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Introduction: Current treatment options for major depressive disorder (MDD)

have limited efficacy and are associated with adverse effects. Recent studies

investigating the antidepressant effect of serotonergic psychedelics—also

known as classic psychedelics—have promising preliminary results with

large effect sizes. In this context, we conducted a review of the putative

neurobiological underpinnings of the mechanism of antidepressant action of

these drugs.

Methods: A narrative review was conducted using PubMed to identify

published articles evaluating the antidepressant mechanism of action of

serotonergic psychedelics.

Results: Serotonergic psychedelics have serotonin (5HT)2A agonist or partial

agonist effects. Their rapid antidepressant effects may be mediated—in part—

by their potent 5HT2A agonism, leading to rapid receptor downregulation.

In addition, these psychedelics impact brain derived neurotrophic factor

and immunomodulatory responses, both of which may play a role in their

antidepressant effect. Several neuroimaging and neurophysiology studies

evaluating mechanistic change from a network perspective can help us to

further understand their mechanism of action. Some, but not all, data suggest

that psychedelics may exert their effects, in part, by disrupting the activity

of the default mode network, which is involved in both introspection and

self-referential thinking and is over-active in MDD.

Conclusion: The mechanisms of action underlying the antidepressant effect

of serotonergic psychedelics remains an active area of research. Several

competing theories are being evaluated and more research is needed to

determine which ones are supported by the most robust evidence.
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1. Introduction

Major depressive disorder (MDD) is a chronic and
debilitating mood disorder impacting the lives of approximately
300 million people worldwide (1). First-line pharmacotherapy
options include selective serotonin reuptake inhibitors (SSRIs)
and serotonin and norepinephrine reuptake inhibitors (SNRIs)
(2). Other antidepressants, adjunctive pharmacotherapies,
psychotherapies, and brain stimulation can be used in patients
who do not respond to first- or second-line treatment (2).
However, 30–50% of patients do not respond to available
treatments (3). Moreover, several weeks are required to
determine the efficacy of pharmacotherapies and they are
associated with adverse effects (e.g., weight gain, sexual
dysfunction) (4, 5). Given the high prevalence of MDD, novel
treatments with rapid onset are needed.

Serotonergic (“classic”) psychedelics are a broad category
of drugs that includes psilocybin, dimethyltryptamine (DMT,
the psychoactive ingredient of ayahuasca), and lysergic acid
diethylamide (LSD). These psychedelics have been used as
therapeutic agents for thousands of years in various cultures (6).
Clinical research into psychedelic treatments began in the 1950s;
about 40,000 individuals had been studied by the late 1960s
when concerns about their safety and their recreational use led
to their classification as Schedule 1 narcotics in the US (7). This
precluded human studies until the late 1990s when a “second
wave” of modern clinical trials restarted investigating the efficacy
and safety of classic psychedelics for major depressive disorder
(MDD) and other mental disorders.

Emerging evidence suggests serotonergic psychedelics have
antidepressant effects (8–12). Most studies have been conducted
using psilocybin for MDD, treatment-resistant depression
(TRD), or end-of-life distress (11–15). Psilocybin is primarily
administered in conjunction with a form of non-directive and
supportive psychotherapy (11–13). Adverse effects are transient
and mild, including nausea, anxiety, and minor blood pressure
elevations generally resolving within the 8-h dosing session
(11–13).

Despite preliminary evidence suggesting serotonergic
psychedelics have rapid antidepressant effects, their mechanism
of action is not well-understood. This narrative review
provides an overview of their putative antidepressant
mechanisms of action.

2. Pharmacodynamics and
molecular science

2.1. Pharmacodynamics

Serotonin influences brain circuits responsible for
regulation of mood, reactivity to stress, and cognitive
performance. For more than 60 years, alterations of monoamine

neurotransmitters, including serotonin, have been hypothesized
to underlie depressive symptoms (16). This is indirectly
supported by the fact that most traditional antidepressants
impact monoamines; for example, SSRIs acutely increase
the availability of serotonin in synapses (16). Additionally,
depletion of tryptophan an amino acid required for 5-HT
synthesis, induces depressive symptoms in previously treated
patients (17, 18).

There is robust evidence supporting that the psychoactive
effect of serotonergic psychedelics is mediated by their agonism
of the 5-HT2A serotonin receptor (5-HT2AR). This effect can
be blocked by administering 5-HT2AR antagonists, such as
ketanserin or risperidone (19). 5-HT2AR agonism increases
serotonin release, impacting excitability of pyramidal neurons
in the cortex and inducing glutamate release in the neocortex
(20). In MDD, an inverse correlation has been observed
between depressive symptoms and the degree of 5-HT2AR
stimulation (21). Similarly, psychedelics may exert their effects
through their potent 5-HT2AR agonism leading to rapid
down regulation of these receptors (22). 5-HT2ARs also
play a role in cognitive inflexibility and rumination, core
symptoms of depression (22). While it has been proposed
that the hallucinogenic experience and associated “mystical
effects” produced by 5-HT2AR agonism are responsible for the
antidepressant effect (23), there is little evidence to support this.
In fact, in pre-clinical models of depression, psilocybin reverses
anhedonia even when mice are pre-treated with the 5-HT2AR
antagonist ketanserin (24). Other receptors may be involved in
psychedelics’ antidepressant effect. LSD is a partial agonist of 5-
HT2AR (25, 26) and it exerts its effects mostly through agonism
of 5-HT1AR (27, 28). Both LSD and SSRIs impact 5-HT1AR
by desensitizing post-synaptic 5-HT1AR resulting in increased
serotonin release (28). More research is needed to determine
the role of specific 5-HT receptors, with each psychedelic drug
requiring discrete investigations.

2.2. Brain derived neurotropic factor,
neuroplasticity, and neurogenesis

Psychedelics’ 5-HT2AR agonism indirectly activates
glutamate networks that impact prefrontal areas and
downstream increases in brain derived neurotropic factor
(BDNF), which supports growth and maintenance of neurons
and enhances neuroplasticity. Decreased BDNF levels have
been observed in MDD and correlate with suicidal behavior (29,
30). Antidepressants (31), sleep, and physical exercise increase
BDNF (32, 33). Higher baseline BDNF levels correlate with
higher SSRI-associated improvement in depressive symptoms
(34). In rats repeated administration of ayahuasca increases
hippocampal BDNF levels (35). Similarly, healthy humans and
patients with TRD show increased circulating BDNF levels
after a single dose of ayahuasca (36), with serum BDNF levels
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negatively correlated with depressive symptoms (36). Psilocybin
also increases peak BDNF levels, regardless of whether patients
are pre-treated with the antidepressant, escitalopram or placebo,
suggesting that psilocybin has a strong impact on BDNF (37).
A study using varying doses of LSD showed acute increases
in BDNF only for certain doses (38), suggesting further
investigation is needed. Increases in BDNF levels also play a
role in neurogenesis. Depressive symptoms have been linked to
insufficient neurogenesis and neurotrophic activity (39). SSRIs
increase neurogenesis (40) and their behavioral effects can be
blocked by its disruption (41). 5-methoxy(MeO)-DMT (42)
and psilocybin (43) increase neurogenesis in rats and the study
involving psilocybin suggested this might be dose-dependent
(43). More research is needed to elucidate the connections
among depression, neurogenesis, and psychedelics.

2.3. Anti-inflammation and
immunomodulation

Elevated inflammatory markers signal the body is
responding to stressful stimuli and attempting to return to
homeostasis (28). Inflammation symptoms are similar to
depressive symptoms, including fatigue, low motivation, and
irritability (44). Evidence has shown that a subset of patients
with MDD have increased inflammatory markers such as
Interleukin 6 (IL-6) and 1β, C-reactive protein (CRP), and
Tumor Necrosis Factor-alpha (TNF-α) (45, 46). Inflammatory
cytokines also increase metabolism of tryptophan which
may contribute to depression in some patients (47, 48).
A majority of immune cells express 5-HT receptors and it
has been hypothesized that serotonergic psychedelics impact
immunomodulatory agents through 5-HT2AR agonism
(49). Congruent with this hypothesis, several in vitro studies
have shown decreases of IL-6 in human cells following
administration of DMT (50), 5-MeO-DMT (50), LSD (51),
or psilocybin (52). Similar findings are reported for other
inflammatory markers such as IL-1β, CRP, and TNF-α (50,
53). Studies with ayahuasca suggest psychedelics may have
immunomodulatory effects through decreasing white blood
cells (CD4) and elevating natural killer cells (54). Overall,
depressive symptoms have been linked to a shift of the
immune system toward inflammatory responses. Although
further evidence is required, serotonergic psychedelics may,
in part, exert their antidepressant effect through activation of
anti-inflammatory and immunomodulatory actions.

3. Neuroimaging

Table 1 presents a summary of the reviewed neuroimaging
findings. Most studies of psychedelics have used functional
magnetic resonance imaging (fMRI) with network connections

assessed using functional connectivity (FC). FC measures
correlations between Blood-Oxygen-Level-Dependent (BOLD)
signal fluctuations (55) as a proxy for brain activity (56).
Research has focused on the default mode network (DMN),
encompassing the medial prefrontal cortex (mPFC), posterior
cingulate cortex (PCC), precuneus, and angular gyrus. The
DMN is implicated in self-referential thinking, memory, and
rumination. Alterations in DMN connectivity may underlie
the excessive internal focus and rumination of depression.
DMN hyper-connectivity has been reported in MDD patients
and correlates positively with rumination (57). Imaging
data indicates that psychedelics generally reduces within-
network DMN FC. This is evidenced by studies in healthy
volunteers showing reductions of within-DMN FC during
the acute psychedelic experience or post-treatment with
psilocybin, ayahuasca, or LSD (55, 56, 58–65). Positron emission
tomography (PET) scans show psilocybin increases in glucose
metabolism in the PFC, anterior cingulate, and temporomedial
cortex (66). In depressed patients, reductions in within-DMN
FC has been observed after treatment with psilocybin (67–
69), specifically between the vmPFC and right angular gyrus
(69), and between the parahippocampus (PH) and PFC (67).
Reduced PH-PFC FC has been associated with improvements
in depression scores post-treatment (67), supporting the
hypothesis that hyper-connectivity of the DMN underpins
depressive symptoms. Thus, administration of a psychedelic
could alleviate symptoms by reducing FC in the DMN. Indeed,
increased glucose metabolism in the DMN area is positively
associated with changes to perception and ego dissolution (66).
Also, psychedelic-induced reduction in DMN FC has been
correlated with positive changes in psychosocial functioning,
attitudes and mood, 4 months post-administration (55) and with
decreased mental reflection on one’s past (59).

However, increases in FC have been observed post-
psilocybin in depressed patients between the vmPFC and
the bilateral inferior lateral parietal cortex (iIPC) (67) and
between the ACC and PCC (67, 70). Increased vmPFC-iIPC
FC (but not increased ACC-PCC FC) was associated with
treatment response at 5-weeks (67). It has been theorized
that these discrepancies may result from differences in
neural effects immediately following the acute psilocybin
experience vs. those that occur later. Like electroconvulsive
therapy (ECT), psychedelics may cause acute decreases in
network integrity followed by a period of re-integration
and subsequent improvements in mood and functioning
(67). This interpretation is speculative and more research is
needed to elucidate how altered connectivity patterns mediate
antidepressant activity of psychedelics.

Emotional processing is also altered by psychedelics through
changes in amygdala responsiveness and FC changes between
the DMN, amygdala, and visual cortices. Single photon emission
tomography (SPECT) in depressed patients administered
ayahuasca showed increased blood perfusion in the left nucleus
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TABLE 1 Summary of neuroimaging studies.

References Pre-
registration?

Treatment Control Sample
size

Observed
post-dosing
effect

P-value Effect
size

# of studies
reporting
consistent

findings

# of studies
reporting

inconsistent
findings

Strengths Limitations

Carhart-Harris
et al. (67)

No Two psilocybin
sessions (10 mg
D1 + 25 mg D2)

None 15 Reduced left amygdala
CBF

<0.050 NA 0 0 Multiple analyses
of fMRI
performed (CBF,
FC), correlation
analysis
performed (fMRI
findings and
treatment
response),
validated
depression
measures

Small sample size,
absence of control,
lack of blinding

16 Increased within-DMN
FC

<0.050 NA 1 11

16 Decreased within-DMN
FC

<0.050 NA 11 1

Roseman et al.
(79)

Yes Two psilocybin
sessions (10 mg
D1 + 25 mg D2)

None 19 Increased right amygdala
responsiveness to fearful
faces

0.022 NA 0 0 Preregistered,
correlation
analysis
performed (fMRI
findings and
treatment
response),
validated
depression
measures

Small sample size,
absence of control,
lack of blinding
2-week washout
possibly
insufficient

Increased right amygdala
responsiveness to happy
faces

0.001 NA 0 0

Mertens et al.
(69)

Yes Two psilocybin
sessions (10 mg
D1 + 25 mg D2)

None 19 Increased FC between
amygdala-visual areas

<0.050 NA 0 0 Preregistered,
correlation
analysis
performed (fMRI
findings and
treatment
response),
validated
depression
measures

Small sample size,
absence of control,
lack of blinding,
2-week washout
possibly
insufficient

Increased FC between
DMN-visual areas

<0.050 NA 2 0
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TABLE 1 (Continued)

References Pre-
registration?

Treatment Control Sample
size

Observed
post-dosing
effect

P-value Effect
size

# of studies
reporting
consistent

findings

# of studies
reporting

inconsistent
findings

Strengths Limitations

Doss et al. (70) Yes Two psilocybin
sessions
(20 mg/70 kg
D1 + 30 mg/70 kg
D2)

None 19 Increased within-DMN
FC

0.010 0.64* 1 11 Preregistered,
correlation
analysis
performed (fMRI
findings and
treatment
response), robust
analyses,
validated
depression
measures

Small sample size,
absence of control,
lack of blinding

22 Increased cognitive
flexibility

<0.001 0.35** 1 0

Doss et al. (70) Yes Two psilocybin
sessions (10 mg
D1 + 25 mg D2)

None 16 Decreased brain
modularity

0.012 0.72* 7 0 Placebo
controlled and
double-blind
(DB-RTC),
preregistered,
validated
depression
measures,
differences in
time of fMRI
scan between
trials strengthens
validity, robust
and thorough
analyses,
correlation
analysis
performed (fMRI
findings and
treatment
response)

Small sample size
in open-label trial,
inherent lack of
reliability in
relating
psychological
processes
(flexibility) to
brain modularity,
possibility for
in-scanner sleep
with closed-eye
fMRI

Reduced within-DMN
FC

0.009 0.75* 11 1

Increased
between-network FC

0.010 0.72–0.75* 7 0

Two psilocybin
sessions (25 mg
D1 + D2)/2 × 1 mg
psilocybin + 6 weeks
escitalopram

Two ×

psilocybin
(1 mg) +
escitalopram
(10–20 mg)

43 Decreased brain
modularity

0.039 0.47* 7 0

Increased cognitive
flexibility

NA NA 1 0

First and second doses of psilocybin are represented as D1 and D2, respectively. fMRI, functional magnetic resonance imaging; FC, functional connectivity; CBF, cerebral blood flow; DMN, default mode network. Effect sizes are expressed as Cohen’s d = (*)
or as partial eta squared η2P = (**). The column titled “# of studies reporting consistent findings” refers to the number of studies reviewed which report findings that are consistent with the post-dosing effects observed in each main depression study.
Similarly, the column “# of studies reporting inconsistent findings” reflects the number of studies reviewed whose findings that are inconsistent with the post-dosing effects observed in each main depression study. NA signifies information pertaining to
effect sizes is unavailable.
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accumbens, right insula, and left subgenual area (9). These areas
play a major role in emotional regulation and are less active
in depressed patients (9). The amygdala is also hypersensitive
to negative stimuli in depressed patient (71, 72) resulting in
negative cognitive bias (73) and deficits in emotional regulation
(74). SSRIs reduce amygdala responsiveness (75, 76) and a
similar mechanism has been proposed for the antidepressant
effect of psychedelics. In healthy volunteers, LSD reduce
reactivity of the left amygdala to fearful faces (77) and psilocybin
reduces response of the right amygdala to negative and neutral
stimuli, with these reductions correlating with increases in
positive affect (78). In depressed patients, opposite results have
been reported: psilocybin induced increased right amygdala
BOLD response to emotional faces (with a larger increase with
fearful than with happy faces) 1 day post-treatment; larger
responses to fearful faces correlated with higher improvements
in depressive symptoms (79). This suggests psychedelics
may actually restore emotional responsiveness in depressed
individuals, in contrast to the emotional blunting associated
with SSRIs (79). In patients with TRD, 1 day post-psilocybin,
fMRI scans taken while viewing fearful faces also revealed
reductions in connectivity between the vmPFC and right
amygdala; it was associated with less rumination 1 week later,
suggesting that disinhibition of the right amygdala by the
vmPFC mediates psilocybin-induced increases in amygdala
responsiveness in these depressed individuals (69). Under
the same conditions, higher connectivity was also observed
between the vmPFC and the right lateral occipital cortex,
occipital pole, and fusiform gyrus; it was associated with
improvements in depressive symptoms (69). Similar hyper-
connectivity between the DMN and the occipital cortex has
been reported in healthy volunteers after administration of
LSD (64) or psilocybin (65), and between the amygdala and
occipital cortex after administration of psilocybin (80). Deficits
in down-regulation of the visual cortex in response to negative
emotional stimuli has been demonstrated in MDD (81). Thus,
psychedelics may help to normalize emotional processing in
depressed patients by increasing vmPFC-mediated inhibition
of the occipital cortex in response to negative stimuli, thereby
reducing negative attentional bias. Taken together, these findings
suggest a complex interplay among signals from the DMN,
amygdala, and visual cortex may be involved in regulation of
emotional response induced by psychedelics in MDD.

Finally, psychedelics increase connectivity between the
intrinsic functional networks, i.e., spatially distinct brain
regions that are functionally related (82). Brain-wide network
disconnectivity is associated with depressive symptoms (83).
Thus some antidepressant effects of psychedelics may also
result from their ability to increase between-network FC.
These increases have been observed in healthy volunteers
after administration of psilocybin (56, 61, 84) or LSD
(60, 62), particularly in areas rich in 5-HT2AR (60). In
depression, psilocybin has been shown to increase global FC

(68, 70). In one open-label trial, increase in global FC 1 day
after psilocybin dosing was associated with improvement in
depressive symptoms 6 months later (68). Specific increases
were observed between the DMN and Executive Network
(EN), Salience Network (SN). A randomized controlled
trial comparing two doses of psilocybin vs. 6 weeks of
daily escitalopram for depression saw increased EN dynamic
flexibility with psilocybin only–reflecting an increase in the
frequency of connectivity changes seen the during fMRI scan.
This correlated with symptom improvement 6 weeks post-
dose (68). Psilocybin has also been shown to alter connectivity
patterns between the task positive network (TPN) (85), which
is involved with external or other-processing (82), and the
claustrum, or the DMN. Theoretically, the claustrum, known
to be volumetrically reduced in depression, may mediate
psychedelic-induced network disruptions due to its widespread
connectivity (85).

Most psychedelic studies discussed in this section suffer
from limitations, in particular difficulties in blinding and small
sample sizes. Still, fMRI studies in depression have produced
relatively consistent findings and their designs have been
rigorous. As summarized in Table 1, of the six fMRI depression
studies reviewed, five were preregistered (68–70, 79), all used
validated depression scales (67–70, 79) and one was double-
blinded and placebo-controlled (68).

4. Neurophysiology

As summarized in Table 2, neurophysiology studies
provide further support for DMN-related alterations.
Electroencephalogram (EEG) recordings in healthy volunteers
given LSD or ayahuasca show reductions in broadband
oscillatory power and cortical synchrony particularly within
areas of the DMN (86–88). Similarly, magnetoencephalography
(MEG) shows broadband desynchronization of cortical
oscillatory rhythms and decreases in network integrity after
ingestion of psilocybin (89), supporting that psychedelics
can disorganize spontaneous brain activity (58, 89). In
participants who ingested LSD, EEG, and MEG studies have
also showed a relationship between decreased alpha power
and the hallucinatory experience and subjective reports of ego
dissolution (87, 90).

High frequency gamma waves appear when individuals are
performing cognitively challenging tasks requiring focus (66).
The limited current literature reports increases in gamma power
in individuals administered psilocybin. This supports the theory
that the DMN is affected by psychedelics as the PFC and
hippocampus are activated during tasks requiring concentration
in which gamma waves are present (66). However, given the
sparsity of relevant human data, this theory remains speculative.
Evidence suggests that changes from delta to gamma waves
are consistent across different psychedelics (91). Additionally,
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TABLE 2 Summary of neurophysiology studies.

References Pre-
registration?

Treatment Control Sample
size

Observed
post-dosing
effect

P-value Effect
size

# of studies
reporting
consistent

findings

# of studies
reporting

inconsistent
findings

Strengths Limitations

Carhart-Harris et al.
(12)

No LSD in saline
(75 µg/10 mL)

10 mL saline 20 Increased CBF in visual
cortex associated with
decreased alpha power in
OC

0.029 NA 0 0 Motion
correction took
place for
analyses of
neuroimaging
data making it
robust

Not performed as a
double blind RCT.
Performance of
neuroimaging
techniques at
separate times.

Decreased alpha power
associated with
hallucinations

<0.05 NA 2 0

Muthukumaraswamy
et al. (89)

No Psilocybin in saline
(2 mg/10 mL)

Saline 15 Reduction in oscillatory
power in delta, gamma,
alpha, beta, and theta
bands

<0.05 NA 3 0 Robust statistical
analyses of
measures. Vast
neuroimaging
data collected

Low
generalizability to
population of those
that have no
experience using
psychedelic drugs.
Removal of MEG
data due to head
movement. Small
sample size.

Murray et al. (87) No Two LSD sessions
(13 µg and 26 µg)

Water 22 Reduction in oscillatory
power in delta, gamma,
alpha, beta, and theta in
MPC, PCC, TPC

<0.05 NA 3 0 Blinded study
with participants
acting as their
own controls.
Robust EEG
data collected

Affected brain
structures were
inferred from the
location in which
the extra cranial
electrodes were
located. Small
sample size.

Riba et al. (86) No Two doses of
Ayahausca (0.6 mg
DMT Kg−1 , 0.85 mg
DMT Kg−1)

Water 18 Decreased absolute
power of theta, delta,
alpha, and beta

<0.05 NA 3 0 Blinding and
placebo control
were used while
participants
acted as their
own controls.

Small sample size

(Continued)
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LSD, ayahuasca, and psilocybin induce alpha power reductions
within the occipital and parietal cortices, which are important
structures for the interpretation of visual stimuli (88). It is
believed this reduction explains subjective reports of visual
hallucinations as alpha oscillations have been found to play a
role in cortical processing of sensory information (92). Finally,
under the influence of ayahuasca and LSD, psychedelic effects
such as ego dissolution and spiritual feelings have been reported
during moments of global decreases in alpha waves (92).
Alpha oscillations are correlated with functions in which the
DMN plays a major role such as self-reflection; as discussed
above, fMRI studies support this association (93). Psychedelic-
induced ego dissolution in patients with MDD is correlated with
improvement in depressive symptoms, supporting the theory
that ego dissolution is associated with decreased connectivity
within the DMN and further establishing a possible link between
alpha oscillations and the DMN (92, 93).

5. Psychology

Many depressed individuals experience ruminations,
with intense self-focus and narrowed thinking. Enhanced
neural and cognitive flexibility associated with psychedelics
may enhance psychological flexibility, affording them
access to a broader frame of mind (68). Thus, it has been
hypothesized that psychedelics facilitate transitions away
from maladaptive thought patterns, which can be amplified
during the “integration” component of psychedelic-assisted
psychotherapy (PAP) post-treatment (70). The antidepressant
effect of psychedelics has also been postulated to result from
their ability to restore emotional responsiveness (86), allowing
people to fully experience and accept their emotions (76,
86). This emotional release is thought to be facilitated by
disruption of connectivity in regions with high density of
5-HT2ARs (75). Ego dissolution, characterized by a blurring
of the distinction between self and other (68) is commonly
experienced with psychedelics (63, 67, 68). It has been
speculated it allows for an enhanced sense of connection with
others and lessen feelings of loneliness. Finally, “mystical
experiences” may also play some role in relieving depressive
symptoms but this has not yet been evaluated (74). In summary,
psychedelics may facilitate some degree of psychological
transformation, possibly allowing patients to move beyond
their depression.

6. Discussion

Overall, available evidence suggests serotonergic
psychedelics impact depression, in part through serotonin
receptor agonism, neurogenesis, immunomodulation,
widespread changes in connectivity within the brain, and
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psychological effects. To date, neuroimaging studies provide
the most robust investigation into the mechanisms of action
of psychedelics, but their results remain limited. More
studies with larger and more diverse samples are needed
to replicate and extend current findings. Future studies
should also account for symptom severity and comorbidities
while assessing whether and how PAP and social supports
contribute to the therapeutic action of psychedelics. Neural
correlates of the antidepressant effects of psychedelics and other
pharmacotherapies should be compared directly to quantify
differences between mechanisms of action.

Understanding the role of the psychedelic experience
and its relationship with antidepressant effect should also
be a focus of future research. As it stands, alterations
in perception induced by psychedelics are a major barrier
to their clinical adoption because they require intensive
psychological support. As stated above, it is possible that
psilocybin’s antidepressant effect is mediated through rapid
activation of 5-HT receptors other than those involved in
the psychedelic experience. This raises the possibility of
blocking the psychedelic experience by co-administering 5-
HT2A antagonists, like ketanserin or risperidone, without
impeding the antidepressant therapeutic effect. More research
is needed to explore this possibility and better understand the
relationship among serotonin receptors, psychedelic effect, and
antidepressant effect.

7. Conclusion

As use of, and research on, psychedelics expand,
understanding their mechanism of action through molecular
science, neuroimaging, and neurophysiology is critical. With
several relevant competing theories, well-designed studies need
to determine which mechanisms are central to their therapeutic
action and which ones are epiphenomenal.
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