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Introduction: Investigating the neuroimaging changes from mild cognitive

impairment (MCI) to Alzheimer’s disease (AD) is of great significance. However,

the details about the distinct functional characteristics of AD and MCI remain

unknown.

Methods: In this study, we investigated distinct profiles of functional

connectivity density (FCD) di�erences between AD andMCI comparedwith the

normal population, aiming to depict the progressive brain changes from MCI

to AD. As a data-driven method, FCD measures the profiles of FC for the given

voxel at di�erent scales. Resting-state functional magnetic resonance imaging

(fMRI) images were obtained from patients with AD and MCI and matched

healthy controls (HCs). One-way ANCOVA was used to investigate (global,

long-range, and local) FCD di�erences among the three groups followed by

post-hoc analysis controlling age, sex, and head motion.

Results: The three groups exhibited significant global FCD di�erences in the

superior frontal gyrus. The post-hoc results further showed that patients with

ADhad a significant increase in global FCD values than thosewithMCI andHCs.

Patients with MCI exhibited an increased trend compared with HCs. We further

identified brain regions contributing to the observed global FCD di�erences by

conducting seed-based FC analysis. We also identified that the observed global

FCD di�erences were the additive e�ects of altered FC between the superior

frontal gyrus and the posterior default model network.

Discussion: These results depicted the global information communication

capability impairment in AD and MCI providing a new insight into the

progressive brain changes from MCI to AD.

KEYWORDS

Alzheimer’s disease, mild cognitive impairment, fMRI, functional connectivity, default

mode network

Introduction

As an irreversible neurodegenerative brain disorder, Alzheimer’s disease (AD) leads

to severe mental dysfunction and ultimately death in patients (1). AD is characterized by

twomain pathological changes, namely, amyloid-beta plaques and neurofibrillary tangles

that finally lead to neuronal degeneration and loss (2). To date, there is no effective
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approach to early diagnosis and treatment that can stop or

hinder this progression in the world (3). The identification

of predictors at the beginning of AD, termed mild cognitive

impairment (MCI) with an annual progression rate, from MCI

to AD reaches 10 to 15% (4), which is of great significance in

the clinic (5). Discovering potential biomarkers for identifying

patients with MCI who are most likely to develop AD supports

early diagnosis and medical intervention.

Advances in modern neuroimaging technologies, especially

magnetic resonance imaging (MRI) technology, motivate

researchers to identify distinct neuroimaging phenotypes

between AD and MCI. Among these technologies, resting-state

functional MRI turns out to be a powerful tool to investigate

the progressive brain changes from MCI to AD (6). Studies

recognized that both tau and amyloid-beta accumulation can

affect neuronal activity and ultimately impair neuronal network

(7, 8). Using the functional MRI, researchers consistently

recognized that AD is accompanied by disruption of large-

scale brain systems supporting a variety of cognitive abilities

that were observed to decline with the disease progression

(9). In other words, AD is a neurodegeneration featured with

altered large-scale brain networks (10). These are two main

methods to investigate intrinsic brain networks using resting-

state functional MRI data, namely, independent component

analysis (ICA) and seed-based functional connectivity (FC) (11).

However, they have many problems. Specifically, seed-based

approach relies on a predefined region of interest that is difficult

to determine if the underlying pathology is unclear (12). As for

ICA, there is no effective method to determine the appropriate

number of independent components (13). In response to these

problems, a novel method named FC density (FCD) mapping

is proposed (14). As a data-driven method, FCD measures the

number of functional connections between the given voxel and

other voxels in the brain at different scales. Especially, the

global FCD value is found to reflect the glucose metabolism

(15) and the global information communication capability of

the given voxel (16). Brain regions with high global FCD values

are usually considered to be hubs of functional systems. At the

same time, cascading network failure hypothesis postulates that

tau deposition and amyloid lead to larger-scale brain network

abnormalities, especially for functional hubs (9). In this regard,

FCD is well suited to investigate brain disorders, including AD.

In this study, we aimed to investigate FCD differences

among patients with AD andMCI andmatched healthy controls

(HCs) to depict the progressive brain changes from MCI to

AD. Resting-state functional MRI images were obtained from

patients with AD (n= 33) and MCI (n= 88) and HCs (n= 30).

First, we calculated FCD (e.g., global FCD, long-range FCD,

and local FCD) values for each subject. Then, we investigated

FCD differences among the three groups. Previous studies found

that MCI could be further divided into early MCI (EMCI)

and late MCI (LMCI) on the basis of the severity of impaired

delayed recall of logical memory (17). We also investigated

whether EMCI and LMCI exhibited differences with regard to

FCD. Finally, to further determine brain regions contributing

to the observed FCD differences, seed-based FC maps were

constructed where brain regions showing FCD aberrance were

treated as seeds and compared among the three groups.

Materials and methods

Subjects

All subjects used in this study come from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) open database (http://

adni.loni.usc.edu/). This project recruited more than 1,500

adults aged between 55 and 90 years since 2013, comprising

patients with AD, those with MCI, and healthy population. We

downloaded the dataset fromADNI phase 2. All subjects fulfilled

the following inclusion criteria: (1) with no comorbidity with

depression; (2) having no other kinds of dementia; (3) having

clinical scales; and (4) having no obvious artifacts. In this dataset,

cognitive function and degree of dementia were evaluated using

the Mini-Mental State Examination (MMSE) and the Clinical

Dementia Rating Scale-Sum of Boxes (CDR_SB) (18, 19). More

details are included in Table 1.

Ethical review and approval were not required for the

current study in accordance with the local legislation and

institutional requirements. The datasets on which this article

relies on were reviewed and approved by the Cleveland Clinic

Institutional Review Board ADNI Individual Site Institutional

Review Board. Written informed consent for participation

was not required for this study in accordance with national

legislation and institutional requirements.

Data acquisition

Resting-state functional MRI images were acquired using

a 3.0 T Philips Healthcare MRI scanner. All subjects were

asked to keep their eyes closed during the scan. Images

were obtained by echo-planar imaging (EPI) sequence. The

scanning parameters were as follows: repetition time= 3 s, echo

time = 30ms, flip angle = 80◦, acquisition matrix = 64 × 64,

number of volumes = 140, slice thickness = 3.3mm, and voxel

size= 3× 3× 3 mm.

Data preprocessing

The preprocessing of functional MRI images was performed

using the Data Processing Assistant for Resting-State fMRI

package (http://www.restfmri.net). The following steps were

included: First, the first 10 scans with time point correction

and realignment were removed. Then, images were normalized
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TABLE 1 Demographic and clinical information of participants.

AD (n = 33) MCI (n = 88) HC (n = 30) p-Value

Sex (female/male) 14/19 42/46 12/18 0.720a

Age (mean± SE) 73.12± 7.36 71.60± 7.63 74.10± 5.60 0.219b

MMSE (mean± SE) 20.65± 3.55 26.49± 2.13 28.93± 1.02 <0.001b

CDR_SB (mean± SE) 4.17± 1.68 1.65± 2.84 0.00± 0.00 <0.001b

aChi-square t-test.
bOne-way ANOVA.

MMSE, Mini-Mental State Examination; CDR_SB, Clinical Dementia Rating Scale-Sum of Boxes.

to the standard EPI template and resampled to 3 mm3. In

this step, to control the head motion, subjects would be

excluded if the translational/rotational displacement exceeded

3.0 mm/3.0◦. Next, images were smoothed with 6 mm3

full-width at half maximum Gaussian kernel, detrended,

and filtered with bandpass (0.01–0.1Hz). Nuisance covariates

including white matter signal, cerebrospinal fluid signal,

and Friston 24 motion parameters (20) were regressed out.

Especially, the global signal was not included as another

covariate, as previous studies consistently recognized that

the global signal bore physiological signification and was

altered in mental disorders (21–23). Finally, to further remove

the effect of head motion, scrubbing with cubic spline

interpolation was used. The “bad” points were identified

with a threshold of frame displacement larger than 0.5mm

as well as one-forward and two-back neighbors (24). The

mean frame-wise displacement (FD) for each subject was also

calculated (25, 26).

Calculation of FCD

For each subject, we calculated (global, long-range, and

local) FCD maps according to the previous study (14). In this

study, we briefly described the calculation process, and more

details could be referred to in the study of Tomasi and Volkow

(14). For each voxel, the global FCD value was defined as

the number of significant functional connections between it

with other voxels in the gray matter. The local FCD value of

one voxel was defined as the size of a continuous cluster of

spatially connected voxels (voxel number) that were significantly

correlated with it (27). The long-range FCD value of voxel i was

obtained using the equation: long-range FCDi = gFCDi – local

FCDi (27). Some studies set the threshold with a predefined

correlation r (e.g., 0.6). We did not adopt this strategy, as

there was no clue to choose the optimal threshold (28). In

this study, the significance of one connection was determined

according to its p-value (p < 0.05, Bonferroni correction for

all voxels in the gray matter) (29). Finally, all FCD maps

were transformed to Z-scores by subtracting the mean and

dividing the value by the standard deviation across gray matter

voxels (30).

Statistical analysis

We obtained (global, local, or long-range) FCD map

differences among the three groups using one-way ANOVA

equipped in SPM12 (http://www.fil.ion.ucl.ac.uk/spm). To

exclude the effects of factors including age, sex, and mean

FD, they were included as covariates in this step. The results

were controlled with multiple comparisons with Gaussian

random field (GRF) where voxel-wise threshold was a p-

value of < 0.005 and cluster-level threshold was a p-value

of < 0.05. To determine the details about between-group

differences, we extracted the mean (global, local, or long-range)

FCD values of each peak coordinate with a spherical radius

of 6mm that demonstrated significant differences among the

three groups and compared them between each pair of groups

with two-sample t test. As previous studies identified that MCI

could be further divided into EMCI and LMCI (17), we also

investigated whether FCD values (extracted before) exhibited

significant differences between EMCI and LMCI with a two-

sample t test.

Identification of brain regions
contributing to the FCD aberrance

To further identify which brain regions contributed to the

observed FCD differences among the three groups, we calculated

seed-based FC maps where peak coordinates of identified

clusters showing FCD differences with a spherical radius of

6mm were treated as seeds. The obtained FC values were

transformed into Fisher Z-scores and then compared among

the three groups followed by post-hoc analysis. This procedure

was not designed to find significant FC differences connected to

seeds but to identify brain regions contributing to the observed

FCD differences. Thus, we reported uncorrected results with a

loose threshold (voxel-wise p < 0.05, cluster size > 100).
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FIGURE 1

(A) Global FCD aberrance among the three groups. (B) Post-hoc results. SFG, superior frontal gyrus. The “*” means that the di�erence is

significant (p < 0.05).

Association with symptom severity

To associate altered FCD values with symptom severity,

Pearson’s correlation coefficients between altered FCD values

(extracted before) and symptom scores (CDR_SB/MMSE)

were calculated.

Head motion analysis

As head motion had a strong impact on FC, we adopted a

number of strategies to exclude the effects of head motion on

our results. First, subjects would be excluded if the translational

and rotational displacement exceeded 3.0mm or 3.0◦. Second,
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TABLE 2 Brain regions exhibiting global FCD aberrance among the

three groups.

Cluster voxels MNI (x, y, z) Including regions F

1 75 9, 27, 48 Superior frontal gyrus 12.055

Medial frontal gyrus

mean FD was calculated for each subject and compared among

the three groups. Third, we also calculated Pearson’s correlation

coefficients between the FCD values of brain regions exhibiting

aberrance among the three groups and mean FD.

Results

Clinical demographics

The demographical and clinical information is included in

Table 1. As we could see, the three groups demonstrated no

significant differences in age and sex.

ANOVA and post-hoc results of FCD

The three groups exhibited significant global FCD

differences in the superior frontal gyrus (voxel-wise p < 0.005,

cluster p < 0.05, GRF corrected; Figure 1, Table 2). The post-hoc

results demonstrated that AD exhibited a significant increase of

global FCD in the superior frontal gyrus than MCI (t = 2.948,

p = 0.002, Cohen’s d = 0.602) and HCs (t = 3.276, p = 0.004,

Cohen’s d =0.827). Patients with MCI exhibited an increased

trend compared with HCs (t = 1.002, p = 0.318, Cohen’s

d = 0.212). There was no significant difference between patients

with EMCI and LMCI (all p values > 0.05).

Brain regions contributing to the FCD
aberrance

To further identify which brain regions contributed to the

observed FCD differences, we constructed seed-based FC maps

where the superior frontal gyrus was treated as the seed. The

results demonstrated that distributed brain regions showed

altered FC with the superior frontal gyrus, including the middle

cingulum, the precuneus, the thalamus, the parahippocampus,

the superior temporal gyrus, and the occipital lobe. The post-hoc

results further showed that AD exhibited increased FC of these

regions connected to the superior frontal gyrus than MCI and

HCs (Figure 2). In addition, MCI exhibited increased FC linking

the right cerebellum posterior lobe and the superior frontal

gyrus than HCs. The post-hoc results are shown in Figure 3,

Table 3.

Association with symptom severity

There was no significant correlation between global FCD

values of the superior frontal gyrus and CDR_SB/MMSE scores

(all p-values > 0.05).

Head motion analysis results

We adopted a series of strategies to exclude the effects of

head motion on our results. Four subjects (one AD, one MCI,

and two HCs) were excluded if their translational and rotational

displacement exceeded 3.0mm or 3.0◦. The three groups did

not exhibit a significant difference in mean FD (p = 0.164). In

addition, there was no significant correlation between mean FD

and FCD values (all p-values> 0.05). These results indicated that

our results were not obtained from head motion.

Discussion

In this study, we investigated distinct profiles of FCD

aberrance between AD and MCI, compared with matched HCs

aiming to depict the progressive brain changes from MCI to

AD. First, we found that the three groups exhibited a significant

global FCD difference in the superior frontal gyrus. The post-

hoc results further showed us that patients with AD had a

significant increase in global FCD than those with MCI and

HCs. Patients with MCI exhibited an increased trend compared

with HCs. There was no significant difference between subtypes

of MCI (EMCI and LMCI) in terms of global FCD values. We

further identified brain regions contributing to observed global

FCD aberrance. As a result, we identified that the observed

global FCD aberrance was the additive effects of FC between

the superior frontal gyrus and brain regions mainly located

in the posterior DMN including the middle cingulum, the

precuneus, the thalamus, the parahippocampus, the superior

temporal gyrus, and the occipital lobe.

Implicated in a variety of cognitive processes and motor

functions, the superior frontal gyrus was one of the brain regions

showing the greatest age-related volume reduction and surface

area reductions, which further predicts the risk of cognitive

decline and dementia (31–33). Connected with distributed

brain regions with white matter, the superior frontal gyrus was

implicated in spatial working memory (34, 35). Lesion studies

recognized that subjects with the superior frontal gyrus lesion

exhibited impaired workingmemory performance, especially for

spatial working memory (36). Decreased volume of the superior

frontal gyrus was associated with disinhibited behavior in

patients with AD (37). The intrinsic brain activity of the superior

frontal gyrus was also found in AD (38). Coinciding with

cascading network failure hypothesis, we observed increased

global FCD values in AD, possibly reflecting a compensatory
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FIGURE 2

Brain regions contributing to altered global FCD.

FIGURE 3

Post-hoc results of seed-based functional connectivity. Para, parahippocampus. MC, middle cingulum. The “*” means that the di�erence is

significant (p < 0.05).
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TABLE 3 Brain regions contributing to the observed global FCD

aberrance.

Cluster voxels MNI (x, y, z) Including regions F

1 566 30,−69,−42 Cerebellum posterior lobe 7.405

2 733 −36,−66,−3 Thalamus 9.461

Parahippocampus gyrus

Occipital lobe

3 188 33,−51, 3 Parahippocampus gyrus 7.794

Fusiform gyrus

4 1542 36,−36, 51 Precuneus 7.590

Superior temporal gyrus

Middle temporal gyrus

5 173 0,−36, 48 Middle cingulum 7.878

Precuneus

phenomenon in response to local network failure resulted

from tau accumulation (9). The compensation mechanism was

often reported and accompanied by impairments during the

progression from MCI to AD (39–42). Patients with MCI also

exhibited an increased trend of global FCD aberrance compared

with HCs. These results suggested that the compensatory

increase of the global information communication capability in

the superior frontal gyrus might be related to the conversion

from MCI to AD. Another possible explanation of the

increased global FCD was the heterogeneity in the pathology

of AD. Although functional dysfunction of the superior frontal

gyrus was widely reported, the findings were conflicting (43,

44). This might have resulted from the high interindividual

heterogeneity among individuals with AD. The high individual

variation in etiology and clinical manifestations was increasingly

acknowledged and was thought to be one of the leading

causes resulting in conflicting findings in neuroimaging studies

in brain disorders (45–49). In addition, we did not observe

significant differences between EMCI and LMCI. A number

of previous studies found that these two subtypes exhibited

structural and functional aberrance differences (50–52). The

disagreement between our results and previous studies might

also be attributed to the heterogeneity. More future studies were

needed to investigate the heterogeneity in AD and MCI.

Another finding was that the FC between the superior

frontal gyrus and the brain regions mainly in the posterior

default mode network (DMN) contributed to the observed

global FCD aberrance. Although the pathology of AD was found

to be related to a variety of brain networks, the dysfunction

of DMN was the most consistent and frequent findings in

AD (53). Compared with other brain networks, the DMN was

preferentially studied for two main reasons. First, converging

evidence recognized the linear association between the amyloid

deposition and the dysfunction of DMN (54) whose core regions

were associated with episodic memory retrieval (53, 55). Second,

the dysfunction of DMN was related to the disease progression

from MCI to AD (42, 56). For example, the hippocampus,

playing a vital role in declarative memory, was identified as

the anatomical signature of AD (57). The neuroanatomical

aberrance of AD was thought to stem from the hippocampus

and then spread to other brain regions (58). The hippocampal

atrophy along with its atrophy rate was consistently found in

AD and MCI and turned out to be potential biomarkers to

forecast the conversion from MCI to AD (59, 60). Apart from

brain regions in the DMN, the thalamus was found to play an

important role in AD. The thalamus, receiving and integrating

information from widespread brain regions, was of importance

in cognitive processes, memory, and attention (61, 62). The

microstructural change, volume atrophy, and functional decline

led to a deficit in cognitive ability with age, as observed in

the thalamus (63, 64). The volume atrophy and dysfunction

of the thalamus were related to memory dysfunction in AD

(65). Among these brain regions contributing to the observed

global FCD aberrance, the cerebellum was noteworthy as its FC

connected to the superior frontal gyrus differed between MCI

and HCs. In addition to the motor function, recent evidence

pointed out that the cerebellum was also implicated in working

memory (66) and that working memory impairment was one

of the dominating symptoms in AD and MCI (67). Consistent

with these results, we found that FC between these brain regions

and the superior frontal gyrus was altered in subjects with AD,

helping to depict the progressive brain changes fromMCI to AD.

This study has a number of limitations. First, all results

were obtained in one single dataset, whether our conclusions

held true in another independent dataset should be tested in

the future. Second, longitudinal data declaring which subjects

with MCI would develop AD were needed to further confirm

our results. Third, another reason that we did not observe a

significant difference between subtypes of MCI was the limited

sample size. Future studies could confirm this by using datasets

with large sample size.

Conclusion

In this study, we investigated distinct profiles of FCD

aberrance between AD and MCI compared with the

normal population, aiming to depict the progressive brain

changes from MCI to AD. Patients with AD exhibited

a significant increase in global FCD than HCs/MCI and

patients with MCI demonstrated an increased trend of

global FCD compared with HCs. Further results identified

that brain regions mainly located in the posterior DMN

contributed to the observed global FCD aberrance. These

results depicted the global information communication

capability impairment in AD and MCI and provided a

new insight into the progressive brain changes from MCI

to AD.
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