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Alcohol use disorder (AUD) contributes substantially to global morbidity

and mortality. Given the heterogenicity of this brain disease, available

pharmacological treatments only display efficacy in sub-set of individuals. The

need for additional treatment options is thus substantial and is the goal of

preclinical studies unraveling neurobiological mechanisms underlying AUD.

Although these neurobiological processes are complex and numerous, one

system gaining recent attention is the gut-brain axis. Peptides of the gut-brain

axis include anorexigenic peptide like glucagon-like peptide-1 (GLP-1) and

amylin as well as the orexigenic peptide ghrelin. In animal models, agonists of

the GLP-1 or amylin receptor and ghrelin receptor (GHSR) antagonists reduce

alcohol drinking, relapse drinking, and alcohol-seeking. Moreover, these

three gut-brain peptides modulate alcohol-related responses (behavioral and

neurochemical) in rodents, suggesting that the alcohol reduction may involve

a suppression of alcohol’s rewarding properties. Brain areas participating

in the ability of these gut-brain peptides to reduce alcohol-mediated

behaviors/neurochemistry involve those important for reward. Human studies

support these preclinical studies as polymorphisms of the genes encoding for

GLP-1 receptor or the ghrelin pathway are associated with AUD. Moreover,

a GLP-1 receptor agonist decreases alcohol drinking in overweight patients

with AUD and an inverse GHSR agonist reduces alcohol craving. Although

preclinical and clinical studies reveal an interaction between the gut-brain axis

and AUD, additional studies should explore this in more detail.
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1. Introduction

1.1. Alcohol use disorder

Alcohol use disorder (AUD) contributes substantially to
the world-wide mortality and morbidity (1). Indeed, harmful
alcohol use is associated with approximately 5% of all deaths and
contributes to over 200 diseases. Beyond these negative health
consequences, it contributes to socioeconomical losses for both
society and individuals (2, 3). It is a relapsing brain disease
characterized by reoccurring phases of craving, loss of control
and an escalated intake over time. The AUD cycle involves
three central stages, characterized by different behaviors, that
are repeated over time [for review see (4)]. In the initial binge
part of AUD, reward mediated by the mesolimbic dopamine
system is crucial. This reward associated system consists of
dopaminergic neurons of the ventral tegmental area (VTA) that
projects to areas like nucleus accumbens (NAc) or amygdala.
This neurocircuit also appears central for the second part of the
AUD cycle, namely compulsive alcohol-taking. The third stage
of the repeated AUD cycle is the consumption of alcohol due to
an avoidance of negative and abstinence symptoms [for review
see (4)]. During abstinence patients with AUD experience
craving, another feature where the mesolimbic dopamine system
participates. In summary, this suggests that the rewarding
properties of alcohol is one important aspect underlying AUD
process. In agreement, the alcohol’s rewarding experience has
been identified as a risk factor for later AUD diagnosis (5).

For a multifaceted disorder like AUD, one animal model
cannot be used to reflect its complexity, but can rather be
used together to reflect aspects thereof [for extensive review
see (6)]. In various alcohol drinking paradigms alcohol intake,
binge drinking and an escalation over time can be observed.
Withdrawal of alcohol causes relapse drinking, which has been
suggested to reflect craving in a human situation. Moreover, this
withdrawal causes abstinence symptoms in rodents as it does
in humans. In the operant self-administration model aspects
like alcohol consumption, the motivation to consume alcohol
and alcohol-seeking can be studied. In humans the reward of
alcohol is positively associated with dopamine release in nucleus
accumbens (NAc), and similarly alcohol releases dopamine in
NAc in rodents [for review see (7)]. Therefore, preclinical
models like locomotor activity, and dopamine release in NAc
are used as they reflect activation of the mesolimbic system and
tentatively reward. Moreover, the conditioned place preference
(CPP) test can be used to reflect either alcohol reward (rCPP) or
the memory of the alcohol-induced reward (mCPP).

These preclinical models have been used in attempts to
define the complex pathophysiology of the AUD process,
where the multifaceted neurobiological processes of each of
these stages has to be studied and various players have been
defined. Intriguingly, the underpinnings of AUD stages involve
multiple signals that may diverge and overlap to some extent.

Collectively such studies have contributed to the approval of
AUD medications. Today, four pharmaceuticals with different
mechanism of action have been approved for treatment of
AUD: Disulfiram, acamprosate, naltrexone, and nalmefene.
Importantly, clinical studies reveal a reduction in alcohol
drinking in AUD patients by these agents (8–10). However,
the heterogeneity of a complex disease like AUD contributes
to the limited efficacy of these pharmaceuticals [for review see
(1, 11)] and thus additional treatments are warranted; an aim
of studies exploring the neurobiological substrates of AUD.
These neurobiological underpinnings have been characterized
extensively and recent studies imply the gut-brain axis as an
important modulator of the AUD cycle [for review see (12)].

1.2. The gut-brain peptides
glucagon-like peptide-1, amylin, and
ghrelin

The role of the gut-brain axis in maintaining glucose and
energy homeostasis is crucial and involve a number of different
peptides (13). Although all these peptides display important
physiological and behavioral effects, glucagon-like peptide-1
(GLP-1), amylin, and ghrelin have gained extra interest as they
play an important role for the regulation of alcohol responses.
It should, however, be noted that other important gut-brain
peptides have been studied in relation to alcohol, and the
importance of the neuropeptide orexin and galanin has been
reviewed elsewhere [for review see (14, 15)].

1.2.1. Glucagon-like peptide-1
Preproglucagon (PPG) containing cells/neurons of the

intestine, pancreas, nucleus of the solitary tract (NTS), and
olfactory bulb produce GLP-1 (16, 17). It is secreted after a
meal to induce satiation, and is thereafter rapidly degraded
by DPP-IV and neutral endopeptidase 24.11 [for review see
(17)]. GLP-1 acts via its receptor, GLP-1R, to regulate a
wide range of physiological properties. Of these, its ability
to normalize plasma glucose levels though a facilitation of
insulin secretion (18) led to the approval of GLP-1 related
treatments for type II diabetes (19). Moreover, the ability
of GLP-1R agonists to reduce feeding, appetite, and body
weight gain (20–27) have contributed to the approval of
these compounds to treat obesity [for review see (28)]. Due
to the above-mentioned quick degradation, long-acting GLP-
1R agonists have been developed [see (29)]. Exendin-4 (Ex-
4)/exenatide and liraglutide are injected twice daily or daily
respectively, whereas dulaglutide, and semaglutide are used as
once weekly treatments. Another way to stimulate the GLP-
1 pathway is to enhance the circulating levels of GLP-1 by
inhibition of DPP-IV, by using the diabetic agents sitagliptin
and linagliptin.
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1.2.2. Amylin
Another gut-brain peptide produced in the pancreas

is amylin, which is co-secreted with insulin and works
synergistically with insulin to decrease blood glucose. The
amylin analog pramlintide is thus approved for the treatment
of diabetes [for review see (30)]. Besides this effect on glucose
homeostasis, amylin reduces homeostatic and hedonic feeding,
causes satiety, and reduces body weight [for review see (30)].
Amylin related compounds are thus being tested as anti-obesity
agents. Amylin acts via the amylin receptor (AMYR), which
consists of the calcitonin receptor (CTR) together with one
of three receptor activity-modifying proteins (RAMP1-3). To
date, preclinical studies mostly use amylin or salmon calcitonin
(sCT; an AMYR agonist) when investigating behavioral roles
associated with the amylin pathway (31).

1.2.3. Ghrelin
Ghrelin (acyl-ghrelin) is an orexigenic peptide, with

the ability to increase both the hedonic and homeostatic
aspects of feeding behaviors and is released pre-prandially to
stimulate appetite and hunger [for review see (32)]. Therefore,
suppression of the ghrelin pathway has been suggested as one
way to treat obesity. However, no available ghrelin related
treatments exist clinically and therefore antagonists like
JMV2969 and [D-Lys3]-GHRP-6 are used only in research.
Besides feeding, ghrelin controls multiple physiological
properties such as growth hormone release, cardiovascular
function and gut motility [for review see (32)]. These effects
are initiated via the activation of growth hormone secretagog
receptor (GHSR, ghrelin receptor), a G-protein coupled
receptor with ligand-independent abilities. GHSR have a high
intrinsic activity, can form heterodimers and are allosterically
modulated by other receptors [for review see (32)]. Ghrelin is
mainly produced and secreted in the stomach and intestine,
but additional production may exist in brain regions like
hypothalamus [for review see (32)].

2. The role of glucagon-like
peptide-1, amylin, and ghrelin on
alcohol-related responses in
animals and humans

As mentioned above, GLP-1, amylin and ghrelin are well-
known for their effects on feeding behaviors. However, the
expression of their receptors is wide-spread and include areas
associated with reward (16, 33–40). This review will discuss
more recent findings showing that these three peptides modulate
the response to rewards like alcohol in animals and humans.
First, their effect on different alcohol consummatory behaviors
is summarized, and then their ability to influence alcohol-
related responses (behavior and neurochemistry) is introduced

(Figure 1). Thereafter, brain regions participating in this
interaction is reviewed (Figure 2). On a final note, available
human studies addressing this interaction are presented. In each
segment below, the findings from the GLP-1 system will be
presented first, followed by amylin and finally data related to
ghrelin signaling; a comparison is missing in available reviews.

2.1. The role of glucagon-like
peptide-1, amylin, and ghrelin on
alcohol consummatory behaviors

2.1.1. Glucagon-like peptide-1
The ability of different GLP-1R agonists to reduce alcohol

drinking has been shown in a vast number of preclinical studies
(Figure 1). In male rats exposed to alcohol for long periods
of time, acute treatment with either Ex-4, GLP-1, liraglutide
or semaglutide reduces both the alcohol consumption and the
preference for alcohol (41–45). A reduction is also evident in
non-human primates treated with exenatide or liraglutide (46).
In line with the findings after acute administration, repeated
injections of liraglutide decreases alcohol intake in male rats
(44). Moreover, weekly treatment with dulaglutide for 5–9 weeks
reduces the consumption of and preference for alcohol in
male and female rats throughout the entire treatment period
(47). Although the decrease in alcohol drinking is slightly
less pronounced in female compared to male rats, this is the
first study demonstrating a decline in female rats (47). The
findings that dulaglutide treatment does not cause a tolerance
and the lowered alcohol drinking persists after treatment
discontinuation (44, 47, 48), may be beneficial in a clinical
situation. In group-housed male mice Ex-4 treatment decreases
alcohol drinking, most likely due to an altered drinking pattern.
Specifically, the latency to first drinking Is enhanced and the
number of drinks is lowered after Ex-4 (49). The ability of GLP-
1R agonists to reduce alcohol drinking may be associated with
both central and peripheral GLP-1R as the expression of GLP-
1R exists throughout the body. However, the profound decline
in alcohol drinking by the different GLP-1R agonists appear to
depend on GLP-1R in the brain rather than body (50).

Taken together these preclinical studies show that GLP-
1R activation is required for alcohol consumption, an effect
persistent across species and GLP-1R agonists used. However,
there are different ways to target the GLP-1 pathway, where two
alternatives are stimulation of the receptor or the enhancing
endogenous GLP-1 levels. Compared to GLP-1R activation, the
role of the peptide itself for alcohol drinking is less studied.
However, a few studies report that manipulation of GLP-
1 centrally (42, 51) but not peripherally (45) alters alcohol
drinking. It should thus be suggested that the detailed role
of GLP-1 and the origin thereof is a tentative focus on up-
coming studies.
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FIGURE 1

Schematic summary of how glucagon-like peptide-1 receptor agonists (GLP-1Rant), amylin receptor agonists (AMYRa), ghrelin receptor
antagonists (GHSRant), and ghrelin (GHR) influence alcohol consummatory behaviors and alcohol-related behaviors and neurochemistry in
rodents (↓; decrease, ↑; increase). Created by BioRender.com.

Besides controlling alcohol consumption as summarized
above, GLP-1R activation influences the motivation to consume
alcohol and relapse drinking observed after alcohol withdrawal.
On this note, in male rats the motivation to consume alcohol
in the operant self-administration model is lowered by Ex-
4 acutely or liraglutide repeatedly (41, 44, 52). Similarly, in
this model Ex-4 suppresses the progressive ratio for alcohol in
male rats, indicating that Ex-4 reduces alcohol-seeking (41).
Additional preclinical studies show that two different GLP-1R
agonists (Ex-4 or AC3174) prevent relapse drinking in male
rodents (44, 48, 49). Abstinence symptoms is another AUD
criteria, that may be influenced by the GLP-1 pathway in
rodents; both the receptor and the peptide itself. Specifically,
abstinence symptoms during withdrawal such as anxiety is
prevented by liraglutide (the GLP-1R agonist) or sitagliptin (a
DPP-IV inhibitor that enhances endogenous GLP-1) (53, 54).
Although preclinical models may not signify AUD diagnosis,
they may model aspects thereof. Therefore, together these

data may indicate that GLP-1R regulate different aspects
of the AUD cycle.

2.1.2. Amylin
In contrast to the role of the GLP-1 pathway for alcohol

consumption behaviors, the influence of AMYR thereof is less
studied (Figure 1). It was initially demonstrated that acute
or repeated treatment of sCT (AMYR agonist) lowers alcohol
intake in high alcohol-preferring rats exposed to alcohol for
prolonged period of times (55, 56). Similarly, another AMYR
agonist, AMY1213, decreases alcohol drinking in both male and
female rats with long alcohol drinking before treatment (57).
These latter findings display for the first time that both sexes
respond to AMYR activation, however, the response is more
beneficial in females. The modulatory role of AMYR on alcohol
drinking is further supported as the AMYR antagonist AC187,
in contrast to agonists, increases alcohol intake in male rats
(56). A limitation with the AMYR agonists such as sCT and
AMY1213 compared to GLP-1R agonists, is that a tolerance
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FIGURE 2

Schematic illustrations on the impact of glucagon-like peptide-1 (blue), amylin (purple), and ghrelin (red) in different brain regions on
alcohol-related behaviors in rodents (– inhibition/decrease; + stimulation/increase, not studied). Nucleus accumbens (NAc), amygdala (Amy),
hippocampus (HI), lateral hypothalamus (LH), ventral tegmental area (VTA), laterodorsal tegmental area (LDTg), and nucleus of the solitary tract
(NTS). Created by BioRender.com.

toward treatment is observed (56, 57). As such, other agonists
of AMYR should be tested in these drinking models in rats of
both sexes. Just like the GLP-1 pathway, AMYR modulates other
alcohol drinking behaviors. Indeed, acute administration of sCT
prevents relapse drinking after a withdrawal period and reduces
alcohol drinking in the operant self-administration model in
alcohol-experienced male rats (55, 56).

2.1.3. Ghrelin
As ghrelin is an orexigenic peptide, GHSR antagonists in

contrast to GLP-1R or AMYR agonists are used to suppress
alcohol intake (Figure 1). On this note, acute or repeated
treatment with GHSR antagonists lowers alcohol intake in male
animals consuming alcohol for long- (58, 59) or short-periods
of time (60–64). Similarly, GHSR knockout rodents display a
lower alcohol intake compared to their wild-type litter mates
(58, 65). The decline in alcohol drinking may involve a GHSR in
NAc, as female rats with a long-term alcohol exposure decreases
alcohol drinking after local infusion into this area (66). It should
be noted that the dose-dependent decline induced by the GHSR
antagonist is more profound in rats exposed to alcohol for
seven compared to 3 months (59). This indicates that GHSR
antagonist treatment may be particularly suited for patients with
a severe AUD which may respond better than a mild AUD or
social drinkers; something that should be tested in future human
studies. A clinical trial should also observe the possible lack
of apparent tolerance toward GHSR antagonism treatment, a
finding evident in male rats (59). On a similar note, no tolerance
development is seen for agonists of the GLP-1R, but is evident
AMYR.

Besides these profound effects on alcohol drinking, GHSR
antagonists modulate other alcohol drinking behaviors. This can
be observed in the operant self-administration paradigm, where
the alcohol consumption and alcohol-seeking is diminished by
pharmacological or genetical suppression of the GHSR (61, 65,

67). Moreover, GHSR antagonism suppresses relapse drinking
after prolonged periods of alcohol abstinence (58, 59).

For GLP-1 and amylin studies, agonism and antagonism of
the receptor have opposite effects; a finding also true for the
ghrelin system. Indeed, in contrast to GHSR suppression ghrelin
administration into the brain profoundly increases alcohol
intake in male mice (58). However, the treatment outcome
after peripheral systemic ghrelin administration varies. Thus,
systemic administration of ghrelin has been shown to elevate
alcohol intake in one study (68), but had no effect in another
study (69). The role of ghrelin for alcohol intake is further
debated as neutralization of circulating ghrelin does not affect
alcohol consumption (70) and blood ghrelin levels are similar in
high- and low-alcohol consuming rats (67).

2.2. The role of glucagon-like
peptide-1, amylin, and ghrelin on
alcohol-induced behaviors and
neurochemistry

The findings that the rewarding aspects of alcohol enhances
the risk of AUD diagnosis later in life (5) and that they
are also important for several phases of the AUD cycle
(4), indicate that reward is a central part of the addiction
process. The reviewed studies collectively show that the three
gut-brain peptides modulate alcohol-induced behaviors and
neurochemistry, in which the mesolimbic system is one central
neurocircuit (Figure 1). The ability of alcohol to activate the
mesolimbic dopamine system and tentatively cause reward can
be modeled in animals, where a locomotor stimulation and
dopamine release in NAc are the central test [for review see (6,
7)]. Supportively, in humans the euphoria by alcohol correlates
to the release of dopamine in NAc [for review see (7)]. Another
animal model is the CPP test, which can be designed to reflect
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reward (rCPP) as well as memory of reward (mCPP) [for review
see (6, 7, 71)]. On this note, the rewarding properties of alcohol
as measured by the above-mentioned preclinical models are
modulated by each of the three gut-brain peptides reviewed
herein.

2.2.1. Glucagon-like peptide-1
When it comes to the GLP-1 system, both Ex-4 and

liraglutide have been found to block the ability of alcohol to
activate the mesolimbic dopamine system. Indeed, systemic
administration of either of the GLP-1R agonists block the
hyperlocomotion and dopamine release in NAc caused by
alcohol (41, 44). Moreover, two independent studies reveal
that Ex-4 blocks the alcohol reward in the rCPP test (41, 42).
Another aspect influenced by the GLP-1 pathway is the memory
consolidation of alcohol reward, a behavior important when
alcohol drinking transitions into AUD. When tested in the
mCPP test both Ex-4 and GLP-1, but not liraglutide, suppresses
this alcohol-related behavior (41, 42, 44). The rational for the
discrepancy in these three GLP-1R agonists to influence mCPP
are unknown, but may lay in different abilities to act in the brain
or activate different downstream signaling pathways.

2.2.2. Amylin
Similar to GLP-1 agonists, activation of AMYR blunts

the alcohol-related behavioral and neurochemical responses.
It was initially shown that sCT prevents the alcohol-induced
hyperlocomotion, dopamine release in NAc and CPP-reward
(55). The blunted hyperactivity after alcohol is also evident after
sub-chronic pre-treatment with sCT, an effect correlating to
decreased dopamine turnover and enhanced serotonin turnover
in the VTA (72). On a similar note, acute administration of sCT
at the end of the CPP test attenuates the memory of alcohol
reward in the CPP test (55).

2.2.3. Ghrelin
This suppression of alcohol-related behaviors and

neurochemistry is also evident after manipulation of the ghrelin
pathway. Specifically, the ability of alcohol to cause a locomotor
stimulation, dopamine release in NAc and rCPP, is attenuated
after either genetic or pharmacological suppression of the
GHSR (58, 73). Furthermore, a GHSR antagonist attenuates the
memory of alcohol reward in the CPP test (58). Besides acute
treatment with a GHSR antagonist, sub-chronic pretreatment
blocks the alcohol-induced locomotor stimulation in male mice,
and effect not involving changed GHSR expression levels (73).
As for alcohol drinking, the role of ghrelin itself for alcohol
responses is further unclear as general knockout of ghrelin
and neutralization of circulating ghrelin results in different
alcohol outcomes. While male ghrelin knockout mice show
an attenuated hyperlocomotion, NAc-dopamine and rCPP
after alcohol (60, 74), this alcohol-induced activation of the
mesolimbic dopamine system is unaltered by neutralization of
circulating ghrelin (70).

2.3. Brain regions important for
glucagon-like peptide-1, amylin, and
ghrelin to modulate alcohol-related
responses

As summarized above, either glucagon-like peptide-1,
amylin or ghrelin modulate alcohol consumption patterns as
well as alcohol-induced behaviors and neurochemistry, and
the brain regions central for this interaction is to some
extent mapped (Figure 2). Although the GLP-1R, AMYR,
and GHSR expression is wide-spread, receptors within the
brain rather than body appear central for their modulation
of alcohol-mediated effects. Indeed, studies from promotor-
specific GLP-1R knockout mice indicate that Ex-4 acts via
the brain rather than body to modulate alcohol drinking (50).
Similarly, circulating ghrelin does not appear to modulate
the behavioral responses of alcohol (70). When it comes
to important brain regions modulating this, there is some
overlap as well as differences between the three peptides.
NAc, VTA and laterodorsal tegmental area (LDTg) appear
to be three important areas for this interaction. On this
note, systemic administration of fluorescently marked Ex-4 or
sCT is noted within these areas (75), indicating that these
peptides enter through the blood-brain barrier and reach deeper
brain regions. Importantly, GLP-1R, AMYR and GHSR are all
expressed within these reward-related nuclei (16, 33–40, 76,
77).

2.3.1. Nucleus accumbens
Nucleus accumbens is one relevant area as it is important

for alcohol-induced reward and for the motivation to consume
alcohol. When Ex-4 is infused into the NAc, the rodents don’t
display an alcohol-induced hyperactivity or mCPP (78) and
their alcohol intake is lowered (66, 78, 79). This interaction is
further evident when comparing the NAc-GLP-1R expression
of rats consuming different amounts of alcohol. Indeed, its
expression is elevated in high- compared to low- alcohol
preferring male rats (78). An association also found when it
comes to the amylin system, as components of the AMYR are
changed when comparing high- and low- alcohol preferring
rats (56), Moreover, activation of AMYR in NAc by sCT
attenuates both the behavioral and neurochemical responses
to alcohol in male mice (80). A similar outcome is observed
when it comes to the ghrelin pathway. Specifically, when
infused into NAc the GHSR antagonist JMV2959 reduces
alcohol intake in female rats (66). Moreover, the GHSR
genes expression is higher in high- compared to low-alcohol
preferring rats (40). A role of ghrelin in NAc for alcohol
responses is also noted in human studies as the plasma
levels of ghrelin are positively associated with ventral striatum
(containing NAc) reactivity induced by cued alcohol craving in
humans (81).
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2.3.2. The ventral tegmental area
The VTA is another area of interest as it is the main hub for

the dopaminergic neurons of the mesolimbic dopamine system.
As VTA is a heterogenous area, different sub-parts thereof may
modulate alcohol-mediated behaviors differently. Indeed, Ex-
4 infusion into the posterior part of the VTA decreases both
the intake (42, 79) and operant self-administration (82) of
alcohol. The role of GLP-1R in the anterior part of the VTA
appear more complex as high doses of Ex4 into this sub-part
reduces alcohol intake (83) whereas a lower Ex-4 dose does not
alter the acute and chronic alcohol-mediated behaviors (78).
While the role of the posterior part has not been elucidated
when it comes to amylin or ghrelin, the anterior part appears
central for both these peptides to influence alcohol drinking.
Specifically, sCT into this sub-region attenuates alcohol-induced
hyperlocomotion and dopamine release in NAc, as well as lowers
alcohol intake (80). Moreover, ghrelin infusion into the anterior
VTA elevates alcohol drinking (58, 83), and induces reward-
related behaviors such as hyperlocomotion and dopamine
release in NAc (73, 84–88). This interaction is further evident as
low alcohol drinking rats have a lower expression of VTA-GHSR
compared to high consuming rats (59), although this finding has
not been replicated in humans (89). Ex vivo studies reveal that
both dopamine and serotonin release in the VTA may deserve
some extra interest in future studies as both by sCT and ghrelin
alters these monoamines in this area (57, 90).

2.3.3. Laterodorsal tegmental area
A third common area appears to be the LDTg, an area

that projects to the VTA and modulates the activity thereof
[for review see (91)]. Supportively, Ex-4 infusion into this area
blocks the alcohol-induced locomotor stimulation, dopamine
release in NAc, and prevents the memory of alcohol reward
(mCPP) in male mice (78). Moreover, in male rodents with
long-term alcohol exposure Ex-4 infusion into the LDTg reduces
alcohol intake (78). These findings are to some extent similar
after AMYR activation. Indeed, the ability of alcohol to cause
a hyperlocomotion, dopamine elevation in NAc and alcohol
drinking is reduced after sCT into LDTg (80). On the contrary,
this does not converege into the memory of alcohol resard as
sCT into LDTg does not block the mCPP (80). LDTg also appear
important area for ghrelin to act, as the intake of alcohol and the
activity of the VTA-dopamine neurons is enhanced after ghrelin
infusion into the LDTg of male rodents (58, 84).

2.3.4. Other tentative brain areas
Besides NAc, VTA, and LDTg, additional areas may be

of interest for the alcohol and gut-brain peptide interaction.
Some of these have been pinpointed in relation to GLP-1
and ghrelin, but not for amylin. Lateral hypothalamus appears
central for both GLP-1 (79) and ghrelin (92) to influence
alcohol-mediated behaviors. Moreover, GLP-1R agonists acting
in the hippocampus, lateral habenula and NTS modulate alcohol

responses, whereas ghrelin in the amygdala appears to have such
effect (51, 92–97).

2.4. Human studies displaying an
interaction between alcohol and the
pathways of either GLP-1 or ghrelin

Some human studies have explored the role of GLP-1 or
ghrelin pathways for alcohol intake in humans, whereas no such
studies on amylin are available yet.

2.4.1. Glucagon-like peptide-1
In one early pilot study, diabetic patients treated with

liraglutide display lower alcohol intake compared to those
treated with non-GLP-1 compounds (98). These findings are
supported by data from a recent RCT exploring the effect of
the GLP-1R agonist exenatide on alcohol intake in patients
with AUD (99). While exenatide does not alter consumption
in AUD patients with a normal weight, it substantially lowers
alcohol intake in overweight patients with AUD (99). In further
support for the interaction between alcohol and GLP-1R are
the human genetic data revealing an association between GLP-
1R polymorphisms and AUD diagnosis and high alcohol intake
(48). It should, however, be noted that the association between
polymorphisms of the GLP-1R gene and AUD was not replicated
in a different cohort (100). In contrast to ghrelin, studies
exploring the relationship between the plasma levels of GLP-
1 and alcohol is studied to a lesser extent. Indeed, one recent
human study reveals that the plasma levels of GLP-1 is lower
after alcohol consumption (93).

2.4.2. Ghrelin
When it comes to ghrelin, clinical studies show that the

craving for alcohol (101) and hangover due to intravenous
alcohol administration (102) are reduced by the inverse GHSR
agonist PF-5190457. Conversely, intravenous ghrelin enhances
alcohol craving and decreases the latency to the first intravenous
alcohol infusion in patients with AUD (95, 103). The human
genetic data revealing an association between polymorphisms
of the pre-pro-ghrelin or GHSR (104–108) genes and different
aspects of alcohol drinking and AUD diagnosis provide further
support for this ghrelin-alcohol interaction.

Circulating ghrelin is associated with some but not other
aspects of AUD [for review (12)]. However, the findings that
plasma levels of ghrelin are positively associated with alcohol
craving (81, 109–112), possibly via the ventral striatum (81),
may be of extra interest as they correspond with the findings that
ghrelin increases alcohol craving in AUD patients (95, 103). On a
similar note, elevated circulating ghrelin is positively associated
with the subjective intensity of alcohol (113). The interaction
between plasma ghrelin and AUD parameters are extensively
reviewed elsewhere [for review (12)].
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2.4.3. Future directions and summary
Collectively, these preclinical and clinical studies show that

the GLP-1, amylin and ghrelin pathways modulate alcohol
intake and alcohol responses (behavioral and neurochemical).
They further suggest that the ability of these gut-brain
peptides to reduce alcohol drinking possibly involves an
attenuated alcohol reward.

However, when interoperating the above summarized data
a wide range of confounding factors should be taken into
consideration. One of these are a general effect on ingestion
or caloric intake since the gut-brain peptides control feeding.
However, this appears less likely as Ex-4 also decreases
alcohol intake when the oral route is avoided and alcohol
is administered intravenously instead (114). Besides, each of
the tested gut-brain peptides modulates the behavioral and
neurochemical responses induced by additive drugs as well
as drug-taking for other drugs than alcohol (for example
nicotine, cocaine, and amphetamine), which are not influenced
by ingestion or calories [for review see (115)]. Moreover,
sCT reduces alcohol drinking without affecting the intake
of peanut butter or a highly palatable chocolate-flavored
beverage (55, 56). Receptor non-selectivity is another aspect
that may influence the obtained data as sCT in addition to
AMYR activates CTR. However, this seems unlikely as the
different pharmacological agents targeting one receptor (GLP-
1R, AMYR or GHSR) display a similar ability to reduce
alcohol drinking. Moreover, the outcome of an agonist of
one receptor (GLP-1R, AMYR or GHSR) show the opposite
results as the antagonist of the same receptor (45, 56, 58).
On a similar note, the GLP-1R antagonist Ex9 blocks the
ability of Ex-4 to reduce alcohol drinking (45). Enhanced
metabolism of alcohol is another possibility that could influence
the obtained data. However, studies have revealed that neither
GLP-1R or AMYR agonists changes the blood alcohol levels
after systemic administration of alcohol (44, 55). As AMYR
agonists does not alter corticosterone in the plasma, stress
appears as a less likely confounding factor for that peptide
(55, 56). In terms of GLP-1R signaling, the doses that blocks
the alcohol-mediated behaviors do not alter corticosterone
in plasma (116, 117). However, as other doses of GLP-1,
Ex-4 and liraglutide do affect plasma corticosterone (118)
the influence of stress should be considered as a tentative
confounding factor. Similarly, ghrelin is connected to stress
response and the hypothalamus-pituitary-adrenal axis (119,
120). As such, the interaction with stress is an important
consideration for future studies regarding ghrelin’s effects on
alcohol. Nausea is another factor that tentatively influences the
obtained results since it is induced by GLP-1R agonists (121).
Moreover, GHSR antagonist could tentatively be aversive as
ghrelin reduces nausea (122). However, this appears unlikely
as the dose-range of the tested pharmaceutics does not cause
aversion, malaise or nausea (27, 33, 37, 121, 123, 124). On
a similar note, neither of the tested pharmaceuticals causes a

preference per se in a CPP test, indicating that they do not
condition for aversion (123). In further accordance, the tested
agents (i) increase, rather than decrease, and water intake,
(ii) block alcohol-induced hyperlocomotion and dopamine
release in NAc which are parameters unaffected by aversion,
and (iii) attenuates drug-related responses that are driven by
reward rather than by malaise [for review see (115)]. To
date, the three peptides have been shown to modulate various
alcohol consumption patterns, alcohol-induced behaviors and
neurochemistry, and thus have been suggested to regulate
aspects of the AUD cycle. It should, however, be considered a
limitation that one animal model cannot reflect all aspects of
AUD seen in humans.

Despite the fact that extensive preclinical and to some
extent clinical literature support the contention that gut-brain
peptide modulate alcohol responses additional experiments
should explore this further. Based on these initial preclinical
studies the hypothesis that GLP-1, amylin, and ghrelin controls
alcohol drinking behaviors though their ability to suppress
alcohol-induced reward has been formed. However, if this is
true and whether this translates to a human situation needs
to be addressed in future studies. Another area of interest
is how these gut-brain peptides modulate different aspects
of the AUD cycle. In contrast to the GLP-1 pathway, that
suppresses abstinence symptoms during withdrawal, the role
of amylin or ghrelin systems for such behaviors remains to be
explored. Although females have been included in a few studies
(47, 57, 66), additional preclinical studies should compare
the outcome between sexes and define underlying differences
and similarities. This contributes to further understanding of
the AUD pathophysiology that diverges between gender [for
review see (125)]. Moreover, mechanisms of action should
be defined for each peptide in detail, where monoaminergic
signaling in the VTA or GABAergic neurotransmission appear
interesting for the tested gut-brain peptides (32, 47, 57, 72,
90, 126–132). It should also be emphasized that the brain
regions and neurocircuits responsible for the ability of gut-brain
peptide to modulate alcohol responses most likely overlap to
some extent, but most likely diverge. Moreover, the ability of
different agonists of each receptor to influence alcohol responses
may differentiate, another focus on warranted studies. Another
aspect that deserves more attention is the role of each step of
the pathways (i.e., precursor, enzymes, and metabolites) for the
alcohol responses.

Although these peptides act separately to control alcohol
drinking, studies have revealed that they act synergistically
to reduce feeding and body weight (133). As AUD has a
heterogenous pathophysiology, the possibility that combination
treatments act synergistically to reduce alcohol intake should be
considered and explored in up-coming studies. Moreover, the
possibility that the treatment design, i.e., how and when these
compounds are combined, influences alcohol drinking should
be explored in up-coming studies. Another way to influence
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alcohol drinking is dietary alterations including kerogens which
are known to influence the circulating levels of these gut-brain-
peptides (134). In line with this suggestion, ketogenic diets lower
alcohol intake (135) and abstinence symptoms (135, 136).

As some initial studies show in interaction between alcohol
responses and GLP-1 and ghrelin, but not amylin, additional
human studies exploring these associations warranted for
the future. These included, but are not limited to (i)
plasma associations studies, (ii) human genetic studies,
and (iii) laboratory studies investing the interaction toward
consumption, subjective experiences and craving. On a final
note, clinical studies should further explore the influence
of these gut-brain peptides on alcohol intake and alcohol
craving in patients with AUD with a comorbid obesity or
smoking diagnosis.
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