changes in CI patients.

Thus, the complex relationships that exist among GM,
including Alloprevotella, Lachnospiraceae, and Faecalicoccus;
FCS changes in the left SPG; and neuropsychological
performance indicators in CI patients may represent a
way in which the GM communicates with local brain regions
through SCFA metabolism and inflammatory stress pathways
and further affects patients’ neuropsychological performance.

Limitations

Nevertheless, there are several limitations of our work. First,
this was a cross-sectional study. Therefore, a longitudinal study
is needed to determine whether therapeutic interventions affect
stool microbiota structure in CI patients or, conversely, whether
specific interventions such as microbiota transplantation or
probiotic therapies can improve the brain function and
symptoms of insomnia patients. Second, we were unable to
control for all possible confounders that may affect GM
composition. The participants included in this study were all
local residents with relatively consistent dietary habits who were
advised by the researchers to eat lightly and avoid a stimulating
diet before the experiment. The inclusion and exclusion criteria
were closely followed to minimize the effects on the composition
of the GM. In addition, 16SrDNA amplicon sequencing was
used in this study. Although the results of metagenomic
sequencing may be more comprehensive, 16SrDNA amplicon
sequencing can ensure the credibility of the results at a lower
cost and is widely used in similar types of research. Moreover,
we did not evaluate the baseline difference in GM composition
between the groups, as performed in other studies (10, 13).
However, to avoid important omissions, we performed RDA
and CCA to analyze the correlation between environmental
factors (neuropsychological performance indicators) and the
microbial community (GM composition), as reported in the
previous literature. We also performed a correlation analysis
of FCS value in the abnormal brain region and the GM
profile in CI patients to explore in detail the potential
relationship among brain function changes, GM composition,
and neuropsychological performance in CI. Finally, the FCS
method calculated by degree centrality was used to explore
the abnormal brain areas in CI patients without combining
this method with brain structural methods based on 3D-
T1WI, DTI, etc. However, our team has explored brain
structural alterations and the mechanism of CI in the past
(53, 76, 77). In the future, we will further explore the
complex mechanism of the interaction between brain functional
and structural alterations and the GM in CI patients to
screen for more accurate imaging biomarkers for MGBA
interaction mechanisms.

Frontiers in Psychiatry 11 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1050403
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1050403 November 16, 2022 Time: 14:28 # 12

Chen et al. 10.3389/fpsyt.2022.1050403

Conclusion

In conclusion, we found a complex association between
specific GM composition, FCS abnormalities (left SPG), and
neuropsychological performance indicators in patients with
CI. Notably, to the best of our knowledge, this research
showed a link between left SPG functional alterations and
specific GM profile in patients with CI, which has not
previously been reported. Alloprevotella, several members of
the Lachnospiraceae family, and Faecalicoccus were significantly
correlated or trended toward correlating with altered SPG
function and neuropsychological performance indicators. These
findings have substantial implications for screening new GM-
neuroimaging markers for the study of neural mechanisms
of CI and exploring potential future intervention targets
for its treatment.
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