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Background: A large and growing body of neuroimaging research has

concentrated on patients with attention-deficit/hyperactivity disorder (ADHD),

but with inconsistent conclusions. This article was intended to investigate

the common and certain neural alterations in the structure and function of

the brain in patients with ADHD and further explore the di�erences in brain

alterations between adults and children with ADHD.

Methods: We conducted an extensive literature search of whole-brain

voxel-based morphometry (VBM) and functional magnetic resonance imaging

(fMRI) studies associated with ADHD. Two separate meta-analyses with the

seed-based d mapping software package for functional neural activation and

gray matter volume (GMV) were carried out, followed by a joint analysis and a

subgroup analysis.

Results: This analysis included 29 VBM studies and 36 fMRI studies. Structurally,

VBM analysis showed that the largest GMV diminutions in patients with ADHD

were in several frontal-parietal brain regions, the limbic system, and the corpus

callosum. Functionally, fMRI analysis discovered significant hypoactivation in

several frontal-temporal brain regions, the right postcentral gyrus, the left

insula, and the corpus callosum.

Conclusion: This study showed that abnormal alterations in the structure

and function of the left superior frontal gyrus and the corpus callosum may

be the key brain regions involved in the pathogenesis of ADHD in patients

and may be employed as an imaging metric for patients with ADHD pending
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future research. In addition, this meta-analysis discovered neuroanatomical or

functional abnormalities in other brain regions in patients with ADHD as well

as findings that can be utilized to guide future research.
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Introduction

According to the Diagnostic and Statistical Manual

of Mental Disorders, Fifth Edition (DSM-5) and

International Classification of Diseases (ICD-10), attention-

deficit/hyperactivity disorder (ADHD) is a widespread

neurodevelopmental disorder affected by multiple factors,

which are often manifested as inattention and/or impulsiveness

hyperactivity (1). The epidemiological investigation showed

that over 5% of children and adolescents in the world are

impacted by this illness (2), and the morbidity is higher in

boys, showing an increasing trend year by year. However, some

symptoms of the children could continue into adulthood (3),

which would disturb the varied aspects of their learning, family,

social lives, and/or physical and psychological health (including

a higher proportion of destructive behaviors, anxiety, depressive

behaviors, substance use disorders, and so on) (4, 5).

At present, studies in various fields, such as genetics (6, 7),

etiology (8), neuropsychology (9), and neurophysiology (10),

attempt to explore the pathological mechanisms of ADHD.

Similar to other psychiatric and developmental disorders,

ADHD has genetic susceptibility (6, 7). Environmental factors

(including psychosocial factors, prenatal and perinatal risk

factors, nutritional factors, etc.) are also one of the risk factors

for ADHD (11, 12). Defects in mood regulation are common

in patients with ADHD, which is considered a key factor

associated with it (10). Other studies showed that the lack of

DA (dopamine) in functional brain areas, such as the cerebral

cortex and the striatum, also leads to ADHD (13). In addition,

more neuroimaging studies (14–16) focused on patients with

ADHD and considered ADHD an important research topic. A

large amount of evidence suggests that ADHD has abnormal

brain structure and function, although the effect sizes are small.

Voxel-based morphometry is a scientific method used to

measure and analyze magnetic resonance imaging (MRI) at

the voxel level (17) and reflect anatomical differences via

quantitatively calculating the differences in density or volume

of the gray matter and white matter of each voxel in the MRI.

However, most of the current research results are inconsistent.

Some studies reported decreased gray matter volume (GMV) in

the right and left anterior cingulate cortex (ACC) (18) and the

right thalamus (19) in patients with ADHD compared to healthy

controls (HCs), while some other studies reported decreased

GMV in the frontal lobe, the hippocampus, the temporal cortex,

and the occipital cortex using VBM (20). Sutcubasi Kaya et al.’s

study (21) reported increased GMV in the precentral gyrus

and the supplementary motor area in patients with ADHD.

The differences from those of earlier studies are attributed to

patients with ADHD having a relatively high average IQ in

the current studies. McGrath et al. (22) analyzed the structural

neuroimaging data between dyslexia and ADHD, conducted

an anatomic likelihood estimate (ALE) meta-analysis on VBM

studies of the two diseases, and identified an overlapping region

of the right caudate nucleus when using amore relaxed statistical

threshold. This suggests that the abnormality of caudate nucleus

may be the basis of executive dysfunction.

Functional MRI (fMRI) describes the activation region

of neural excitation by monitoring blood oxygen levels and

using deoxyhemoglobin as an endogenous contrast agent,

characterized by low time resolution and high spatial resolution

(23). At present, the fMRI studies of ADHD involve different

executive function processes, and different task paradigms can

be used to evaluate the same executive function, but there are

a lot of heterogeneous research results in these studies (24).

Decreased activation in alert task-related brain areas in children

with ADHD, including the right frontal-orbital, the superior

frontal and bilateral temporoparietal regions, the cerebellum,

the hippocampus, the striatum, and the thalamus, was reported

in a study by Rubia et al. (25). A meta-analysis of fMRI

studies (26) on children with ADHD, with low activation

in executive function (frontal-parietal network) and attention

(ventral attention network) and high activation in prefrontal

and ventral attention networks, identified earlier abnormalities

beyond abnormal prefrontal-striatal circuits. The recent meta-

analysis (27) of whole-brain fMRI showed reduced activation

of the bilateral anterior insula putamen and the globus pallidus

in the left inferior frontal gyrus in patients with ADHD during

cognitive conversion tasks.

Recently, the results of a combined VBM and fMRI analysis

(15) showed that reduced GMV and fMRI underactivation

overlapped in the right caudate nucleus during cognitive control

in patients with ADHD compared to HCs. Similar studies

(28) found that increased GMV and functional activation

overlapped in the right fusiform gyrus, while decreased GMV

and functional activation overlapped in the right superior

temporal gyrus, the left inferior frontal gyrus, and the
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left postcentral gyrus in patients with ADHD compared to

HCs. Samea et al. (29) pooled 96 studies in children and

adolescents, and they observed the convergence dysfunction in

the left pallidum/putamen for task-fMRI experiments (using

neutral stimuli) and decreased activity in the left IFG among

different sub-analyses. This study has profoundly elaborated the

structural and functional alterations of the brain in patients

with ADHD; however, the results remain inconsistent, possibly

due to the diversity of sample characteristics, behavioral scales,

imaging methods, and statistical analyses, suggesting the need

for in-depth investigation to confirm, broaden, and/or amend

previous findings.

Based on previous theories and empirical studies in ADHD,

we hypothesized that both functional and structural alterations

in frontostriatal and fronto-cingulate circuits occur in patients

with ADHD relative to HCs. In addition, studies suggest that

some symptoms of ADHD in children will gradually get better

with age but will not completely disappear. Therefore, we expect

that more brain areas in the children group will show changed

GMV and abnormal activation compared to the adult group. It

may also be associated with delayed maturation of certain brain

regions. The objective of our study was to explore the common

and specific neural alterations in the structure and function of

the brain in ADHD and further explore the differences in brain

alterations between adults and children with ADHD. Eventually,

the significance of these research results and their prospective

development paths are examined and discussed.

Methods

Literature search and selection

A comprehensive literature search of fMRI and VBM

studies of ADHD from January 2010 to November 2021

was conducted primarily using PubMed, as well as additional

searches in theWeb of Knowledge and Science Direct databases,

with a combination of the following keywords: “voxel-based

morphometry” or “VBM” or “morphometry” or “gray matter”

or “functional magnetic resonance imaging” or “fMRI” and

“ADHD” or “Attention Deficit/Hyperactivity Disorder.” In

addition, a manual search was conducted in reference lists of

previous meta-analyses. Eligible original studies were identified

through reference tracking and consultation to retrieve high-

quality meta-analyses and review articles.

Studies were eligible if (1) they involved task-related fMRI

or VBM study; (2) they compared patients with ADHD and

HCs; (3) the whole-brain outcomes were presented in three-

dimensional coordinates (x, y, z) for changes in standard

stereotactic space (e.g., Talairach space orMontreal Neurological

Institute space); (4) the diagnosis of patients with ADHD had

to be based on DSM-IV-TR, or DSM-V, or ICD-10; and (5)

they were peer-reviewed and published in English as an article.

Studies were excluded if (1) the peak coordinates were not

reported; (2) VBM was not used and only ROI analyses were

used; (3) the patient data were duplicated or no eligible contrasts

were found; and (4) neurological or psychiatric comorbidities

(such as depression, anxiety, autism, learning disorder, and

so on) were found in the patient group. In the case of

incomplete or ambiguous information, we will contact the

author for clarification.

All the authors evaluated the final inclusion of articles and

reached a consensus on all of them before implementing the

following steps.

Statistical analysis

The anisotropic effect size seed-based d mapping (AES-

SDM) (version 5.15) meta-analytic software package (https://

www.sdmproject.com/) was applied extensively in a recent

meta-analysis. We plan to use it to analyze the GMV and

functional neural activation changes between patients with

ADHD and HCs, following related guidelines (MOOSE) for

meta-analyses. In this study, we summarized the AES-SDM data

processing procedure. First, the peak coordinates extracted from

each dataset were manually imported into the software. Second,

the maps of the lower and upper bounds of possible effect sizes

were reconstructed for each VBM or fMRI study separately

using an anisotropic non-normalized Gaussian kernel. Peak

coordinates were converted to Montreal Neurological Institute

(MNI) space. After that, this mean analysis was processed,

which consists of calculating the mean of the voxel values in

the different studies. This mean is weighted by the inverse

of the variance and accounts for inter-study heterogeneity. In

addition, the results of some studies were p-value or z-value,

which needed to be converted to t-statistics online; full width at

half maximum (FWHM) was set to 20mm because this setting

was optimal to balance sensitivity and specificity, and other

parameters included voxel P = 0.005, peak height Z = 1, and

cluster extent= 10 voxels (30).

Our research steps are as follows: First, analyses were

conducted to examine regional GMV in the patient group

relative to HCs using all available data, and fMRI meta-analyses

were performed to examine the neural activation abnormalities

using the above same method. Second, a conjunction analysis in

patient groups relative toHCswas further carried out to examine

common areas of structural and functional abnormalities. Then,

we divided individuals into two different subtypes based on age

group (see Table 2) for the next subgroup analysis, namely, adult

and pediatric (including adolescents and children) subjects,

using a random effects model under the same threshold as

before. To examine the effects of age, gender, and IQ, meta-

regression analyses were performed. Finally, to assess whether

the results were replicable, a jackknife sensitivity analysis was

performed, in which the same analysis was repeated in one study,

excluding one data at a time. Moreover, Egger’s test was used to
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FIGURE 1

Methods and results of literature search for ADHD fMRI and VBM. n, total number of studies; n1, number of VBM study; n2, number of fMRI study.

examine the possible publication bias. A statistical threshold p-

value of <0.005 was used for all meta-analyses (31, 32), and a

decreased threshold p-value of <0.0005 and a cluster extent of

20 voxels were applied in the meta-regression to control for false

positives (33).

Results

A total of 1,463 published papers (624 VBM studies and

839 fMRI studies) were screened, with an increase of 21

documents (six VBM studies and 15 fMRI studies) discovered

via other sources. After repetitions were eliminated, 591

documents (239 VBM studies and 352 fMRI studies) were

reviewed, and 144 full-text publications (61 VBM studies

and 83 fMRI studies) were evaluated for eligibility. The

final sample included 29 VBM research (1,211 patients with

ADHD and 1,032 HCs) and 36 fMRI research (850 patients

with ADHD and 813 HCs) studies (see Figure 1; Table 1 for

more details).

The Wilcoxon W-tests in the whole-group VBM analysis

indicated that patient groups did not differ in age (z = −0.325;

P = 0.745), and the patient groups have a slightly lower IQ

than the control groups (z = −2.653; P = 0.008). The chi-

squared test revealed that both groups had a significantly higher

proportion of boys/men (χ2
= 8.450; P = 0.004). In the whole-

group fMRI meta-analysis, patient groups did not differ in

age (z = −1.077; P = 0.282), and the patient groups have a

slightly lower IQ than the control groups (z = −3.616; P <

0.001), but a higher percentage of patients with ADHD were

boys/men (χ2
= 50.655; P < 0.001). Details of the regression

analysis results of the subgroups are shown in Table 2. As

a result, age, IQ, and sex were included as covariates in all

between-group meta-analyses performed including only these

studies which were age-, IQ-, and sex-matched (see Table 2 for

more details).

Regional di�erences in GMV and fMRI by
meta-analysis

ADHD VBM

Patients with ADHD showed significantly lower GMV in

the bilateral anterior cingulate cortex/median cingulate/superior
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TABLE 1 Sample characteristics of VBM and fMRI studies.

References Age
group

Task Patients Controls

Number
(% male)

Mean age
(years)

IQ Number
(% male)

Mean age
(years)

IQ

VBM studies in ADHD

Ahrendts et al. (34) Adults – 31 (65) 31.20 NA 31 (65) 31.50 NA

Montes et al. (35) Adults – 20 (50) 28.95 102.9 20 (50) 27.57 100.2

Amico et al. (18) Adults – 20 (75) 33.60 NA 20 (75) 34.70 NA

Bonath et al. (36) Adolescents – 18 (x) 13.60 106.8 18 (x) 14.10 108.1

Bralten et al. (37) Adolescents – 307 (68) 17.06 97.1 196 (49) 16.66 106.6

Tsai et al. (38) Adolescents – 118 (83) 11.11 107.4 104 (81) 11.71 108.6

Gehricke et al. (39) Adults – 32 (81) 25.31 NA 40 (83) 23.93 NA

He et al. (40) Children – 37 (100) 9.90 NA 35 (100) 10.70 NA

Jagger-Rickels et al. (41) Children – 41 (x) 9.61 NA 32 (x) 9.66 NA

Kappel et al. (42) Adults – 16 (94) 23.50 97.8 20 (100) 23.70 108.4

Children – 14 (71) 9.80 104.6 10 (80) 11.00 111.9

Klein et al. (43) Adults – 25 (36) 66.90 113.9 34 (18) 68.90 113.2

Kobel et al. (44) Adolescents – 14 (x) 10.43 NA 12 (x) 10.92 NA

Kumar and Arya (45) Children – 18 (100) 9.60 92.1 18 (100) 9.60 109.7

Li et al. (46) Adolescents – 30 (100) 10.30 121.7 30 (100) 10.30 107.1

Lim et al. (47) Adolescents – 29 (100) 13.80 92.2 29 (x) 14.40 110.0

Stevens et al. (48) Adolescents – 24 (67) 15.70 98.3 24 (70) 16.00 97.4

Moreno-Alcazar et al. (49) Adults – 44 (66) 31.61 105.0 44 (66) 32.57 106.0

Ramesh and Rai (50) Adolescents – 15 (27) 16.80 >80 15 (27) 16.72 >80

Roman-Urrestarazu et al. (51) Adults – 49 (65) 22.23 96.6 34 (57) 22.95 112.2

Sasayama et al. (52) Adolescents – 18 (72) 10.60 90.0 17 (71) 10.00 100.0

Seidman et al. (20) Adults – 74 (x) 37.30 116.0 54 (x) 34.30 115.8

Sethi et al. (53) Adults – 30 (63) 33.70 109.0 30 (63) 32.60 110.1

Shimada et al. (54) Adolescents – 17 (88) 10.29 95.3 15 (73) 12.80 104.1

Sutcubasi Kaya et al. (21) Adolescents – 19 (74) 10.32 NA 18 (67) 10.17 NA

van Wingen et al. (55) Adults – 14 (100) 32.00 104.0 15 (100) 37.00 99.0

Vilgis et al. (56) Adolescents – 33 (100) 12.58 92.2 31 (100) 12.75 109.6

Villemonteix et al. (57) Adolescents – 38 (58) 10.40 105.7 25 (60) 10.10 109.6

Wang et al. (58) Adolescents – 30 (63) 10.60 97.2 25 (48) 10.60 106.6

Zhao et al. (59) Adolescents – 36 (x) 12.14 108.8 36 (x) 11.69 121.4

fMRI studies in ADHD

Sáenz et al. (60) Adolescents Stop 18 (67) 10.30 102.6 14 (64) 11.12 121.5

Bédard et al. (61) Adolescents N-back 24 (87) 13.07 110.0 21 (76) 12.44 111.1

Chantiluke et al. (62) Adolescents Stop 18 (100) 14.30 95.0 25 (100) 13.40 109.0

Chen et al. (63) Adults Go-NoGo 29 (100) 24.90 NA 25 (100) 25.64 NA

(Continued)
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TABLE 1 (Continued)

References Age
group

Task Patients Controls

Number
(% male)

Mean age
(years)

IQ Number
(% male)

Mean age
(years)

IQ

Christakou et al. (64) Adolescents SAT 20 (100) 14.00 108.2 20 (100) 14.70 114.0

Cubillo et al. (65) Adults Simon 11 (100) 29.00 92.0 15 (100) 28.00 112.0

Cubillo et al. (66) Adolescents Stop 19 (100) 13.00 92.0 29 (100) 13.00 110.0

Cubillo et al. (67) Adults Stop/switch 11 (100) 29.00 92.0 14 (100) 28.00 106.0

Dibbets et al. (68) Adults Switch 15 (100) 28.90 NA 14 (100) 28.80 NA

Fan et al. (69) Adolescents Stroop 27 (89) 12.10 105.2 27 (78) 11.80 110.4

Fan et al. (70) Adolescents Stroop 25 (92) 10.90 107.2 23 (91) 11.20 109.1

Janssen et al. (71) Adolescents Stop 21 (90) 10.60 98.6 17 (76) 10.28 108.7

Kooistra et al. (72) Adults Go-NoGo 11 (100) 21.50 110.0 11 (100) 22.30 125.0

Ma et al. (73) Children Go-NoGo 15 (53) 9.82 100.2 15 (53) 9.91 102.6

Ma et al. (74) Adolescents Stroop 25 (76) 15.40 98.3 33 (67) 15.30 108.9

Materna et al. (75) Adults Stimuli 30 (63) 31.40 NA 35 (54) 28.89 NA

Mehren et al. (76) Adults Go-NoGo 20 (100) 31.40 NA 20 (100) 29.50 NA

Passarotti et al. (77) Adolescents Stop 11 (55) 13.09 101.2 15 (47) 14.13 107.6

Dibbets et al. (78) Adults Go-NoGo 15 (100) 28.90 NA 13 (100) 28.10 NA

Pretus et al. (79) Adults ITIs 21 (52) 36.50 NA 24 (50) 34.33 NA

Rasmussen et al. (80) Adults Go/No-Go 25 (68) 25.00 106.3 12 (50) 24.10 107.1

Rubia et al. (81) Adolescents Simon 12 (100) 13.00 90.0 13 (100) 13.00 102.0

Rubia et al. (82) Adolescents Stop 12 (100) 13.00 91.0 13 (100) 13.00 100.0

Schulz et al. (83) Adults Go-NoGo 14 (100) 23.30 NA 14 (100) 22.80 NA

Sebastian et al. (84) Adults Go-
NoGo/Stroop

20 (55) 33.30 115.3 24 (46) 30.30 115.7

Shang et al. (85) Adults Stroop 25 (56) 28.50 113.1 30 (50) 28.17 115.4

Siniatchkin et al. (86) Children Go-NoGo 17 (82) 9.30 NA 14 (71) 9.10 NA

Spinelli et al. (87) Adolescents Go-NoGo 13 (69) 10.60 109.2 17 (47) 10.50 108.8

Tamm and Juranek (88) Children FRT 12 (54) 9.00 >84 10 (80) 10.00 >84

Tegelbeckers et al. (89) Adolescents MVOT 19 (100) 13.32 104.8 19 (100) 13.58 108.63

Thornton et al. (90) Adolescents Go-NoGo 20 (90) 12.40 109.7 20 (40) 10.55 112.6

van Rooij et al. (91) Adolescents Stop 185 (70) 17.30 95.3 124 (44) 16.50 107.1

Vetter er al. (92) Adolescents PDT 25 (100) 14.26 106.0 25 (100) 14.02 110.0

Wang et al. (93) Children Go-
NoGo/Lure

28 (89) 9.60 105.4 31 (52) 10.23 108.2

Yang et al. (94) Adults IGT 20 (45) 26.90 NA 20 (40) 27.70 NA

Zamorano et al. (95) Adolescents Stroop 17 (100) 11.60 104.2 17 (100) 11.70 109.8

NA: Not applicable. It indicates that the data is not applicable.

frontal gyrus/olfactory cortex, the left precentral/postcentral

gyrus, the left inferior frontal gyrus opercular/orbital part,

the left supramarginal gyrus, the left caudate nucleus, the left

anterior thalamic projections, the right gyrus rectus, and the

corpus callosum compared to HCs. In contrast, the results

also showed an increase in the left striatum/lenticular nucleus,

the right caudate nucleus, and the right anterior thalamic

projections (see Table 3; Figure 2).
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TABLE 2 Demographic information for studies included in the meta-analysis.

Characteristic The whole group Adult group Pediatric group

ADHD Hc z/χ² P ADHD Hc z/χ² P ADHD Hc z/χ² P

VBM

Patients, n. 1,211 1,032 – – 355 342 – – 856 690 – –

Male sex, n. (%) 954 (79) 759 (74) 8.45 0.004 263 (74) 240 (70) 1.325 0.25 691 (81) 519 (75) 6.811 0.009

Mean age, y 19.70± 12.83 19.99± 13.04 −0.325 0.745 33.30± 12.06 33.61± 12.68 −0.295 0.797 11.82± 2.44 12.09± 2.38 −0.511 0.609

Mean FSIQ (S.D) 102.48± 8.42 107.98± 5.60 −2.653 0.008 105.65± 6.97 108.11± 6.04 −0.735 0.505 100.67± 8.87 107.91± 5.57 −2.666 0.008

Max/min age, y 66.9/9.6 68.9/9.6 – –

Max/min FSIQ (S.D) 121.7/90.0 121.4/100.2 – –

fMRI

Patients, n. 850 813 – – 267 271 – – 583 542 – –

Male sex, n. (%) 728 (86) 580 (71) 50.665 <0.001 207 (77) 197 (73) 1.681 0.195 521 (89) 383 (71) 62.229 <0.001

Mean age, y 18.57± 8.53 18.22± 7.98 −1.077 0.282 28.46± 4.00 27.62± 3.13 −0.919 0.376 12.27± 2.12 12.25± 1.98 −0.035 0.972

Mean FSIQ (S.D) 102.42± 7.37 110.05± 5.35 −3.616 <0.001 104.78± 10.35 113.53± 6.93 −1.444 0.18 101.71± 6.40 109.04± 4.59 −3.555 <0.001

Max/min age, y 36.5/9.0 34.33/9.1 – –

Max/min FSIQ (S.D) 115.3/90.0 125.0/100.0 – –
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TABLE 3 Meta-analysis results for voxel-based morphometry and fMRI studies in ADHD.

Contrast Anatomical region MNI coordinates SDM
Z-score

P-value Number
of voxels

Clusters’breakdown (number of
voxels)

Jack-knife
sensitivity

X Y Z

VBM RESULTS

ADHD < control

R anterior cingulate 2 30 −6 −2.449 0.000221908 2,557 L anterior cingulate (BA 32, 24, 10, 11, 25) (682) 22 out of 30

L median cingulate (BA 23, 24) (354)

R superior frontal gyrus (BA 11, 10) (169)

L median network (121)

R median cingulate (BA 23, 24, 32) (276)

Corpus callosum (117)

R anterior cingulate (BA 32, 24, 11, 10, 25) (311)

L superior frontal gyrus (BA 32, 10, 24, 11, 10)
(212)

R median network (54)

R gyrus rectus (BA 11) (43)

Undefined (74)

L postcentral gyrus −58 −18 18 −1.883 0.002394617 135 L postcentral gyrus (BA 48, 43) (100) 27 out of 30

L supramarginal gyrus (BA 48, 2) (25)

L caudate nucleus −10 4 16 −1.965 0.001656592 97 L anterior thalamic projections (49) 25 out of 30

L caudate nucleus (46)

L inferior frontal gyrus, opercular part −46 14 32 −1.934 0.001904368 52 L precentral gyrus (BA 44) (21) 26 out of 30

L inferior frontal gyrus (BA 48, 44) (31)

L inferior frontal gyrus, orbital part −26 16 −24 −2.083 0.000985742 39 L inferior frontal gyrus (BA 38) (35) 29 out of 30

R superior frontal gyrus, dorsolateral 28 66 2 −1.994 0.001486301 34 R superior frontal gyrus (BA 11, 10) (34) 27 out of 30

ADHD > control

L striatum −16 16 −6 1.334 0.000129044 188 L striatum (121) 28 out of 30

L lenticular nucleus (BA 25, 48) (25)

R caudate nucleus 12 22 2 1.062 0.000830889 103 R anterior thalamic projections (33) 27 out of 30

R caudate nucleus (BA 25) (46)

(Continued)
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TABLE 3 (Continued)

Contrast Anatomical region MNI coordinates SDM
Z-score

P-value Number
of voxels

Clusters’breakdown (number of
voxels)

Jack-knife
sensitivity

X Y Z

fMRI RESULTS

ADHD < control

L superior temporal gyrus −34 16 −24 −3.177 0.000005186 752 L superior temporal gyrus (BA 38, 48, 20, 21, 34)
(430)

35 out of 36

L inferior frontal gyrus (BA 38, 47) (112)

L insula (BA 48, 38, 47) (106)

L middle temporal gyrus (BA 38) (23)

Undefined (46)

R postcentral gyrus 40 −22 52 −2.156 0.002084970 259 R precentral gyrus (BA 4, 6, 3) (174) 33 out of 36

R postcentral gyrus (BA 3, 4, 6) (82)

Corpus callosum −50 −52 −8 −2.784 0.000170290 229 L inferior temporal gyrus (BA 37, 20, 21) (149) 36 out of 36

L middle temporal gyrus (BA 20, 37, 21) (31)

L middle frontal gyrus −22 42 34 −2.981 0.000020623 211 L superior frontal gyrus, dorsolateral (BA 9) (72) 35 out of 36

L middle frontal gyrus (BA9, 46) (110)

Corpus callosum (28)

R arcuate network, posterior segment 44 −44 14 −2.624 0.000376761 75 R arcuate network, posterior segment (19) 33 out of 36

R superior temporal gyrus (BA 42, 41, 22) (41)

L superior frontal gyrus, medial −6 54 36 −2.411 0.000939250 71 L superior frontal gyrus, medial (BA 9, 10) (69) 35 out of 36

ADHD > control

L middle occipital gyrus −36 −84 10 1.410 0.000588357 347 L middle occipital gyrus (BA 19, 18, 39) (309) 34 out of 36

R insula 50 10 −8 1.305 0.001083791 334 R insula (BA 48, 38) (166) 31 out of 36

Undefined (40)

R precuneus 8 −72 40 1.263 0.001414061 199 R precuneus (BA 7, 19) (126) 32 out of 36

R cuneus cortex (BA 7, 19) (46)

L cerebellum, hemispheric lobule VI −20 −76 −16 1.211 0.001909494 82 L cerebellum (BA 18) (34) 32 out of 36

L fusiform gyrus (BA 18) (23)
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FIGURE 2

Results of VBM and fMRI meta-analysis for ADHD (Green, GMV decreased in ADHD; Red, GMV increased in ADHD; Blue, hypoactivation in

ADHD; Yellow, overactivation in ADHD).

ADHD fMRI

Patients with ADHD showed overactivation in the middle

occipital gyrus, the right insula, the right precuneus cortex,

the left cerebellum hemispheric lobule, and the left fusiform

gyrus compared to HCs. In contrast, the results also showed

hypoactivation in the bilateral superior temporal gyrus, the left

middle/inferior temporal gyrus, the left superior/middle/inferior

frontal gyrus, the right precentral /postcentral gyrus, the left

insula, and the corpus callosum (see Table 3; Figure 2).

Multimodal VBM and fMRI analyses

In patients with ADHD, there was an overlap between

decreased GMV in the left inferior frontal gyrus and

hypoactivation compared to HCs (MNI coordinates, −28, 16,

−24; 17 voxels) (see Figure 3).

Subgroup analysis

ADHD VBM

Individuals were divided into two independent subgroups,

namely, adult and pediatric groups (including adolescents and

FIGURE 3

Results of multimodal VBM and fMRI for ADHD.

children). The findings of the adult group’s (11 datasets) analysis

were substantially in line with the pooled analysis, except for the
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TABLE 4 Subgroup analysis results for voxel-based morphometry and fMRI studies in ADHD (adults group).

Contrast Anatomical region MNI coordinates SDM
Z-score

P-value Number
of voxels

Clusters’breakdown (number of
voxels)

X Y Z

VBM RESULTS

ADHD < control

R median cingulate, paracingulate gyri 12 28 30 −2.216 0.000252903 793 R median cingulate (BA 32, 24) (303)

R anterior cingulate (BA 24, 32) (167)

L anterior cingulate (BA 24) (111)

L median cingulate (BA 24) (79)

R median network, cingulum (60)

Corpus callosum (36)

L anterior thalamic projections −12 −2 10 −2.259 0.000196099 187 L anterior thalamic projections (87)

L caudate nucleus (91)

R superior frontal gyrus, dorsolateral 22 38 36 −1.955 0.001073420 153 R middle frontal gyrus (BA 9, 46) (91)

Corpus callosum (32)

R superior frontal gyrus, dorsolateral (BA 9) (30)

L median network, cingulum −10 26 34 −2.092 0.000454128 68 L median network, cingulum (21)

L superior frontal gyrus, medial (BA 32) (20)

R gyrus rectus 4 30 −18 −1.825 0.002740383 53 R gyrus rectus (BA 11) (14)

ADHD > control

L inferior network, uncinate fasciculus −18 18 −12 1.167 0.002544284 65 L striatum (19)

L lenticular nucleus (BA 48) (17)

fMRI RESULTS

ADHD < control

L lenticular nucleus, putamen −24 4 −6 −1.757 0.000180602 717 L lenticular nucleus (BA 48, 11, 34) (283)

L striatum (156)

L insula (BA 48) (28)

Undefined (BA 48, 34) (183)

(Continued)
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additional significant GMV decrease in the right middle frontal

gyrus. In addition, relative to the pooled analysis, no significant

GMV decrease regions were found in the left supramarginal

gyrus and the left inferior frontal gyrus. Similarly, the results

also indicated increased GMV in the left striatum and the

left lenticular nucleus. The results of the pediatric group’s (19

datasets) analysis showed GMV decrease in additional brain

regions—the bilateral middle frontal gyrus, the bilateral superior

temporal gyrus, and the left insula. Similarly, relative to the

pooled analysis, no significant GMV decrease regions were

found in the left supramarginal gyrus, the left caudate nucleus,

and the left anterior thalamic projections, the left precentral

/postcentral gyrus, and the right gyrus rectus. In addition, the

results showed increased GMV in the left striatum, the left

middle occipital gyrus, the right caudate nucleus, and the right

anterior thalamic projections (see Tables 4, 5; Figure 4).

ADHD fMRI

Similarl to the previous analysis, we divided individuals

into adults and pediatrics (including adolescents and children),

two independent subgroups. The findings of the adult group

(11 datasets) were partly consistent with the pooled analysis,

and significant hypoactivation in the bilateral insula, the left

striatum, the left lenticular nucleus, the right superior temporal

gyrus, the right precentral/postcentral gyrus, the right caudate

nucleus, the right anterior thalamic projections, and the corpus

callosum was found. In addition, significant overactivation

regions were found in the left middle occipital gyrus and the

right middle temporal gyrus. Relative to the pooled analysis, in

the pediatric group (22 datasets), no significant hypoactivation

was found in the right superior temporal gyrus and the right

postcentral gyrus. On the contrary, overactivation of the right

fusiform gyrus was found. The rest was largely consistent with

the pooled analysis (see Tables 4, 5; Figure 5).

Publication bias

Egger’s tests were conducted to investigate the potential

publication bias. The results of the Egger’s tests were non-

significant (P > 0.05 for all comparisons, Bonferroni corrected),

indicating that there was no publication bias. Jackknife reliability

analyses revealed that the findings were robust in terms of

disorder differentiation.

Discussion

The purpose of our meta-analysis was to investigate the

altered GMVs and functional happenings in patients with

ADHD and further explore the differences in brain alterations

between adults and children with ADHD. Our meta-analysis
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TABLE 5 Subgroup analysis results for voxel-based morphometry and fMRI studies in ADHD (pediatrics group).

Contrast Anatomical region MNI coordinates SDM
Z-score

P-value Number
of voxels

Clusters’breakdown (number of
voxels)

X Y Z

VBM RESULTS

ADHD < control

L superior frontal gyrus, medial −10 50 14 −2.779 0.000056744 1,119 L anterior cingulate, paracingulate gyri (BA 32, 10,
11) (362)

L superior frontal gyrus, medial (BA 10, 32) (284)

L superior frontal gyrus, dorsolateral (BA 10, 46)
(123)

R anterior cingulate, paracingulate gyri (BA 11, 32,
10) (114)

R superior frontal gyrus, medial (BA 10, 11) (46)

Corpus callosum (113)

L median cingulate/paracingulate gyri 0 −20 36 −1.824 0.001692772 370 L median cingulate/paracingulate gyri (BA 23)
(170)

R median cingulate/paracingulate gyri (BA 23)
(100)

L median network, cingulum (49)

R superior frontal gyrus, dorsolateral 28 66 2 −2.411 0.000175476 260 R superior frontal gyrus, dorsolateral (BA 11, 10)
(192)

R superior frontal gyrus, orbital part (BA 11) (27)

R middle frontal gyrus (BA 10) (24)

L inferior frontal gyrus, orbital part −26 16 −24 −2.518 0.000149667 234 L inferior frontal gyrus, orbital part (BA 38, 11)
(110)

L superior temporal gyrus (BA 38) (69)

L insula (BA 48, 47) (38)

R superior temporal gyrus 52 4 −8 −1.572 0.003648698 61 R superior temporal gyrus (BA 38, 21) (57)

L middle frontal gyrus −36 16 48 −1.777 0.002043664 31 L middle frontal gyrus (BA 9) (24)

L middle frontal gyrus −46 12 38 −1.693 0.002564907 25 L middle frontal gyrus (BA 44) (20)

ADHD > control

R caudate nucleus 12 20 2 1.622 0.000000000 468 R anterior thalamic projections (168)

R caudate nucleus (BA 25) (203)

L striatum (32)

(Continued)
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TABLE 5 (Continued)

Contrast Anatomical region MNI coordinates SDM
Z-score

P-value Number
of voxels

Clusters’breakdown (number of
voxels)

X Y Z

L middle occipital gyrus 38 −78 2 1.182 0.000082552 351 L middle occipital gyrus (BA 19, 18) (246)

fMRI RESULTS

ADHD < control

L superior temporal gyrus −34 14 −26 −3.087 0.000005186 503 L superior temporal gyrus (BA 38, 20) (307)

L inferior frontal gyrus, orbital part (BA 38, 47)
(67)

L insula (BA 48, 38) (45)

L middle temporal gyrus (BA 38) (25)

L inferior temporal gyrus −48 −54 −8 −2.839 0.000072241 258 L inferior temporal gyrus (BA 37, 20) (158)

L middle temporal gyrus (BA 37, 20) (53)

L inferior network, inferior longitudinal fasciculus
(24)

L middle frontal gyrus −24 40 34 −2.902 0.000030994 223 L superior frontal gyrus, dorsolateral (BA 9) (80)

L middle frontal gyrus (BA 46, 9) (119)

Corpus callosum (24)

L superior frontal gyrus, medial −8 54 38 −2.308 0.001346946 61 L superior frontal gyrus, medial (BA 9, 10) (52)

R precentral gyrus 40 −20 54 −1.933 0.003581583 62 R precentral gyrus (BA 4, 6) (52)

R arcuate network, posterior segment 44 −44 16 −2.492 0.000645101 40 R arcuate network, posterior segment (17)

Corpus callosum −12 38 30 −2.569 0.000433505 22 Corpus callosum (18)

ADHD > control

R insula 48 12 −6 1.751 0.000211596 914 R insula (BA 48, 47, 38) (493)

L middle occipital gyrus −42 −80 −8 1.352 0.002601027 136 L middle occipital gyrus (BA 19) (46)

L cerebellum, hemispheric lobule VI (BA 18) (32)

L fusiform gyrus (BA 18, 19) (49)

L precuneus −6 −64 52 1.314 0.003158391 33 L precuneus (BA 7) (33)

R fusiform gyrus 24 −76 −14 1.319 0.003096461 21 R fusiform gyrus (BA 18) (19)
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FIGURE 4

Results of subgroup analysis of VBM for ADHD. Green, GMV decreased in ADHD; Red, GMV increased in ADHD.

FIGURE 5

Results of subgroup analysis of fMRI for ADHD. Blue, hypoactivation in ADHD; Yellow, overactivation in ADHD.

of structural studies showed that the largest GMV reductions

in patients with ADHD relative to HCs were in several frontal

parietal brain regions, the limbic system, and the corpus

callosum. In addition, we also found that the GMV increased

in some brain areas. In fMRI, our study discovered that patients

with ADHD relative to HCs showed significant hypoactivation

in several frontal-temporal brain regions, the right postcentral

gyrus, the left insula, and the corpus callosum. Conversely,

we observed overactivation in the middle occipital gyrus, the

right insula, the right precuneus cortex, and the left cerebellum

hemispheric lobule. Most of the brain region alterations we

found were consistent with previous literature, suggesting that

the results of the meta-analysis using the seed-based d mapping

software package were credible. The results of the subgroup

analysis further explored and supported the above results.

Moreover, subgroup analysis found relatively more brain areas

with reduced GMV and abnormal activation in children and

adolescents relative to adults. This makes it clear that patients

with ADHD may be associated with delayed maturation of

brain development.

In recent years, ADHD has often been considered as related

to brain changes in the frontal region. Earlier studies discovered

reduced volume in the right superior frontal gyrus (96) and the

bilateral dorsolateral prefrontal (97). Bralten et al.’s (37) VBM

analysis mentioned that ADHD has a link with reduced GMV in

the frontal and precentral regions (including the left precentral

gyrus, the medial and left orbitofrontal cortices, the frontal pole,

the paracingulate and cingulate cortices), concerning decision-

making, executive function, and motor function areas. This

is largely consistent with the results of our meta-analysis. In
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fMRI, we found hypoactivation in the left superior middle

and the inferior frontal gyrus and the right anterior central

gyrus. Task-based fMRI studies on patients with ADHD revealed

inadequate activity in the frontal lobe and striatum (64, 98).

Regarding previous fMRI studies, patients with ADHD had

lower activation for inhibition in the supplementary motor area,

the anterior cingulate cortex, and the dorsolateral prefrontal

cortex compared to HCs (99, 100). It is of great importance

for the orbitofrontal cortex to regulate emotion and impulsive

behavior, and impairment in this area may be the cause

of impulsivity in ADHD (101). Moreover, previous findings

suggested that the prefrontal cortex and its connections may

be closely related to ADHD symptoms including inattention,

obliviousness, impulsivity, poor planning, and hyperaction in

patients with ADHD (102). In addition, our multimodal results

show a decrease in the volume of the left subfrontal gyrus gray

matter and a decrease in activity. Thus, our findings support

the frontal-striatal circuit theory of ADHD and confirm prior

VBM and fMRI studies on ADHD. Future longitudinal studies

should strive to evaluate the long-term consequences of ADHD

treatments on prefrontal volume and function to confirm the

existing results.

The present findings also involve the limbic system-

associated brain area. Because of its importance in symptom

severity and emotional regulation, the anterior cingulate cortex

has long been a focus of ADHD study (103). Similarly, we

also found that volume reductions in the bilateral anterior

cingulate/paracingulate gyrus, the bilateral median cingulate,

the bilateral olfactory cortex, and the left caudate nucleus.

However, in the present pediatric group of subgroup analysis,

we found no significant GMV decrease in the left caudate

nucleus. In a study of 24 adolescent subjects with ADHD vs.

HCs, the ADHD group had a lower mean (left and right)

caudate and putamen volumes (104). The article of Montes et al.

(35) suggested that patients with ADHD had a smaller GMV

and a lower concentration of gray matter in the right caudate

compared to HCs, both in the overall sample and within each

sex.Moreover, a previous study (40) found reduced GMVs in the

right orbitofrontal cortex, the left anterior cingulate cortex, and

the left posterior midcingulate cortex in patients with ADHD.

Amico et al. (18) found significantly smaller GMV in the right

and left anterior cingulate cortices but no GMV difference in

the PFC, the hippocampus, and the amygdala. Bonath et al. (36)

discovered substantially lower GMV in participants with ADHD

relative to their matched controls within the anterior cingulate

cortex, within the bilateral hippocampus/amygdala, and in

broad cerebellar areas. Further, reduced anterior cingulate cortex

GMV was also observed to connect with grades of selective

inattention. However, these alterations in the hippocampus, the

amygdala, and the cerebellum did not appear in our study-based

VBM, indicating that they are less consistent across samples

compared to the changes in the limbic system. Conversely, we

also found that the GMV increased in the left striatum/lenticular

nucleus and the right caudate nucleus. Collectively, the limbic

system should receive more attention in future research to

explore the possible pathogenesis of ADHD.

In patients with ADHD, inattention was linked to reduced

GMV not only in the frontal and anterior cingulate but also

in the parietal regions. Although only a few ADHD functional

MRI investigations have focused on the parietal cortex, it has

been recognized as exhibiting changed function in ADHD. This

can also be observed in our study, whose results showed that

theparietal lobes (including the left postcentral gyrus and left

supramarginal gyrus) are smaller in size in patients with ADHD.

Simultaneously, we also found significant hypoactivation in

the right postcentral gyrus. Previous research (105) found

that patients with ADHD doing a visual oddball task showed

considerably reduced parietal cortex activation, including the

superior parietal gyrus and numerous regions of the inferior

parietal lobe. Another study (106) indicated that, in participants

with ADHD conducting a spatial working memory mental

rotation assignment, the inferior parietal lobe activation was

significantly lower, as well as parieto-occipital and caudate

activation. Prior research (64) found that successful inhibition

activated a cluster of the right angular gyrus, the intraparietal

sulcus, and the inferior parietal gyrus in the ADHD group. These

regions have been associated with action cancellation and action

withholding (107). A previous meta-analysis (41) revealed that

smaller GMV was found in the bilateral inferior parietal lobule

in subjects with ADHD. However, Seidman et al. (20) found

that adults with ADHD had significantly smaller GMVs in the

inferior parietal cortex, relative to HCs. We speculated that

this difference may be related to the maturational delay or

sample diversity. The structural and functional abnormalities

in the parietal lobes of those with ADHD further support

the conclusion that the parietal cortex plays a role in the

pathogenesis of ADHD in patients.

In addition, our analysis results suggest that the temporal

lobe may play a crucial role in ADHD. The results of the

meta-analysis of fMRI indicate significant hypoactivation in

the bilateral superior temporal gyrus and left middle/inferior

temporal gyrus. However, decreased GMV was found in

the bilateral superior temporal gyrus of the pediatric group

alone. Sowell et al. (97) found reduced GMV bilaterally

in the lateral aspects of anterior and midtemporal cortices

and increased GMV in the more posterior aspects of the

temporal lobes bilaterally. The temporal lobe includes auditory

language-related centers, while some children with ADHD have

abnormal auditory language functions. Using VBM, the studies

of Kobel et al. (44) detected isolated areas in right temporal

regions where boys with ADHD displayed decreased GMV,

demonstrating some type of impairment to temporal brain

matter due to ADHD. This result was further supported by a

prior investigation (108) where the authors discovered a link

between damaged inhibitory control and decreases in medial

temporal gray matter. Some studies (91, 109) found insufficient
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activation in the left superior temporal gyrus. Although these

temporal lobe abnormalities in the brain are not completely

consistent, we reasoned that the temporal lobe plays a key role

in the development of ADHD. As a result, we came to an

agreement that research on ADHD ought not to be limited to

the frontostriatal deficit hypothesis but also expanded the range

to less studied brain areas like the temporal lobe.

It is worth mentioning that we simultaneously found

reduced corpus callosum GMV in patients with ADHD relative

to HCs and showed hypoactivation in the corpus callosum

in fMRI. Considering the anterior or genu region of the

corpus callosum connects homologous areas of the frontal

cortex (110), theories concerning ADHD being a frontal-

striatal illness (111) have motivated some scholars to anticipate

that the anterior or genu region of the corpus callosum

would be influenced. Significantly smaller areas have been

reported in the total corpus callosum area and splenium

(112). The meta-analysis of Valera et al. (113) also showed

that the splenium located in the posterior region of the

corpus callosum is smaller in individuals with ADHD. In

patients with ADHD, there is evidence that there are sex

disparities in the morphology and white matter integrity

of the corpus callosum. For example, female patients with

ADHD distinctly had a smaller splenium than male patients

with ADHD, according to a meta-analysis (114), while

male children and adolescents with ADHD have a smaller

anterior corpus callosum. Dramsdahl et al. (115) discovered

lower fractional anisotropy values in the isthmus/splenium of

the corpus callosum in the ADHD group, and subsequent

investigation revealed that FA (fractional anisotropy) values in

the posterior part of the corpus callosum were considerably

lower in women than in men. These research results show

that the role of the corpus callosum in ADHD should be

further explored.

The meta-analysis of Jagger-Rickels et al. (41) found reduced

left and right insula volume in the ADHD group. Furthermore,

in a previous large meta-analysis (16) of sMRI and fMRI studies

in children and adults with ADHD, the anterior insula was the

only region with both structural and functional abnormalities.

However, we found no statistically significant GMV change in

the insula. However, overactivation was found in the right insula

among patients with ADHD in our study, and this finding is

consistent with the results of a previous study (80). In contrast,

we also found hypoactivation in the left insula. The insula is

also a critical neural structure in the emotional response during

decision-making (116). Vetter et al. (92) demonstrated that male

patients with ADHD who did not have oppositional defiant

disorder/conduct disorder had hyperactivation of the anterior

insula for negative stimuli, and hyperactivation of the anterior

insula is the basis of this emotional lability.

In our study, increased activation was also found in

the left middle occipital gyrus, right precuneus, and left

cerebellar hemisphere among patients with ADHD compared

to HCs. Occipital cortex, as the center of visual cortex,

is responsible for the processing of visual information. To

maintain attention, occipital cortex interacts with the dorsal

attention network (117), inhibiting the attention caused by

irrelevant stimuli (118), whereas the attention caused by hardly

ignoring irrelevant stimuli is one of the main symptoms of

ADHD. The precuneus is related to visual imagery, attention,

and memory retrieval by engaging in the visual process and

integrating relevant memory (119). A possible explanation is

that high activation in the left middle occipital gyrus and the

right precuneus is associated with the severity of symptoms

of impulsive craving in patients with ADHD. Although many

studies reported abnormalities of structure and function in the

cerebellar in patients with ADHD, our study did not reveal

its structural differences but found that the left cerebellar

hemisphere showed high activation on the task-state fMRI. A

recent study (120) suggests that inadequate neuromodulation of

prefrontal-cerebellar circuits may underlie cognitive deficits in

psychiatric disorders (including schizophrenia, bipolar disorder,

and ADHD). In addition, studies (121) showed that both MPH

and ATX can restore abnormal brain function in ADHD,

mainly involving fronto-cingulo-parieto-cerebellum circuit. In

conclusion, the brain changes of patients with ADHD may not

be influenced by a single brain region but by multi-channel

connections or there may be a certain brain region that is the

most critical, which needs to be further studied by othermethods

such as brain structural network covariation and functional

connectivity in the future.

The main results of the whole-group analysis were also

found in the adult group and the pediatric group, which

further supported the whole-group results. Alterations in the

left superior frontal gyrus and the corpus callosum persisted in

the pediatrics group and adult group, which we believe further

illustrates the crux of this brain region. Subgroup analysis

found relatively more brain areas with reduced GMV and

abnormal activation in children and adolescents compared to

adults. Longitudinal MRI studies (122, 123) have already shown

that structural differences in the frontal, striatal, parietal, and

cerebellar regions of children with ADHD could be caused by

a delay in structural maturation. The research of Hoogman et al.

(124) proposed a related model of ADHD brain maturation

delay disorder and found a peak delay in subcortical volume

maturation. The pediatric group result in our study found that

both the left insula and the left superior temporal gyrus reduced

GMV in the VBMmeta-analysis and hypoactivation in the fMRI

meta-analysis, and no such finding was observed in the adult

group. The left insula and the left superior temporal gyrus

brain area were changed in the pediatric group, but they did

not change in the adult group, and we could consider that

the alterations in these brain areas may result from delayed

maturation. One study showed that many adult patients with

ADHD have improved symptoms compared to childhood (125).

In addition, evidence reveals that the symptoms of ADHD, as
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well as ADHD diagnosis, are linked to substantial alterations

in the macroscopic and microscopic structures of the brain.

Therefore, we speculate that abnormal structure and function

of some brain regions in patients with ADHD may also be

gradually normal with increasing age, and these brain regions are

caused by delayed maturation disorder, which still needs further

research to prove.

Limitation

Our study has several limitations that are inherent in

all meta-analyses. In the first place, since it was based

predominantly on the peak coordinates of published studies,

instead of raw statistical brain maps, it may be underpowered to

identify some results with small or moderate effect sizes. Second,

for the many papers included in this meta-analysis, different

statistical thresholds may have been applied. Additionally, the

heterogeneity of the methodologies among VBM and fMRI

studies could not be prevented, such as the differences in MRI

machines, smoothing kernel size, statistical thresholding, and

so on, which might have caused conflicting results. Moreover,

fMRI studies are mostly based on tasks in different attention,

inhibition, time, and motivation domain, and then, the results

may not be precise enough. Future studies should minimize

these differences and confounding variables to get a more

convincing result.

Conclusion

ADHD has far-ranging structural and functional

abnormalities in the brain. The VBM meta-analysis found

reduced GMV in the left superior frontal gyrus and the corpus

callosum in patients with ADHD compared to HCs. Studies in

task-related fMRI found that patients with ADHD showed low

activation in the abovementioned brain regions. We hold the

opinion that abnormal alterations in the structure and function

of the left superior frontal gyrus and the corpus callosummay be

the key brain regions involved in the pathogenesis of ADHD in

patients and may be employed as an imaging metric for patients

with ADHD pending future research. This meta-analysis also

identified neuroanatomical or functional abnormalities in other

brain regions in ADHD. Besides, subgroup analysis further

explored and supported the above results, and this information

can be applied to guide future studies. However, there is a need

for more research in this area because of the lack of clarity

on the confounding effects. Our results, as solid as it appears,

should be read with caution.
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