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Introduction: Obsessive-compulsive disorder (OCD) is a highly prevalent

chronic disorder, often refractory to treatment. While remaining elusive,

a full understanding of the pathophysiology of OCD is crucial to

optimize treatment. Transcranial magnetic stimulation (TMS) is a non-

invasive technique that, paired with other neurophysiological techniques,

such as electromyography, allows for in vivo assessment of human

corticospinal neurophysiology. It has been used in clinical populations,

including comparisons of patients with OCD and control volunteers. Results

are often contradictory, and it is unclear if such measures change after

treatment. Here we summarize research comparing corticospinal excitability

between patients with OCD and control volunteers, and explore the effects of

treatment with repetitive TMS (rTMS) on these excitability measures.

Methods: We conducted a systematic review and meta-analysis of case-

control studies comparing various motor cortical excitability measures in

patients with OCD and control volunteers. Whenever possible, we meta-

analyzed motor cortical excitability changes after rTMS treatment.

Results: From 1,282 articles, 17 reporting motor cortex excitability measures

were included in quantitative analyses. Meta-analysis regarding cortical silent

period shows inhibitory deficits in patients with OCD, when compared to

control volunteers. We found no statistically significant differences in the

remaining meta-analyses, and no evidence, in patients with OCD, of pre- to

post-rTMS changes in resting motor threshold, the only excitability measure

for which longitudinal data were reported.
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Discussion: Our work suggests an inhibitory deficit of motor cortex

excitability in patients with OCD when compared to control volunteers.

Cortical silent period is believed to reflect activity of GABAB receptors,

which is in line with neuroimaging research, showing GABAergic deficits

in patients with OCD. Regardless of its effect on OCD symptoms, rTMS

apparently does not modify Resting Motor Threshold, possibly because

this measure reflects glutamatergic synaptic transmission, while rTMS is

believed to mainly influence GABAergic function. Our meta-analyses are

limited by the small number of studies included, and their methodological

heterogeneity. Nonetheless, cortical silent period is a reliable and easily

implementable measurement to assess neurophysiology in humans, in vivo.

The present review illustrates the importance of pursuing the study of OCD

pathophysiology using cortical silent period and other easily accessible,

non-invasive measures of cortical excitability.

Systematic review registration: [https://www.crd.york.ac.uk/prospero/

display_record.php?ID=CRD42020201764], identifier [CRD42020201764].

KEYWORDS

obsessive-compulsive disorder (OCD), transcranial magnetic stimulation,
corticospinal excitability, systematic review, meta-analysis

Introduction

Obsessive-compulsive disorder (OCD) is a chronic and
highly incapacitating neuropsychiatric disorder with a lifetime
prevalence of 1.3%, and is a major contributor to the
health-economic burden of mental disorders (1, 2). First-line
treatments include pharmacotherapy, typically with a serotonin
reuptake inhibitor, cognitive-behavioral psychotherapy (CBT),
or a combination of both. Between 40 and 60% of patients with
OCD fail to achieve response criteria with first-line treatments,
advising for the need to improve our knowledge regarding
therapeutic options for this clinical condition (3). New
neuromodulatory approaches to treatment, namely, transcranial
magnetic stimulation (TMS) (4) and deep brain stimulation
(DBS) (5) offer novel possibilities for treatment-resistant OCD.
Several targets and stimulation parameters have been tested
for the treatment of OCD using TMS, but no clear consensus
exists regarding the best combination of stimulation parameters
and stimulation target. While several studies support low-
frequency protocols over the dorsolateral prefrontal cortex (6),
others found greater effectiveness for low frequency rTMS over
the supplementary motor area or for specific combinations of
different targets and stimulation parameters (7, 8). All these
studies have used rTMS delivered with a traditional figure-
of-eight coil. In 2019 deep TMS (dTMS), delivered at high
frequencies over the medial prefrontal cortex with a coil
specially designed to reach deeper structures in the brain,
received FDA clearance for the treatment of OCD, based on the

work of Carmi et al. (4). Despite these unquestionable advances,
optimization of treatment remains critically dependent on our
ability to fully understand the pathophysiology of this complex
disorder, as well as our ability to develop reliable predictors of
treatment response at an individual level (9).

While much of the pathophysiology of OCD remains
a mystery, there is reasonable consensus that it involves
dysfunction of cortico-striato-thalamo-cortical (CSTC) circuits
underlying sensorimotor, cognitive, affective, and motivational
processes (10). Additionally, imaging studies comparing
patients with OCD and control volunteers consistently report
increased volumes of putamen, cerebellum and striatum (11,
12). This is in contrast with smaller volumes of the dorsomedial
prefrontal, medial orbitofrontal and insular opercular cortices
and hippocampus, which also are reported in studies comparing
patients with OCD and control volunteers (13–15). With
regards to neurochemical mechanisms, there is evidence
that OCD may be associated with impaired functioning of
major neurotransmitter systems, such as serotonin, dopamine,
glutamate, and GABA. Such evidence is mostly indirect and
relies on measurements performed with MRI spectroscopy or
neurophysiological techniques (16–19). One such technique
is TMS, typically coupled with electromyography (EMG).
TMS is a non-invasive brain stimulation technique based on
electromagnetic induction. Through transmission of an intense,
brief pulse of electrical current through loops of wire, pulsatile
magnetic fields are generated perpendicularly to the plane of the
coil. These magnetic fields penetrate the scalp and skull adjacent
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to the coil, inducing electric gradients in cortical tissue that can
modify neuronal activity (20). When paired with EMG as a way
of quantitatively assessing motor evoked potentials induced
by TMS pulses, TMS allows for the assessment of various
measures of cortical responsiveness that are considered indirect
measures of specific neurotransmitter function, such as cortical
silent period (believed to reflect GABAB receptor-mediated
inhibition), short-interval intracortical inhibition (believed to
reflect GABAA receptor mediated inhibition), or intracortical
facilitation (possibly reflective of glutamate-mediated excitatory
interneuronal circuits) (21–25). In the specific case of OCD,
this approach has been used to compare measures of cortical
excitability in patients with OCD and control volunteers.
Unfortunately, studies have adopted a wide diversity of TMS-
EMG experimental paradigms, and this has led to inconsistent
and sometimes contradictory results (26–29).

To the best of our knowledge, there have been no systematic
reviews specifically dedicated to studies using TMS-EMG
paradigms to assess cortical excitability in OCD, although a 2013
review and meta-analysis of cortical excitability abnormalities
in various neuropsychiatric disorders included two studies
conducted in patients with OCD (30). Here we propose to
fill that gap by systematically reviewing studies that used
TMS-EMG paradigms to assess corticospinal excitability in
patients with OCD and control volunteers, and performing
meta-analyses and meta-regressions whenever possible. Our
main focus will be case-control differences in motor cortical
excitability. Secondarily, in an exploratory approach, we will
assess the association between treatment of OCD with rTMS and
changes in motor cortical excitability.

Materials and methods

Protocol and registration

The systematic review protocol is published in the
PROSPERO database (CRD42020201764) and is freely available
to consult at https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42020201764.

Information sources and search
strategy

The systematic literature search was performed on
EMBASE, Web-of-Science, PubMed, and PsycINFO databases.
Our search considered papers published until March 2022.
Syntax was as follows, considering adaptations based on rules
established by each search database: diagnosis of interest
(obsessive-compulsive disorder, OCD, obsession/obsessive
symptoms, compulsion/compulsive symptoms, anxiety
disorders) and neurophysiology-related terms (theta burst

stimulation, TBS, transcranial magnetic stimulation, TMS,
excitation, excitability, modulation, modulate, control, change,
modify, activity, activate, deactivate, facilitate, facilitation,
inhibit, improve, impair, inhibition, adjust, adjustment,
transform, induce, modulated, decrease, affect). Study selection
was filtered based on study model and language, with only
studies with human subjects reported in English, Portuguese,
Spanish, French, or German considered. No filters were
applied regarding publication date or country of origin
(Supplementary Method 1).

Study selection and eligibility criteria

After the removal of duplicate entries, two researchers
(DRS and AM) independently reviewed the final list of eligible
articles, proceeding to its filtering based on PRISMA guidelines
(31). To be considered eligible for synthesis, studies needed
to have a case-control design evaluating measures of motor
cortical excitability in patients with OCD, diagnosed according
to the Diagnostic and Statistical Manual of Mental Disorders
(DSM-III or later edition), or its equivalent in the International
Classification of Diseases (ICD-9 or later editions), and also in
control volunteers. Studies without a control-group of healthy
subjects were retained for exploratory analyses addressing
specific questions such as the association between motor
cortical excitability and disease severity (meta-regression), or
the association between treatment with rTMS and longitudinal
within-subject changes in motor cortical excitability measures
(longitudinal meta-analysis). To perform such analysis, we
included the active arm of randomized controlled-trials, open-
label studies, cohort studies and case series with a minimum
of three subjects. Study eligibility was also dependent on the
acquisition of at least one type of motor cortical excitability
measure. Specifically, the following excitability measures were
considered: resting or active motor threshold (RMT/AMT);
cortical silent period (CSP); motor evoked potential amplitude,
latency or area under the curve (MEP); 140/120 ratio–motor
evoked potential amplitude ratio at increasing stimulus intensity
from 140 to 120%; intra-cortical facilitation (ICF); short-
interval intracortical inhibition (SICI); long-interval intra-
cortical inhibition (LICI); ratio and/or difference between all
aforementioned excitability measures before and after a single
session of rTMS or theta burst stimulation (TBS) or other
excitability modulation protocol applied to motor cortex (i.e.,
excitability modulation measures). (For full description of each
measure, please see Supplementary Table 1).

Studies were deemed ineligible if there was no formal OCD
diagnosis, or if they included individuals diagnosed with a
major central nervous system (CNS) disorder–e.g., epilepsy,
multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s
disease, Huntington’s disease; individuals with cancer with
known CNS involvement, or with co-morbid major peripheral
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nervous system (PNS), neuromuscular system (NMS) or
muscle-skeleton system (MSS) disorders–e.g., Guillain-Barré
syndrome, muscular dystrophias; and individuals with other
medical conditions that may influence the CNS, PNS, NMS,
or MSS – e.g., hepatic failure, paraneoplastic syndrome,
chronic, or acute renal failure, heart failure or other severely
debilitating cardiovascular conditions, uncontrolled diabetes.
Studies without peer-review, case reports (or case series with
less than three patients), literature reviews and meta-analyses
were also not included in the final list of included studies.
However, the reference lists of these publications were searched
for additional eligible references that might have escaped the
original search strategy. Reference lists of all the included studies
were likewise screened for the same purpose.

Data extraction, data items and risk of
bias

Two researchers (DRS and AM) extracted data separately,
according to PRISMA guidelines (31). The following variables
were collected: first author name, year of publication, type of
study, title, publication journal, sample sizes in total and per
group (i.e., clinical and control volunteer groups). For each
group we extracted data regarding handedness, sex, age, OCD
age of onset and/or illness duration, treatment refractoriness,
severity of the disorder (as assessed by formal psychometric
instruments at baseline and post-treatment, if applicable).
We also included TMS-related variables, namely, stimulation
frequency, stimulation intensity and motor cortical excitability

measures and their respective method of acquisition. Whenever
available, we extracted data for RMT, AMT, MEPs, SICI,
LICI, ICF, CSP, 140/120 ratio, and the ratio and/or change in
the previously mentioned measures after a single session of
rTMS or TBS. When needed, corresponding author of eligible
studies were contacted to request additional data or clarify
information provided in the articles. Study quality score was
established by consensus between DRS and AM, according
to the Newcastle-Ottawa Quality Assessment Scale (NOS) for
case-control studies (32).

Data analysis

Analyses were performed using Rstudio’s meta package (33)
and Comprehensive Meta-analysis, Version 3. SPPS, version 26
(IBM corp.) was used to compute means, standard deviations,
and other metrics, when individual data was provided by
contacted authors. For our primary goal, we conducted random
effects model pairwise meta-analyses of individual motor
cortical excitability measures comparing patients with OCD
and control volunteers. Hedge’s g effect size estimates were
computed using metacont (33) function (Rstudio), based on
sample size, mean, and standard deviation provided in each
study for each individual excitability measure, both for patients
with OCD and control volunteers. While separate meta-analyses
were conducted for each excitability measure individually,
whenever a study reported more than one measurement of the
same excitability measure, these results were averaged (34). For
instance, if a CSP measurement was conducted both at 110
and 120% of the RMT and authors report results separately for

FIGURE 1

Study selection flowchart.
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each assessment, an average of these two results was calculated
and entered into the meta-analysis. The same approach was
used when SICI and ICF measures were reported at different
interstimulus intervals (ISI) in the same study.

For exploratory purposes, active arms of controlled studies
were analyzed jointly with open-label studies, cohort studies and
case series with a minimum of three subjects. Data from these
studies were entered into an exploratory random effects model
pairwise meta-analysis of change in motor cortical excitability
from before to after a treatment. Hedge’s g effect size estimates
were computed based on the formula proposed by Borenstein
et al. (35) to correct effect size and variance in pre-post design
studies. Mean within-group differences between pre- and post-
treatment cortical excitability were likewise computed according
to Borenstein et al. (35) (For a full description, please see
Supplementary Methods 2, 3). Meta-analyses based on such
effect sizes and respective SE were computed with RStudio’s
metagen function, using an inverse variance method (33).

Univariate meta-regression models were conducted to
assess variables that could moderate motor cortical excitability
values in patients with OCD, when at least 10 studies were
available (34). Per-protocol, we were interested in the following
moderators for univariate meta-regression models: age, sex,
handedness, age at onset of OCD, baseline severity scores,
use of any medication or other treatment strategies, degree of
refractoriness, TMS coil-type, pulse-type, stimulation frequency,
stimulation intensity, and bias score (based on the NOS for the
quality assessment of non-randomized articles).

Sensitivity analyses were performed for individual meta-
analyses of each cortical excitability measure by restricting
analyses to: papers with a NOS score <5; studies that used the
same method to assess the motor cortical excitability measure of
interest; intervention studies that found significant pre to post-
rTMS reduction of OCD symptoms; intervention studies that
used the same treatment protocol and parameters. We were also
interested in assessing evidence of interhemispheric differences
in motor cortical excitability in patients with OCD. Sensitivity
analyses were only performed when a minimum of four studies
remained in the restricted set of studies.

To assess heterogeneity, we estimated I2 and Egger et al.
(36) method to assess publication bias (36), whenever ten or
more papers were included in the meta-analysis. Otherwise, a
significant risk of bias was automatically assumed.

Results

Literature review

Our systematic search generated, after removal of duplicates,
1,282 entries. After an iterative review by title, abstract and full-
text, 17 studies reporting motor cortex excitability measures and
fulfilling all the criteria previously described were considered

eligible for quantitative synthesis (Figure 1) (4, 26–29, 37–48).
All 17 studies included patients with OCD, and 8 of them
were case-control studies also including a comparison group of
control volunteers (26–29, 38, 46–48). Only these 8 case-control
studies were included in the primary analyses. Of the remaining
9 studies, 8 were randomized controlled trials, or open label
studies (4, 37, 39–41, 43–45). One study was a case series with
14 participants (42). The most frequently reported measure was
RMT, reported in all 17 studies (see Table 1 for full description
of the studies and Supplementary Table 2 for additional details
on cortical excitability measure results).

The 17 eligible studies included in the review comprised a
total of 878 participants, with 558 patients with OCD (M = 33.3;
SD = 6.3 years old; 34.8% female) and 320 control volunteers
(M = 33.7; SD = 4.5 years old; 41.8% female). Patients with
OCD had a mean Yale-Brown Obsessive Compulsive Scale (Y-
BOCS) score at enrollment of 25.5 (SD = 4.6). Age of onset
for OCD was, on average, 17.8 (SD = 2.9) years old (Table 1).
The 8 case-control studies included a total of 549 participants,
with 255 patients with OCD and 294 control volunteers. Studies
considered for the pre-post design meta-analyses comprised 120
patients with OCD (Table 1). Quality assessment of case-control
studies rendered an average of 5.9 (SD = 1.9) obtained in the
NOS scale (Supplementary Table 3).

Results and synthesis of studies

Pairwise meta-analyses of motor cortical excitability
measures comparing patients with OCD and control volunteers
show that CSP is significantly shorter in patients with
OCD [N = 5; g = −0.82; p < 0.01; I2 = 76.1%; Mean
difference = −25.68 milliseconds; CI = (−40.45; −10.91)]
(Figure 2D). For RMT the difference between patients with
OCD and control subjects was not significant, albeit at a
borderline level (N = 8; g = −0.76; p = 0.05; I2 = 86%)
(Figure 2A). The other cortical excitability measures were
not significantly different in patients with OCD and control
volunteers: ICF (N = 5; g = −0.07; p = 0.78; I2 = 75.5%)
(Figure 2B), and SICI (N = 6; g = 0.38; p = 0.27; I2 = 78.9%)
(Figure 2C). For AMT and MEP amplitude no meta-analysis
was performed due to a low number of includable studies (For
data on these measures, please see Supplementary Tables 2, 4).

Exploratory and sensitivity analyses

Exploratory meta-analyses of studies that assessed motor
cortical excitability before and after rTMS treatment were only
possible for left primary motor cortex RMT, for which pre- and
post-TMS values were reported in five studies. Each of these
five studies used a different treatment protocol (Supplementary
Table 5). We found no significant change in RMT from pre- to
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TABLE 1 Summary results of eligible studies.

References Study
design

Sample size Active
TMS

treatment

Sham
TMS

treatment

Age (years: mean ± SD) Female
(%)

OCD age of
onset
(years:

mean ± SD)

OCD
symptom severity

(YBOCS:
mean ± SD)

Motor cortical excitability
measures assessed

Total OCD CV OCD CV R
M
T

A
M
T

M
E
P

I
C
F

S
I
C
I

C
S
P

de Wit et al. (38) Case control 77 39 38 – – 39.13 ± 10.06 39.19 ± 11.44 51.95 – 21.26 ± 6.32 X – – – – –

Greenberg et al.
(26)

Case control 27 16 11 – – 38.1 ± 12.80 38.60 ± 13.90 37.40 – 14.60 ± 9.50 X X – X X X

Kang et al. (28) Case control 90 51 39 – – 27.43 ± 7.64 27.36 ± 6.99 22.22 15.90 ± 5.80 23.51 ± 7.23 X – – X X X

Khedr et al. (29) Case control 60 45 15 – – 27.1 ± 4.50 28.30 ± 4.20 38.33 – - X X X X X X

Mehta et al. (46) Case control 168 43 125 – – 29.2 ± 7.93 30.70 ± 7.52 31.23 – 26.61 ± 4.70 X – – – X X

Richter et al. (27) Case control 68 34 34 – – 40.94 ± 12.38 40.41 ± 10.26 54.41 – 24.34 ± 6.32 X – X X X X

Russo et al. (47) Case control 24 12 12 – – 30.20 ± 4.00 32.00 ± 20.00 41.67 – – X – – X X –

Suppa et al. (48) Case control 35 15 20 - - 32.3 ± 13.10 32.80 ± 11.20 28.57 – 23.80 ± 11.00 X – – – –

RCT 60 60 – 40 20 27.53 ± 6.37 – 51.67 – 23.82 ± 4.51 X – – – – –

Carmi et al. (4) RCT 94 94 – 47 47 38.8 ± 11.84 – 38.80 13.13 ± 6.53 27.30 ± 4.00 X – – – – –

Donse et al. (39) Open label 51 51 – 51 37.12 ± 12.49 – 46.50 – 26.88 ± 5.52 X – – – – –

Elbeh et al. (40) RCT 45 45 – 30 15 27.85 ± 4.64 – 33.33 – 26.00 ± 5.62 X – – – –

Harika-Germaneau
et al. (41)

RCT 28 28 – 14 14 47.25 ± 11.41 – 53.57 22.10 ± 13.47 29.72 ± 4.47 X – – – – –

Hegde et al. (42) Case series 14 14 – 14 – 27.86 ± 9.10 – – – – X – – – – –

Mantovani et al.
(44)

Open Label 7 7 – 7 – – – 20.00 20.20 ± 1.90 36.40 ± 7.50 X – – – – –

Mantovani et al.
(45)

RCT 18 18 – 9 9 39.55 ± 9.15 – 38.89 16.75 ± 8.96 26.35 ± 5.30 X X – – – –

Kang et al. (43) RCT 20 20 – 10 10 27.4 ± 11.39 – 15.00 18.75 ± 10.53 26.40 ± 4.78 X – – – – –

Total – 878 558 320 222 115 33.3 ± 6.30 33.7 ± 4.50 38.30 17.8 ± 2.90 25.5 ± 4.60 – – – – – –

OCD, obsessive-compulsive disorder; CV, control volunteers; YBOCS, Yale-Brown Obsessive Compulsive Scale; RMT, resting motor threshold; AMT, active motor threshold; MEP, motor evoked potential amplitude; ICF, intracortical facilitation; SICI,
short-interval intracortical inhibition; CSP, cortical silent period; SD, standard deviation; RCT, randomized controlled trial.
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FIGURE 2

(A) Forest plot comparing resting motor threshold (RMT)
between patients with OCD and control volunteers. (B) Forest
plot comparing intracortical facilitation (ICF) between patients
with OCD and control volunteers. (C) Forest plot comparing
short intracortical inhibition (SICI) between patients with OCD
and control volunteers. (D) Forest plot comparing cortical silent
period (CSP) between patients with OCD and control volunteers.

post-treatment, in patients with OCD (N = 5; g = −0.03; p = 0.74;
I2 = 0.0%) (Supplementary Figure 1 and Supplementary
Table 6).

We performed further sensitivity analyses for RMT, SICI,
ICF, CSP based on the NOS scores of the corresponding
studies. Restricting analyses to studies with high NOS scores
produced results that were no different from those of the main
analyses, although the effect size for case-control differences
in CSP was substantially larger in this restricted data-set
(N = 4; g = −0.99; p < 0.001, I2 = 73.8%) (Supplementary
Figure 2). The RMT meta-analysis was significant when we
excluded two studies (38, 48) that measured RMT using a
different methodology than the remaining studies (N = 6;
g = −1.06; p = 0.03; I2 = 88.4%) (Supplementary Figure 3).
Meta-analyses restricted to sham-controlled trials that reported

a statistically superior clinical effect of rTMS treatment and of
interhemispheric asymmetry in cortical excitability as measured
by RMT among patients with OCD were not possible due to
a low number of studies (For data on these measures, please
see Supplementary Tables 4, 6). Additional sensitivity analyses
based on homogeneity of the methods used to assess excitability
measures were not possible due to the extensive methodologic
heterogeneity (see Supplementary Table 7 for more detail on
data acquisition).

Meta-regressions

We only had enough data to perform univariate meta-
regression models for RMT. We tested the association between
this variable and age (N = 12; coefficient = 0.45; SE = 0.49;
p = 0.36), sex (N = 13; coefficient = 0.22; SE = 0.19; p = 0.28),
Y-BOCS scores (N = 12; coefficient = 0.08; SE = 0.60; p = 0.89),
and percentage of medicated patients in each study (N = 13;
coefficient = 0.03; SE = 0.09; p = 0.77). None of these moderators
had a statistically significant effect on RMT.

Discussion

Our study proposed to systematically review and to meta-
analyze the existing literature on motor cortical excitability
measured non-invasively using TMS-EMG paradigms, in OCD,
and in control volunteers. We found limited evidence of
increased motor cortical excitability in OCD compared to
control volunteers, namely, a shorter duration of the CSP and,
possibly, lower RMT.

Cortical silent period is a cortical excitability measure
that reflects the duration of the period of suppression in
electromyographic activity that typically follows a single TMS
pulse delivered to the primary motor cortex while a mild
voluntary contraction of the corresponding muscle of interest
is being performed (49). It has good test-retest reliability under
different conditions and methodological implementations (50,
51), making it a potentially useful marker of disease and/or
treatment response for this clinical population. There is
evidence that CSP reflects intracortical GABAergic activity,
more specifically GABAB receptor activity (52, 53), and our
results are thus aligned with existing evidence that GABAB

receptor function may be impaired in OCD. In fact, patients
with OCD tend to have lower plasma levels of GABA when
compared to control volunteers (54). Furthermore, Magnetic
Resonance Spectroscopy case-control studies in OCD have
found lower concentrations of GABA-related metabolites in
patients with OCD, predominantly in brain regions typically
implicated in OCD’s pathophysiology, such as the orbitofrontal
cortex (OFC) and the medial prefrontal cortex (mPFC) (55, 56).
There is also evidence from genetic studies of an association
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between OCD susceptibility and certain polymorphisms of
the GABBR1 gene, responsible for the coding of GABAB

receptors (57). Finally, reduced activity of GABAergic inhibitory
interneurons in the OFC has been described in an animal model
of OCD, and correlates with learning deficits found in those
animals (58).

The other measure for which we found evidence of increased
cortical excitability in patients with OCD compared to the
control group was RMT, although the difference was marginally
non-significant and only became significant when we removed
two studies from the analysis that measured RMT in an
unconventional way. RMT is normally defined as the minimum
intensity needed to elicit, at least, 5 muscle contractions or an
electromyographic register of, at least, 50 µV, in a series of
10 pulses delivered to the primary motor cortex. This method
was followed in the majority of the included studies. Our
sensitivity analysis excluded those studies where a different
method for the assessment of RMT was implemented. Meta-
regression analyses showed that RMT in patients with OCD
appears to be independent of age, sex, OCD symptom severity
or medication. Left primary motor cortex RMT was also
the only cortical excitability measure for which we had pre-
to post-rTMS longitudinal data in a sufficient number of
studies to explore whether rTMS treatment changes motor
cortical excitability in OCD. We found no evidence that rTMS
treatment of OCD results in a change of RMT. In fact, none
of the five studies that report pre- and post-rTMS values
of RMT found a significant change of this measure after
treatment (Supplementary Figure 1), the notable exception
being Montovani et al. (44) who found that low-frequency
rTMS delivered to both right and left pre-motor supplementary
motor areas increased RMT on the right, but not on the left
primary motor cortex. Interestingly, effects on RMT appear to
be independent of the effects of rTMS on OCD symptoms, since
two of the four sham-controlled trials included in this group
of studies found a significant decrease of Y-BOCS scores after
rTMS treatment compared to sham (see data on these studies
in Supplementary Tables 3, 4). A tentative explanation for
this may be that RMT reflects neuronal membrane excitability
and glutamatergic synaptic transmission, being unaffected by
GABAergic agonists and antagonists (59, 60). Repetitive TMS
is believed to affect mainly GABAergic transmission, and
symptomatic improvement of OCD has been shown to correlate
with an increase in GABA–but not glutamate–metabolites in the
mPFC, as measured by proton magnetic resonance spectroscopy
(61, 62).

None of the reviewed intervention studies explored to
what degree cortical excitability measures at baseline are
predictive of, or correlate with, symptomatic improvement
after an rTMS protocol. This is in sharp contrast with the
depression literature, where it has been shown that among
patients with major depressive disorder those with lower
RMT are more likely to respond to rTMS treatment for

their condition (63), and lower RMT at treatment onset is
predictive of a larger reduction in depression symptoms after
10 days of rTMS treatment (64). Such a knowledge gap In the
OCD literature is unfortunate, since response to treatment is
notoriously difficult to predict in OCD, being unsatisfactory
or altogether absent in at least half of the treated patients.
Finding easily accessible, reliable biomarkers of response to
specific treatments such as rTMS, recently cleared as a treatment
option for OCD, would undoubtedly contribute to improve
our ability to personalize treatment and thus optimize the
chances of meaningful improvement for individual patients.
This is particularly important if we consider that treatment trials
for patients with OCD are exceptionally long, with clinicians
typically waiting 2 to 3 months to assess efficacy (65).

In contrast with our main finding, studies that combined
TMS and EEG-derived measures of cortical excitability found
no differences in cortical excitability between patients with
OCD and healthy controls. Radhu et al. (66), for instance,
found no differences in long intracortical inhibition (LICI)
when they compared patients with OCD and control volunteers.
LICI is a cortical excitability measure that has also been
associated with GABAB receptor functioning (52), but while
it is believed to reflect the same neurotransmitter system as
CSP, the two measures are methodologically very distinct and
probably reflect different neurophysiological processes (67). In
fact, LICI reflects change in amplitude of evoked potentials
following a conditioning stimulus, whilst CSP represents a
temporal dimension measured in milliseconds and is believed to
specifically reflect slow postsynaptic GABAB inhibition within
the primary motor cortex (M1).

The main limitation of the present study is the reduced
number of studies contributing data to the various meta-
analyses, meaning that most case-control comparisons were
underpowered and potentially biased. This is mostly due to
studies often not reporting excitability measures, even when,
presumably, they were (some of them, at least) assessed as part
of baseline-assessments, for instance in intervention studies.
For CSP, which was the only significantly different measure of
excitability between the two groups, only five studies provided
sufficient meta-analyzable data. As a consequence, we were
unable to estimate the effect of relevant confounding factors
such as medication effects or psychiatric comorbidity. Some
specific SSRIs, among first-line treatments for OCD, have been
shown to increase the duration of the CSP (60), and it is thus
possible that pooled differences between patients with OCD
and control volunteers in this and other cortical excitability
measures are under-estimated in the present study, since most
patients in the reviewed studies were medicated.

It should be emphasized here that shorter values of CSP are
by no means specific to OCD, having also been amply described
in patients with Major Depression, who additionally present
other changes of intra-cortical inhibition such as lower SICI (30,
68). Controlling for psychiatric co-morbidity, and in particular
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for co-morbid major depression, is thus of critical importance
as patients with OCD enrolled in the eligible studies might have
significant psychiatric co-morbidity, reflected in lower values
of CSP. However, the fact that the present review found no
evidence of reduced SICI in patients with OCD suggests that the
shorter CSP is not a reflection of co-morbid major depression
and may reflect a specific dysfunction of GABAB mechanisms
in OCD, that contrasts with a more generalized abnormality
of intracortical GABA neurotransmission present in major
depressive disorder. This is further supported by the fact that
the only paper in the CSP meta-analysis that reported no group-
differences for this measure was also the only study that assessed
CSP using a low-intensity test stimulus. CSP assessed with test-
stimuli at 120% of the RMT and below are typically considered
to reflect GABAA activity, while CSP measured with higher
intensity test-stimuli is believed to be more closely dependent
on GABAB mechanisms (27, 52).

Another important limitation results from the broad
heterogeneity across studies in terms of assessment measures
and parameters (Supplementary Table 6). For instance, in
the case of CSP, different authors consider different starting
points for its measurement, with some including the MEP
duration as part of the CSP, while others only consider that
the CSP starts at the offset of the MEP. In the case of paired-
pulse measurements, such as SICI and ICF, although different
ISI’s are often used, results are typically only reported as an
average of all the ISI’s rather than separately for each ISI
[e.g., (28)]. This variability is further compounded by use of
different percentages of the RMT when delivering test and
conditioning stimulus, or even by the fact that some studies
calibrate stimulus intensity with reference to AMT rather than
RMT, resulting in additional layers of heterogeneity that limit
comparability even further.

Despite these limitations, the results of our systematic
review and meta-analysis of motor cortical excitability in OCD
suggest that patients with OCD have higher motor cortical
excitability than control subjects, and that such increased
excitability might reflect abnormal GABAB receptor-mediated
GABAergic activity. It is possible, or even likely, that as
the number of published studies continues to grow, other
measures of cortical excitability may prove to be significantly
different in patients with OCD and control volunteers. In the
meantime, our conclusions must remain preliminary, and while
our main finding converges with findings from other sources
that also report evidence of dysfunctional GABA-mediated
neurotransmission, the main practical conclusion of the present
review is inevitably that cortical excitability in OCD remains
insufficiently explored. Although CSP deficits are not specific of
OCD and are unlikely to be useful as a diagnostic biomarker
of the disorder, this and other cortical excitability measures
might still provide us with viable, easily accessible biomarkers
to help predict, at the individual level, clinical response to
rTMS and other treatments for OCD. Such biomarkers would

surely be a welcome improvement in our therapeutic approach
to a disorder that remains notoriously difficult to treat in the
majority of cases. To be able to contribute toward this end,
future studies that use TMS-EMG paradigms to assess patients
with OCD, be it for research purposes or as part of an rTMS
treatment protocol, must strive to collect and report as many
measures of cortical excitability as possible, and to adopt up-to-
date, internationally consensual measurement and stimulation
methods and parameters. Only then will we have enough good-
quality data to fully clarify whether spinal-cortical excitability is
abnormal in OCD, and to fully grasp the potential implications
of such abnormalities for the current neurobiological models of
this disorder. Moreover, we will then be in a better position to
explore whether any such measure of cortical excitability may
prove to correlate with the probability of response to rTMS
treatment or, for that matter, other forms of treatment for this
therapeutically pugnacious disorder. Future studies should also
address unanswered questions such as the influence of relevant
clinical variables such as psychotropic medication, disease
duration, or comorbidity, on cortical excitability measures.
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