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Editorial on the Research Topic

Precision medicine approaches for heterogeneous conditions such

as autism spectrum disorders (The need for a biomarker exploration

phase in clinical trials - Phase 2m)

Significant progress has been made in understanding the biology of autism spectrum

disorder (ASD), providing rational hypotheses for interventions to address the core

symptoms. However, clinical trials of these interventions have failed to yield positive

results to date. In many of these studies, a subset of participants appear to respond

well, but a significant benefit is not found in the overall intent-to-treat group. Due

to the etiological heterogeneity of ASD, we anticipate that this will continue to be a

challenge in future clinical trials. It will be critical to identify the patients that are most

likely to respond to a treatment and to target those subjects in later phase trials. We
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therefore propose the explicit inclusion of “Phase 2m” as part

of the pathway of clinical drug development, specifically for the

development of a biomarker profile that can be incorporated

into later phase 2 and 3 clinical trials. Such a precision medicine

approach has the potential to optimize the likelihood of success

in future clinical trials to benefit patients.

Introduction

Autism spectrum disorder (ASD) is highly heterogeneous,

with estimates of potentially 1,000 genes that may be associated

with risk for ASD (1). This is in addition to cases with

environmental and other non-genetic contributors such as

infection and inflammation during pregnancy (2), as well as

cases that would at this point be considered idiopathic cases.

Studies using cellular and animal models have pointed to

underlying neurobiological systems and pathways impacted by

individual ASD risk genes, with some suggestion of convergence

across genes. For example, research exploring the synaptic

mechanisms impacted by the fragile X syndrome (FXS) gene

FMR1 led to trials with negative allosteric modulators of

metabotropic glutamate type 5 receptors in FXS (3). Converging

lines of evidence (4, 5) led to clinical trials that target

glutamatergic and GABAergic functions in ASD; however,

these studies have failed to yield positive results for primary

outcome measures. The GABA-B receptor agonist arbaclofen,

for example, did not show significant benefit on its primary

outcomemeasure in a phase 2 clinical trial for ASD (6). The high

degree of heterogeneity within ASD likely contributes to these

failures, as a treatment designed to target one biological etiology

of ASD may not have a beneficial effect on patients with ASD

resulting from perturbations in other biological pathways.

Heterogeneity and biomarkers in
ASD

Heterogeneity in ASD can be observed in multiple

dimensions, from core symptom pattern to cognitive or

communication ability to identifiable risk factors. Genetics

has been proposed as a method of subtyping autism (7–17).

Rare variants with high penetrance that are directly involved

in the etiology of ASD have provided major insights for

development of novel therapeutics, while other genes serve as

risk factors for ASD that may act in concert with other genetic

or environmental risk factors (1, 7–10). However, therapeutics

designed to target one specific etiology have an unknown

impact on other etiologies of ASD. Additionally, there is a need

for greater understanding of pleiotropy within each specific

etiology, whereby one might respond to a specific treatment but

not another within this group.

In hopes of examining common downstream pathways of

the effects of individual etiologies on neural systems, other

biomarkers have been assessed in ASD, including markers

of brain structure and activity (EEG, imaging) (18–27). A

recent study by Ellegood et al. found that 26 different ASD-

associated mouse models converged onto three clusters of

brain anatomical features from MRI (28). This suggests that

neuroimaging may be a powerful tool in the identification

of ASD subtypes with specific treatment response, despite

genetic heterogeneity; although cost and feasibility issues may

limit neuroimaging, particularly in young and more impaired

ASD patients. Other types of biomarkers that may be helpful

include epigenetic (29, 30), transcriptomic (31–33) (Beversdorf

et al.), proteomic (34), and metabolomic markers (35, 36),

as well as neurobehavioral measures such as eye-tracking

and pupillometry (37–40), actigraphy (41), and psychophysical

measures (42). The presence or absence of co-occurring medical

(seizures, sleep disturbances, gastrointestinal conditions) and

psychiatric conditions (aggression, anxiety, attentional deficits)

also contributes to heterogeneity and certainly impacts the

approach to treatment.

Heterogeneity is also seen in the core domains of ASD,

including social communication and reciprocity deficits,

repetitive behaviors/hyperfocused interests, and sensory

symptoms. With such disparate symptoms, it may be difficult

to formulate ASD severity along a single dimension or to

model this unitary diagnosis in epidemiological research or

in animal models. The Research Domain Criteria (RDoC)

initiative at the National Institute for Mental Health (43)

focuses on specific behavioral or cognitive domains within

psychiatric or neurodevelopmental diagnoses and may be

more tractable for research that spans methods. In support of

this, data-driven brain imaging studies have found that brain

networks contribute to social communication in a manner that

is not diagnosis specific (44). Furthermore, recent studies of

the structure of ASD symptoms have suggested four or more

distinct social communication dimensions and five separate

restricted/repetitive behavior subdomains (45–49). Targeting

specific symptom domains would seem advantageous for such

a heterogeneous condition as ASD. Recognizing heterogeneity

across multiple dimensions, however, it is possible that an

intervention may benefit a specific symptom domain in one

specific etiology of ASD, with uncertainty about whether this

will extend to the broader group of individuals with ASD

diagnoses (2).

Within the heterogeneity of ASD, some biomarkers may

predict a subpopulation with common disease mechanisms

and may therefore be predictive of treatment efficacy. As one

of the few examples of the potential utility of biomarkers

to dissect heterogeneity within ASD treatment studies, low

baseline plasma oxytocin level predicted response to intranasal

oxytocin for social responsivity; although this did not replicate

in a larger study (50). There are other obvious opportunities
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to tap into this approach. Alterations in the glutamatergic

and GABAergic systems are found with some consistency

in ASD postmortem brain studies (51–53), as well as in

vivo with magnetic resonance spectroscopy (MRS), albeit with

some variability across brain regions (54–56). Some large

clinical trials for core symptoms of ASD targeted glutamatergic

(memantine) and GABAergic (arbaclofen) systems (6). It

is possible that direct or indirect markers of GABAergic

or glutamatergic system activity, such as MRS (57) (Nair

et al.) or EEG gamma band activity (58), would have been

valuable in predicting response in a subgroup of individuals,

recognizing that no significant effect was seen in the overall

group of participants with ASD. Whole blood serotonin

(59, 60) or serotonin receptor binding on positron emission

tomography (61–65) could similarly predict responses to

treatments targeting serotonergic pathways (66). Psychophysical

reactivity indicative of sympathetic/parasympathetic tone (67)

could identify subjects that may be more responsive to

adrenergic treatments (68). In other cases, we may not have

obvious biomarker candidates to parse the heterogeneity in ASD

treatment studies.

Additionally, the developmental trajectory must be

considered in any approach, as mechanisms of actions that

impact the developmental trajectory of neural systems at one

stage may have an entirely different relevance at a later stage

(69). Among the well-replicated imaging findings in ASD is

anatomical overgrowth in the first post-natal years (70–74),

and some continue to have larger heads later in life resulting

from this (75, 76). It would seem that administration of an

agent affecting growth trajectories would have remarkably

different effects at different ages. Additionally, the impact of

the developmental trajectory is likely critical for a wide variety

of other factors as well. Thus, temporal factors must also be

accounted for in the heterogeneity of ASD to best facilitate

individualized treatment approaches and to move toward

personalized medicine in ASD.

Incorporation of a biomarker
exploration phase (phase 2m) in
clinical trials

The incorporation of rich biobehavioral data to allow

subgrouping of participants in clinical trials has the potential

to identify which subjects are most likely to respond to a

given treatment, and which clinical signs or symptoms are

most responsive to that treatment (2, 77, 78). However, the

current template of phases for drug development does not

regularly incorporate this. In clinical drug development, phase

1 trials are “dose escalation” or “experimental medicine”

trials, focused on the safety and tolerability of drugs, and

pharmacokinetics and pharmacodynamics are also assessed.

These are followed by phase 2 trials, where the findings of the

first phase are harnessed for further safety, pharmacokinetic,

and pharmacodynamic assessment with optimization of dosing

and endpoints to be targeted in subsequent phases. Phase 3 is

the confirmatory therapeutic trial, or pivotal trial, conducted

in a double blinded manner in a larger population, with

statistical power to achieve the predetermined target outcomes

based on the phase 2 findings. Successful phase 3 trials are

followed by drug approval and marketing, with subsequent

phase 4 studies using observational monitoring to evaluate

adverse reactions too infrequent to be detected in phase 3,

for monitoring clinical efficacy in the broader population, and

to assess cost effectiveness (79). Given the heterogeneity in

ASD, it is unreasonable to expect any drug to benefit the

majority of individuals, but ASD clinical trials have not had

sufficient sample sizes to detect improvement in a subset.

While the pharmacodynamic aspect of Phase 1 and 2 trials

might be used to identify useful biomarkers and precision

medicine targets, this has not commonly been the case

for autism drug development. Not surprisingly, then, drug

development programs in ASD have typically failed in phase 2

or 3.

A strategy, therefore, must be implemented early in the

clinical trial pathway (Figure 1), for identifying biomarkers

that can facilitate and inform future trials of the drug in

development. In light of the failures of recent large ASD trials

(5), we propose that early in Phase 2, a study or studies

that could be considered as phase 2m (marker exploration

phase) should include a rich set of biomarkers that are

assessed in a moderately large population of participants

to gain an understanding of which subjects respond best,

thereby informing the final design and statistical power of

later phase 2 and 3 trials. To maximize the richness of

the biomarker monitoring, it would be tempting to use a

design where all patients will receive the drug, however

an open label design is at risk of identifying biomarkers

that predict spurious (placebo-related or spurious) response.

Blinded crossover designs or staggered start designs might

be an appropriate alternative. The participants’ developmental

stage would also need to be considered as critical marker

in this phase. Some markers might be mechanistic, such as

biomarkers of GABAergic activity that could predict response

to GABAergic agents in ASD. A broader biomarker profiling

approach that spans phenotypic subgroups whose mechanistic

basis or effects are not fully understood, such as macrocephaly,

hyperserotonemia, or elevated IL-6, would better allow the

matching of treatments with biomarkers that were not be

predicted a priori. Other critical questions that could also

be addressed include whether earlier intervention could lead

to improvement not only in symptoms at the time of the

trial but also an improved developmental trajectory. Thus,

age of participation and long-term follow-up may be other

crucial components to consider for incorporation in future

clinical trials.
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FIGURE 1

Schematic representing the location of a phase 2m in clinical trials, after phase 1 and phase 2, and before phase 3, if the need for a biomarker

exploration phase is warranted based on the nature of the clinical condition. The dashed arrow moving directly from phase 2 to phase 3 might

be appropriate for some conditions, but incorporating the phase 2m seems warranted in conditions such as ASD.

Conclusions

With our improving understanding of the genetic and

environmental etiologies of ASD and the effects on specific

neural systems during distinct developmental epochs, this

information can be used for optimization of future clinical

trials. By incorporating studies that focus on the predictive

value of baseline biomarkers, while also exploring biomarkers

that change with treatment and may index response, we can

improve the likelihood of success in phase 3 clinical trials.

Integrated approaches to better understand the heterogeneity

of autism have been initiated by large collaborations that

include clinical trials, such as the Autism Innovative Medicines

Study–2-Trials (AIMS-2-Trials) (80–82), as well as the Province

of Ontario Neurodevelopmental Disorders (POND) Network

(83). Additionally, recent work in the Autism Biomarker

Consortium for Clinical Trials (ABC-CT) has been developing

neurobehavioral markers, including EEG/ERP, in the hope that

they can be used to monitor ASD in clinical trials (84–86). This

wealth of data may guide the planning for optimal biomarker

choices in the phase 2m setting, with mechanistic markers that

reflect the function of the neurobiological system(s) targeted by

the treatment and other neurobehavioral outcomes that serve as

more general indices of ASD symptomatology. Importantly, we

will not know which markers will be the best to predict and track

response until after the phase 2m is completed. The information

yielded by this, though, would likely help contribute to improved

outcomes for precision medicine optimization in phase 3—and

will result in fewer trials that fail to achieve statistical significance

despite having a subset of good responders. Furthermore,
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intervention with an individualized approach at earlier ages is

likely to have a larger effect on developmental trajectories. In

combination with impactful behavioral therapies (87–91), this

approach, implemented early in development, may have an even

greater impact on the overall burden of ASD over a lifetime

(2, 92).
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