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Objective: Bipolar disorder (BD) is a mood swing illness characterized by

episodes ranging from depressive lows to manic highs. Although the specific

origin of BD is unknown, genetics, environment, and changes in brain

structure and chemistry may all have a role. Through magnetic resonance

imaging (MRI) evaluations, this study looked into functional abnormalities

involving the striatum between BD group and healthy controls (HC),

compared the whole-brain gray matter (GM) morphological patterns between

the groups and see whether functional connectivity has its underlying

structural basis.

Materials and methods: We applied sliding windows to functional magnetic

resonance imaging (fMRI) data from 49 BD patients and 44 HCs to

generate temporal correlations maps to determine strength and variability

of the striatum-to-whole-brain-network functional connectivity (FC) in

each window whilst also employing voxel-based morphometry (VBM)

to high-resolution structural MRI data to uncover structural differences

between the groups.

Results: Our analyses revealed increased striatal connectivity in three

consecutive windows 69, 70, and 71 (180, 182, and 184 s) in individuals with BD

(p< 0.05; Bonferroni corrected) in fMRI images. Moreover, the VBM findings of

structural images showed gray matter (GM) deficits in the left precentral gyrus

and middle frontal gyrus of the BD patients (p = 0.001, uncorrected) when
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compared to HCs. Variability of striatal connectivity did not reveal significant

differences between the groups.

Conclusion: These findings revealed that BD was associated with a weakening

of the precentral gyrus and middle frontal gyrus, also implying that bipolar

illness may be linked to striatal functional brain alterations.
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Introduction

Bipolar disorder (BD) is a chronic, severe, and fluctuating
mental disorder, and the worldwide prevalence of the BD
spectrum is 1–4% (1). It is a mental illness that causes dramatic
shifts in a person’s mood and energy (2). The most common
subtypes of bipolar disorder are I and II, characterized by mood
swings between depression and mania (bipolar I) or hypomania
(bipolar II), followed by a period of emotional remission known
as euthymia (3).

The study conducted by Harvard Medical School (2007)
based on diagnostic interview data from National Comorbidity
Survey Replication (NCS-R) shows that an estimated 2.8% of
US adults had BD in 2006 (2.9% males and 2.8% females),
and nearly 83% of cases were classified as severe (4). Although
researchers agree that BD is multifactorial with genetic and
environmental risk factors, the neuropathological mechanisms
remain unclear (5). BD is characterized by difficulty in
regulating the pursuit of goals (6), and onset of manic and
depressive episodes linked to goal achieving failure (7, 8). In
addition to an increased risk of suicide, BD is also associated
with considerable medical comorbidities, including cardio- and
cerebrovascular disease, and metabolic and endocrine disorders,
which, when combined with neuropsychiatric morbidity and
suicidality, it reduces life expectancy by an average of 11 years
in females and 10 years in males afflicted with bipolarity (9–11).

A recent study suggests that the pattern of functional
activation in specific brain regions may serve as a potential
biomarker that distinguishes BD from other conditions with
comparable clinical symptomatology, such as major depressive
disorder (12) and schizophrenia spectrum disorders (13). This
demonstrates the potential value of investigating the functional
connectivity of a specific network of brain regions as an
effective way to comprehend bipolar disease (14). The current
study was designed to understand the role of the Striatum
(caudate, putamen, and pallidum, as seen in Figure 1) during
the course of BD. This region is part of the brain that
coordinates many primary aspects of behavior such as motor
and action planning, motivation, and rewarding perception
(15). The caudate nucleus regulates cognitive control processes
by interacting with dorsolateral prefrontal cortex (16). The

regulation of motor function is achieved by Putamen through
interaction with motor-cortices (17). The three basic operations
that are commonly associated with the striatum are action
preparation, response or motor-set selection and learning (18).

It can be observed that BD altered behaviors are
fundamentally linked with striatum processes. Thus,
understanding dynamic changes in striatal functional
connectivity might provide some insights to the underlying
mechanisms of BD. In support of our hypothesis, Haznedar
et al. (19) showed that psychotic and mood symptoms in
BD were related to alterations in limbic cortex-basal ganglia-
thalamo-cortical circuit. Cognitive deficits were also related to
altered striato-prefrontal circuits of BD (20). One study detected
limbic striatal volume atrophy and thicker putamen in patients
with bipolar I (21) and bigger left putamen volume in bipolar
II patients compared to bipolar I patients in another study
(22). BD subjects also demonstrated considerably increased left
striatal activity in response to mild happy faces when compared
to HC subjects (23) the reason being that striatal regions
are thought to be involved in the perception of potentially
rewarding stimuli such as food (24). Recent study by Karcher
et al. of striatum seed-based analysis revealed impaired ventral
rostral putamen connectivity with the salience network portion
of the medial prefrontal cortex in both schizophrenia and
psychotic BD (25). Clinical aspects such as anhedonia have been
linked to the reduced responsivity of the ventral striatum to
reward stimuli in BD (26). Together these findings demonstrate
the role of striatum in BD.

Although methodologically contrary to this study, previous
studies of functional connectivity (27) have detected altered
functional organizations in BD (28) such as reward circuit
(29). These static FC alterations during mood episodes were
found in the default mode network (DMN), limbic, subcortical
(striatal), and cerebellum networks (5, 30–36). These studies
regarded the FC properties of the entire rs-fMRI scan as
stationary not dynamic. The growing evidence suggest that the
human brain functional processes are inherently dynamic, and
thus capturing temporal variations of these processes might
be essential for understanding neuropathology. Shorter time
windows can be sensitive enough to capture these temporal
fluctuations of functional connectivity that may be related to
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FIGURE 1

The schematic diagram of striatum, where red, green, and yellow indicate caudate, putamen, and pallidum, respectively, defined using the
BrainNet viewer.

pathology of BD (37–40). Recently, the new evidence has shown
abnormal dynamic functional connectivity in patients with BD
and Schizophrenia (28, 41–44). However, we expect that some
connectivity measurements might be better recorded in a static
model, while others would be better captured in a dynamic
one (45). Static functional connectivity gives information about
overall mean connectivity and may be preferable to a dynamic
approach for connectivity that persists during the experiment
(43). Dynamic functional connectivity, on the other hand,
will be better at capturing information on changes in local
connectivity at different time windows (43, 46). As a result,
we believe that both static and dynamic functional connectivity
approaches capture complimentary aspects of connectivity,
and that combining their features will increase classification
performance beyond what each type of feature can do on its
own (43, 47, 48). In this work, we present a static connectivity
within time window.

However, the changes in striatal functional connectivity
that are hypothetically linked with BD are yet to be explored,
providing the necessity of the present study. In an attempt to
investigate these striatal alterations in BD, we applied a series
of windows on resting-state fMRI data to construct dynamic
correlation maps, and assessed the strength and variability
of these dynamic connectivity maps within each temporal
window. Finally, we evaluated group differences between BD
(49 participants) and Healthy Controls (44 participants). In
order to understand whether there are abnormalities in both the
functional connectivity and gray matter connections between
brain regions, in this study we performed both functional
connectivity and structural methods, raising the possibility
that structural abnormalities may be responsible for functional
connectivity abnormalities in the disorders. We used DARTEL
VBM to detect structural gray matter (GM) alterations in
patients with BD in which is images from multiple participants

are normalized (contrast stretched) and registered to produce a
brain atlas or template that represents a particular collection of
subjects (49). This was done by employing the Computational
Anatomy Toolbox (CAT12) in T1 images, which is an add-on to
the SPM12 (Statistical Parametric Mapping) software package.

TABLE 1 Participant demographics and primary diagnosis
information for bipolar disorder (BD) patients.

BD (n = 49) HC (n = 44) P-value

Age (years) 35.29 ± 9.03 33.27 ± 8.90 0.2811

Sex (males/females) 28/21 24/20 0.8012

Males 35.89 ± 9.22 33.25 ± 9.42 0.3131

Females 34.48 ± 8.93 33.30 ± 8.47 0.6671

Diagnosis (DSM code) Number

BP I, most recent episode hypomanic (296.40) 4

BP I, most recent episode manic, mild (296.41) 2

BP I, most recent episode manic, moderate (296.42) 1

BP I, most recent episode manic, in partial remission (296.45) 3

BP I, most recent episode manic, in full remission (296.46) 6

BP I, most recent episode depressed, mild (296.51) 2

BP I, most recent episode depressed, moderate (296.52) 4

BP I, most recent episode depressed, severe
without psychotic features (296.53)

5

BP I, most recent episode depressed, in partial remission (296.55) 8

BP I, most recent episode depressed, in full remission (296.56) 5

BP I, most recent episode mixed, moderate (296.62) 1

BP I, most recent episode mixed, severe with psychotic features (296.64) 3

BP I, most recent episode unspecified (296.70) 5

1Two-sample t-test.
2Chi-square test.
DSM, diagnostic and statistical manual of mental disorders, Data are shown
in mean ± SD.
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Materials and methods

Resting state functional magnetic
resonance imaging data

In this study, we used a dataset of rs-fMRI images obtained
from patients with BD and HC control. These data were
obtained from the OpenfMRI database with accession number
ds0000301 (50). We used all available 49 subjects in the BD
dataset and 44 subjects in the HC group. The inclusion
criteria for subjects were of 52 men and 41 women with ages
between 21 and 50 years age. Each subject completed at least
8 years of formal education and have either English or Spanish
as primary language. Subjects were recruited by community
advertisement and through outreach to local clinics and online
portals. Furthermore, the following exclusion criteria were used:
history of significant medical illness, contraindications for MRI
(including pregnancy), any mood-altering medication on scan
day (based on self-report), vision that was insufficient to see
task stimuli, and left-handedness. Participant’s demographics,
primary diagnosis information for BD patients and medications
are presented in Tables 1, 2.

Neuroimaging data were acquired on a 3T Siemens Trio
scanner. Functional MRI data were collected with a T2∗-
weighted echoplanar imaging (EPI) sequence with parameters:
slice thickness = 4 mm, 34 slices, TR = 2 s, TE = 30 ms, flip
angle = 90◦, matrix = 64 × 64, FOV = 192 mm. A T1-weighted
high-resolution anatomical scan (MPRAGE) were collected with
the following parameter: slice thickness = 1 mm, 176 slices,
TR = 1.9 s, TE = 2.26 ms, matrix = 256 × 256, FOV = 250 mm.
The resting fMRI scan lasted 304 s.

Data preprocessing

Data preprocessing was achieved using Data Processing and
Analysis for Brain Imaging (DPABI V5.0,2) (51), an open-source

1 https://openneuro.org/datasets/ds000030/versions/1.0.0

2 http://rfmri.org/

package based on Statistical Parametric Mapping (SPM12)3 and
MATLAB (MATLAB and Statistics Toolbox Release 2018b, The
Mathworks, Inc., Natick, MA, United States).

The steps for data preprocessing were as follows: (i)
removing the first five volumes to allow magnetization
stabilization (ii) correcting slice-timing and realigning
images; (iii) manually reorienting structural and functional
images; (iv) co-registering structural images into functional
images and segmenting to gray matter, white matter, and
cerebrospinal fluid; (v) regressing nuisance covariates
(including Friston 24 head motion parameters (52) and
white matter and cerebrospinal fluid signals); (vi) Normalizing
functional images to Montreal Neurological Institute standard
space by Diffeomorphic Anatomical Registration Through
Exponentiated Lie algebra Method (DARTEL) (53) and
reslicing to 3.0 mm3

× 3.0 mm3
× 3.0 mm3; (vii) performing

spatial smoothing (Gaussian kernel of 6 mm FWHM); (viii)
band-pass filtering (0.01–0.08 Hz) to reduce the effects of
low-frequency signals and high-frequency aliasing after data
normalization and (ix) scrubbing image volumes with FD
(Jenkinson) > 0.2 mm to reduce the effect of head motion
using cubic spline interpolation (54, 55). Subjects were not
excluded as they did not exceed the head transition < 3 mm,
rotation < 3◦(56).

Regions of interest definition and
network

We used the regions from the automated anatomical
labeling template (AAL) (57), to calculate the functional
connectivity (FC) based on region of interest (ROI) analysis,
dividing the 90 ROIs of AAL (without cerebellum) into six
main regions (including prefrontal regions, other regions of
frontal lobe, parietal regions, occipital regions, temporal regions,
and subcortical regions according to prior studies (58). Finally,
we extracted mean time courses from all 90 ROI’s to calculate
functional connectivity.

3 https://www.fil.ion.ucl.ac.uk/spm/

TABLE 2 Bipolar disorder (BD) patients by medication table (110).
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Resting state functional connectivity
analysis

For the construction of static rsFC analysis network of the
brain, we computed Pearson’s correlation coefficients between
each pair of the averaged time course in 90 ROIs, we used
Fisher z-transformation to convert r into z values to improve
the normality of correlation distribution which is over a full
range of 147-image volumes, to stabilize variance prior to
further analysis. For the shorter time analysis, the sliding
window approach was used (59). To date, the most widely used
method for evaluating rsFC in smaller time-series is the sliding
window, in which, the fMRI data is segmented into overlapping
windows and the functional interconnection between different
brain regions within each window is evaluated (37, 59–61).
Comparisons of window sizes revealed that 44 s offers a
solid balance between the ability to handle dynamics and the
efficiency of covariance matrix evaluation, which is consistent
with demonstrations that cognitive states can be correctly
identified using covariance matrices estimated on as little as 30–
60 s of data (62) and that structural brain network evaluations
begin to improve at window lengths of around 30 s (63). In
our study we employed a sliding temporal window of 22 TRs
(44 s) to 147 data length (294 s), rectangular sliding windows
unconvolved with Gaussian kernel was then used to capture
more sharp transitions that could be undetected in tapered
windows (64). By sliding the window by the 2-s step size 1TR,
126 temporal windows (147 – 22 + 1) were generated. Lastly, we
obtained 126 Fisher’s z-transformed Pearson’s correlation maps
(90 × 90 matrix size, for each window for each subject which
were the rsFC maps, as seen in Figure 2 (65). Having obtained
these maps during parameter computations, we generated
Matlab codes to observe striatal functional connectivity in each
of these 126 windows by computing strength and variability
within each temporal windowed connectivity map to express its
characteristics.

Voxel-based morphometry

We employed CAT12 toolbox implemented in SPM12
software and run it in MATLAB for VBM analysis. All 3D
T1-weighted Neuroimaging Informatics Technology Initiative
(NIFTI) MR images were spatially normalized and segmented
into GM, WM, and CSF tissue classes according to the DARTEL
approach with default settings in 1.5 mm cubic resolution and
MNI space. To preserve GM volumes of native space, the
normalized maps were modulated with the resulting Jacobian
determinant maps and smoothed using an 8-mm FWHM
Gaussian kernel. In the CAT12 toolbox, the procedures of
segmentation, normalization, and modulation were all done
automatically. Total intracranial volume (TIV) and the native
space volumes of GM, WM, and CSF maps were estimated with

FIGURE 2

A diagram depicting the construction of functional connectivity
(FC) networks using sliding window-based Pearson’s correlation
on rs-fMRI data (65). Where P, L, S, C, and X represents time
points, window length, step size, correlation strength, and
number of windows, respectively.

TIV as a covariate of no interest. The two-tailed t test was
then produced using family-wise error (FWE) correction and a
p < 0.05 threshold, as well as uncorrected p = 0.001 thresholds.
The 100 voxel extent threshold was chosen and finally we used
xjview (66) toolbox for MATLAB to record voxel brain area
(represented with pseudo color),with significant differences,
activation volume (cluster), activation intensity (statistically
analyzed with t-test and expressed as T value; T value is
proportional to the intensity). Figure 3 (49, 67) depicts the VBM
analysis processing framework.

Functional magnetic resonance
imaging statistical analysis

For the fMRI statistical analyses, we performed multiple
comparison correction using Gretna toolbox4 with a threshold
of uncorrected p < 0.05. A 5,000-times randomized permutation
test was used. A permutation test is a kind of statistical
significance test in which all potential values of the test statistic
under rearrangements of the labels on the observed data points
are calculated to obtain the distribution of the test statistic
under the null hypothesis (68). The regions that made it

4 http://www.nitrc.org/projects/gretna
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FIGURE 3

The processing framework of voxel-based morphometry (VBM) analysis using the CAT12 toolbox of SPM12 software as depicted by
Seyedi et al. (67).

through multiple comparison correction were chosen as region
of interest (ROIs) for post hoc analysis. On these ROIs, a
two-tailed, two-sample t-test was used to detect the differences
between the groups (BD vs HC). Statistical significance was
defined as a p < 0.025 (0.05/2) (Bonferroni corrected) value.

Results

Participants’ demographic and
neuropsychological evaluation

Tables 1, 2 show subjects’ clinical information and BD group
patient’s medication in which no significant difference was seen
between age and sex of the two groups (p > 0.05). Gender was
analyzed by chi-square test; other variables were analyzed by
independent samples t-test.

Resting state functional connectivity

Of the two metrics to assess rsFC, striatal functional
connectivity demonstrated a significant difference (p < 0.05)
between BD patients and HC group in three consecutive
windows w69, w70, and w71 (180, 182, and 184 s) during
scanning time (Figures 4, 5). In particular, when compared

to healthy controls, BD patients presented increased striatal
functional connectivity in these windows with significant
between-group striatal-rsFC difference (p = 0.023, 0.019, and
0.022). In contrast to strength, the variability of striatal
connectivity did not reveal any significant difference (p > 0.05)
between the groups.

The voxel-based morphometry analysis

No region exhibited a significant difference in HC versus BD
using Family-Wise Error (FWE) with p < 0.05 in the t test in
voxel by voxel analysis. However, when an uncorrected p value
of 0.001 was used, two areas showed decreased GM ratios in
the BD compared to the HC subjects. The relevant regions and
MNI coordinates of the peak voxels are detailed in Figure 6 and
Table 3.

Discussion

To the best of our knowledge, this study is the first to
explore alterations in striatal connectivity in patients with BD
using static rsFC within a time window. The sliding windows
were used to construct rsFC maps whose windowed striatal
connectivity properties were assessed. We also explored the
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FIGURE 4

Visualization of functional connectivity maps of one subject from the bipolar disorder (BD) and healthy controls (HC) group, respectively, at
windows 69, 70, and 71 (180, 182, and 184 s). Values are plotted as –log10 (p-value) × sign (t-statistic). The lines partition the rsFC maps into six
subcategories (i.e., PFR, prefrontal; FR, other frontal; PR, parietal; OR, occipital; TR, temporal; SUB, subcortical regions). The color bars represent
correlation (z-scores).

group differences in large time-scale connectivity, which was
computed as correlations of fMRI time series over full-range
of scanning time. In summary, large time-scale connectivity
analyses did not reveal significant differences between BD
patients and HCs. On the contrary, shorter time analyses
presented BD patients with increased striatal connectivity
in three time-windows (w69, w70, and w71). However, the
variability of striatal connectivity did not demonstrate any
significant difference between the groups. In Table 3, we
compared the BD to the HC group using a two-tailed t test
with a covariate of no interest (i.e., TIV). VBM analysis revealed
no significant differences in GM volumes between BD and
HC groups using p < 0.05 corrected. The opposite contrast
produced the same outcome. While the BD group had a lower
volume of GM in the Left precentral gyrus and Middle frontal
gyrus than the HCs, no region was greater in the patients than
the controls when adopting a p < 0.001 uncorrected and 100
extent threshold.

With respect to increased striatal functional connectivity
observed in specific temporal windows, fairly similar findings
to our observations were reported in a study of bipolar

patients during reward processing, showing increased striatal
connectivity to orbitofrontal cortex and amygdala (30). Lee et al.
also found increased connectivity between the dorsal striatum
and medial prefrontal cortex (mPFC) in bipolar patients with
internet gaming disorder (69). Together, these findings suggest
that patients with bipolar are characterized by altered striatal
connectivity in large scale brain networks.

However, some previous studies could not identify increased
connectivity associated with the striatum, but with other
regions. One factor for this discrepancy could be that BD affects
the brain differently in a selective population. For example,
in the study by Syan et al., an obvious increase in functional
connectivity was reported between the PCC and angular gyrus,
and between the right dorsal lateral prefrontal cortex (dlPFC)
and brainstem in women with BD attending clinical remission
(70). Another selective study by Cerullo et al. showed an increase
in the insula-to-right amygdala connectivity (71). In all these
studies, the authors did not report any alterations suggestive of
striatal connectivity attenuation.

Another factor may be attributable to the limitation of
analysis methods. As changes in brain activity associated with
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FIGURE 5

The group variability maps at windows 69, 70, and 71 (180, 182, and 184 s). Where BD-HC is the group difference that survived the thresholding,
values are plotted as –log10 (p-value) × sign (t-statistic). The lines partition the rsFC maps into six subcategories (i.e., PFR, prefrontal; FR, other
frontal; PR, parietal; OR, occipital; TR, temporal; SUB, subcortical regions). Color bars represent correlation (z-scores).

disorders are not always vindicated in full-scale data. Rather,
they are apparent in a short time-scale of seconds, and thus
require short time-scale analyses to capture those patterns
of deficits. In our study, increased striatal connectivity was
observed in particular windows (w69, w70, and w71), but not
across the entire time-series consistent with the aforementioned
hypothesis. This is an important finding which was yet to
be reported, suggesting that bipolar deficit-patterns can be
evident in specific time-interval. Our results are in line with
Nguyen et al. who demonstrated that shorter time scale provides
more dimensions of brain functionality and dysfunctionality
compared to full time-scale in BD (28, 72). In support of this,

one study demonstrated that subtle changes in reoccurrence
patterns of interactive intrinsic networks during cognitive
tasks or at rest can be better modeled and detected in
shorter time (42, 73). Together, these findings point to the
conclusion that meaningful information that is likely to be
lost in full time-scale can be trapped within a time window.
To date, few studies have already been conducted in BD
(28, 41, 43). Primary findings suggest aberrant insular (the
right anterior) connectivity is related to abnormal salience
processing (10, 74, 75), but more well designed studies are
suggested to delineate brain neurological effects implicated
by BD.
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FIGURE 6

The significant gray matter (GM) alterations by voxel-based morphometry (VBM) analyses with the covariate of no interest (TIV) in the left
precentral gyrus (left) and middle frontal gyrus (right), respectively, when BD < HC with p < 0.001 (uncorrected) and extent threshold K = 100.

In this study, we detected a sole increase in striatal
connectivity, but other studies have shown that BD can also
lead to a decrease in striatal connectivity. Notably, the dorsal-
striatum-to-middle-occipital-gyrus functional link in young
males with internet gaming-related BD was weakened (69).
Decreased functional connectivity in bipolar disorders was also
reported linking other none striatal regions, specifically, the
connectivity between the pregenual anterior cingulate cortex
and amygdala, and between the ventral PFC and amygdala
(76, 77).

Lack of patterns of reduced connectivity in our study could
be connected to the type of BD. Here, all individuals were
diagnosed with bipolar type I, which is likely to have lenient
brain effects that allow the brain to reconfigure and strengthen
its interaction as a compensatory mechanism than it could be

TABLE 3 Gray matter alterations detected by voxel-based
morphometry (VBM).

P-value Contrast Peak values
location

MNI coordinates

X (mm) Y (mm) Z (mm)

p < 0.05
corrected

BD > HC – – – –

BD < HC – – – –

p < 0.001
uncorrected

BD < HC Left precentral
gyrus

−48.48 10.25 35.48

Middle frontal
gyrus

27.80 33.36 36.75

BD > HC – – – –

BD, bipolar disorder; HC, healthy controls; MNI, Montreal Neurological Institute.

in a severe level of bipolar such as type II. Specifically, the
increased connectivity necessitated by BD can be thought of as
the brain compensatory mechanism to recruit more resources
to preserve, maintain, and restore cognitive functions or in
response to cognitive demands which may have been detected
during specific scanning time. In support of this hypothesis,
a study of magnetic resonance spectroscopy identified higher
concentrations of choline in the striatum in patients with
BD than HCs (21, 78), suggesting the recruitment of more
resources in this region.

However, in some studies, inconsistent findings have
been reported in similar regions. Euthymic BD, for instance,
showed greater connectivity between mPFC and right amygdala
compared to HC (79), but these regions demonstrated reduced
connectivity in another study (80). We hypothesize that
individuals recruited in these studies had differential types
(level) of bipolar leading to these inconsistencies, possibly
reduced connectivity was related to a more severe level
of brain injury associated with advanced BD. Methods to
evaluate bipolar types should also be designed to be robust
enough to delineate levels of bipolar effectively to reduce
the chance of recruiting several types of BD patients in
a single study. Other factors such as diverse samples and
different preprocessing approaches could also lead to this
inconsistency. Results show that the static FC in much
smaller window significantly outperforms the full-scale analysis
in terms of predictive accuracy. Static FC in smaller time
series approach capture complimentary aspects of connectivity,
and combining static and dynamic FC features will increase
classification performance beyond what each type of feature
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can do on its own (43, 47, 48) and provides the local
functional connectivity at each time window which is likely to
capture important information that may be missed in either
approach individually.

Fundamentally, BD is implicated in memory problems. The
prefrontal cortex, which is involved in planning, reasoning,
attention, problem-solving, and memory (81), is one of the
targets, followed by the hippocampus associated with memory
storage (82) and by the anterior cingulate cortex linked to
emotional and cognitive functions (83). As blood flows into
various brain regions the individual mood shifts (84). People
may experience changes in update-and recall-working memory
processes during and between episodes of BD (85). Studies
have pointed out that difficulties in working and studying
may also be experienced. Glahn et al. have shown executive
function-related deficits that result in a reduced ability of
planning and carrying out tasks of symptoms of BD (86),
stress has demonstrated a strong relationship with changes in
striatal activity. Coincidently, stress also correlated with learning
performance, suggesting that it may alter the engagement of
multiple memory systems (87) and the learning process. Of note
is that the learning process involved the ventral striatum more
in younger than older adults (88), which plays a key role in
decision-making. Some findings from molecular and anatomical
studies implicated the same regions in BD. Worth mentioning is
the observed altered activity in the striatum during performing
tasks involving balancing reward and risk. These studies,
together, support that alterations found in striatal connectivity
suggest bipolar-associated altered communication between the
striatum and other brain regions. This conclusion supports
the hypothesis that striatum is structurally, functionally, and
chemically abnormal in BD.

We also document no difference in variability of striatal
connectivity within each temporal windowed connectivity map
between the two groups, this may be due to the normal aging
effects on basal ganglia (89–91), suggesting substantial age-
related abnormality that might interfere patterns of variability in
the two groups. Our view is similar to that of Chakos et al. (19)
who suggested that antipsychotics may alter blood oxygen level-
dependent activations or anatomical structures in BP patients
which could hinder the detection of the group differences. For
example, a lack of a caudate volumetric difference between the
HC and the BD group was linked with patients’ exposure to
antipsychotics (92, 93). Although we did not achieve statistical
significance in variability, it is possible that a better-designed
study could provide more definite results.

When comparing our VBM results to those of other studies,
in line with our findings, Seyedi et al. demonstrated GM
reductions in the left precentral gyrus among other areas
(67). Similar with our findings, Amyotrophic Lateral Sclerosis
patients’ brains demonstrated less GM volume than those of
controls on a voxel-level, at the right precentral gyrus and
right middle frontal gyrus (94). However, it should be noted
that the results of VBM in BD analyses are inconsistent. There

were no significant variations in GM volumes between patients
and HCs, according to several research (95, 96). While other
research has found changes in the temporal and parietal gyrus
(97) and frontal gyrus (98, 99), others found increased GM
volume in bilateral precentral gyri in idiopathic blepharospasm
patients compared to their respective matched healthy controls
in another study (100). The reason for the inconsistency in BD
or other illness may be because there are various subgroups,
each with a different clinical manifestation but different causes
and origins. Another reason also could be due to the fact that
different techniques, statistical corrections, sample size, kernels,
thresholds, and inclusion criteria were used. Generally, in BD,
the observed GM volume anomalies are widely varied. The
primary motor cortex, which controls voluntary movement,
is anatomically located in the precentral gyrus (101). As
demonstrated in BD patients, GM alterations in the precentral
gyrus may impact primary motor cortex function, resulting
in decreased control over voluntary movement. The dominant
(left) middle frontal gyrus is involved in literacy development,
while the nondominant (right) middle frontal gyrus is involved
in numeracy development (102). To support this hypothesis,
one study revealed that adolescents with remitted BD have a
unique set of arithmetic problems that set them apart from both
unipolar depression patients and HCs (103), the reason for this
may be linked to neuroanatomical defects that cause cognitive
impairments, such as a slower response time (103).

Limitations

Our study, however, presents some limitations. First,
initially we analyzed structural connectivity in the relevant
regions that were identified in the functional connectivity
analysis raising the possibility that structural abnormalities may
be responsible for functional connectivity abnormalities in the
disorders, unfortunately no significant differences were detected
which led us to conduct whole-brain gray matter comparison,
we believe that a better-designed study could provide more
definite results. Second, the sample size was rather small
which limits generalizability and thus, the larger sample size
is required. Third, it is unclear whether the observed increase
in striatal connectivity is specific to BD type I or shared by all
types of BD. Fourth, the absence of clinical measures related to
BD limits our results from evaluating the possible correlations
between these patterns of deficits observed in bipolar and
its clinical evaluations, hence attention should be paid when
interpreting the results.

Recommendations

According to the results of our functional neuroimaging
analysis, understanding BD from the perspective provided by
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studies that look at the functional organization of the brain may
significantly advance the neurological theory of this disorder.
Over the past 10 years, tremendous progress has been made
in our understanding of resting-state networks, both within
and between individuals. While individual-level independent
component analysis (ICA) or seed regions have frequently been
utilized in techniques to identify resting-state networks, these
analyses typically do not account for small but considerable
variation among individuals in DMN and other networks.
In fact, networks like the DMN may well be comprised of
smaller sub-networks that underlie different cognitive functions
(104). Despite these concerns, thorough group-level analysis
application will probably result in better, more precise, and more
systematic characterizations of network dysfunction not only
in BD, but in other psychiatric disorders as well. The use of
biomarkers in clinical practice is still underappreciated, and the
data provided by biomarker research for clinical application
is still unpersuasive, in contrast to the wealth of information
available for medication research and development. Findings
have been made for kynurenines (KYNs) and kynurenine
pathway (KP) enzymes, which have been connected to a
number of diseases including cancer, autoimmune diseases,
inflammatory diseases, neurologic diseases, and psychiatric
disorders (105–109).

Conclusion

In this study, we looked into functional abnormalities
involving the striatum between bipolar disorder patients and
healthy controls and compare the morphological patterns of
gray matter across the brain between the groups. Our findings
suggest that bipolar illness is may be linked to striatal functional
alterations and that, it is associated with a weakening of
the precentral gyrus and middle frontal gyrus. Thus, striatal
alterations, precentral gyrus and middle frontal gyrus are
important in the pathophysiology of bipolar disease.
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