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Studies of early life stress (ELS) demonstrate the long-lasting effects of acute and

chronic stress on developmental trajectories. Such experiences can become biologically

consolidated, creating individual vulnerability to psychological and psychiatric issues later

in life. The hippocampus, amygdala, and the medial prefrontal cortex are all important

limbic structures involved in the processes that undermine mental health. Hyperarousal

of the sympathetic nervous system with sustained allostatic load along the Hypothalamic

Pituitary Adrenal (HPA) axis and its connections has been theorized as the basis for adult

psychopathology following early childhood trauma. In this review we synthesize current

understandings and hypotheses concerning the neurobiological link between childhood

trauma, the HPA axis, and adult psychiatric illness. We examine the mechanisms at play

in the brain of the developing child and discuss how adverse environmental stimuli may

become biologically incorporated into the structure and function of the adult brain via a

discussion of the neurosequential model of development, sensitive periods and plasticity.

The HPA connections and brain areas implicated in ELS and psychopathology are also

explored. In a targeted review of HPA activation in mood and psychotic disorders, cortisol

is generally elevated across mood and psychotic disorders. However, in bipolar disorder

and psychosis patients with previous early life stress, blunted cortisol responses are

found to awakening, psychological stressors and physiological manipulation compared

to patients without previous early life stress. These attenuated responses occur in bipolar

and psychosis patients on a background of increased cortisol turnover. Although cortisol

measures are generally raised in depression, the evidence for a different HPA activation

profile in those with early life stress is inconclusive. Further research is needed to explore

the stress responses commonalities between bipolar disorder and psychosis in those

patients with early life stress.

Keywords: childhood adversities, HPA axis (hypothalamus–pituitary–adrenal), depression, psychosis,

development

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2022.748372
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2022.748372&domain=pdf&date_stamp=2022-05-06
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dwroddy@tcd.ie
https://doi.org/10.3389/fpsyt.2022.748372
https://www.frontiersin.org/articles/10.3389/fpsyt.2022.748372/full


Murphy et al. Childhood Trauma and Psychiatric Illnesses

INTRODUCTION

Alterations of the hypothalamic–pituitary–adrenal (HPA) axis is
one of the most notable neurobiological findings in psychiatry
(1, 2). However, HPA changes are inconsistent both across
and between psychiatric conditions. It is thought that early life
stress (ELS) may influence subsequent HPA development and
subsequent responses to stress, resulting in a vulnerability to
psychiatric illness. Development of the human brain is complex,
and is characterized by dynamic stages of plasticity and periods
of complex biological and environmental integration. However,
while early experiences have the capacity to shape the brain
and give rise to vital developmental competencies such as
language there is an equal potential for adverse exposures such
as trauma-related stress to cause maladaptive developmental
changes. Experiences of adverse events can become biologically
consolidated, creating individual vulnerability to an array of
psychological issues later in life (3, 4).

In this review, we explore the developmental trajectory of
the child and the psychopathological consequences of early
childhood trauma. We also discuss the normal HPA-axis stress
response and a targeted review of HPA-related findings in mood
disorders and psychosis.

EARLY LIFE STRESS AND TRAUMA

Defining and Measuring Early Life Stress
and Trauma
Stress may be classified into three distinct categories (5).
“Positive stress,” referring to normative and short-lived adverse
experiences with minor physiological change: e.g., meeting new
people or changing daycare. “Tolerable stress,” as characterized
by intense but short-lived adverse experiences such as the
death of a family member or a natural disaster. The effects of
this stress are thought to be reversible when accompanied by
substantial support from a parent/adult, however tolerable stress
may progress into the final subtype; “toxic stress.” Toxic stress
is defined as intense adverse experiences enduring over a longer
period, spanning weeks, months or years such as war, natural
disasters, and physical, emotional and sexual violence. This form
of stress may result in permanent physiological and psychological
changes to the developing child. Although the terms “stress” and
“trauma” have been used interchangeably in the literature, trauma
can be more specifically associated with “toxic stress.”

Various tools designed to assess adverse childhood experiences
of stress and trauma exist (6). Using the Adverse Childhood
Experiences (ACE) study, Felliti et al. designed a questionnaire
examining the effects of psychological, physical and sexual
abuse, alcohol and drug exposure, health related problems, and
depression. They found that instances of toxic stress can be
divided into three subtypes: abuse (physical, sexual, emotional),
neglect (physical, emotional), and household dysfunction
(domestic violence toward a parent, household substance
abuse or other mental illness, problematic separation/divorce).
These toxic stress/traumatic events in turn demonstrate strong
associations with multidimensional negative health outcomes
in adulthood, including adverse mental health issues, ischemic

heart disease, cancer, chronic lung disease, skeletal fractures, and
liver disease. Since the development of the ACE questionnaire,
tools with greater specificity and validity have been developed,
such as the Childhood Trauma Questionnaire (7) and The
27-item Early Trauma Inventory Self-Report-Short Form
(ETISR-SF) (8). Studies consistently demonstrate associations
between poor health outcomes and childhood stress and trauma
in the absence of protective factors (9).

Prevalence of Childhood Trauma
Epidemiological studies have shown a moderate to high
prevalence of childhood trauma across populations. In the
United Kingdom, 16% of children report having experienced
trauma (10), but figures climb as high as 32% in Canada (11).
However, a recent systematic review, recommends caution in
interpreting national prevalence rates, detailing that emotional
abuse in childhood is as common as 83% in Greece (12).
These prevalence rates are a major cause of concern given
the strong evidence supporting the persistent harmful effects
of early traumatic experiences on adult psychological wellbeing
(13), and the significant association between childhood trauma
and the later occurrence of psychiatric disorders such as major
depressive disorder (MDD), bipolar affective disorder (BD) and
psychosis (2, 14, 15). Although there is a large body of research
demonstrating that early childhood trauma is an important risk
factors for psychopathology (16), a concrete understanding of the
psychobiological processes behind this link remains limited. One
potential mechanism is the disruption in the development of the
stress response system during childhood, and its dysregulation
into adulthood.

The Neurosequential Model of
Neurodevelopment
According to the neurosequential model (17), the development
of complex interrelated brain structures occurs sequentially
and hierarchically. That is, the more complex and dispensable
a system is to immediate survival, the later it develops. Regions
involved in cardiorespiratory actions are fully functional
at birth (e.g., the brainstem), while regions involved in
higher executive functions such as emotional and behavioral
regulation (e.g., the prefrontal cortex) require longer periods to
organize and develop fully. The micro neurodevelopmental
processes (i.e., synaptogenesis, myelination, migration,
differentiation, arborization, and apoptosis) are scheduled
within the developmental trajectory with a prearranged plan,
with different brain areas developing at time-specific periods.
However, these developmental processes are not independent
of each other, and as such, factors influencing early neural
development are likely to result in dysfunctions that also affect
later development of higher cortical and limbic areas (18).

Implications of the neurosequential model indicate that
throughout human development, there are periods when
certain biological systems are more malleable in response to
environmental stimuli. These sensitive periods can be defined as
time frames (or windows) during which developmental systems
are vulnerable to certain stimuli (17, 19).
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The Trajectory of a Sensitive Period
To demonstrate the importance of sensitive periods it is
important to first understand how they operate. A sensitive
period is triggered by intense neural activity initiated by
an experience (20). This phenomenon can be characterized
as the “opening” of a sensitive period, a point from which
the developing system is receptive to environmental stimuli.
The termination or “closing” of a sensitive period is less
well understood. A review by Johnson (21) describes the
termination phase of a sensitive period as a period of significant
decline in plasticity (21), suggesting potential explanations:
(1) termination arises from endogenous factors controlled by
biological maturation or external environmental triggers; (2)
learning is self-terminating; and (3) underlying plasticity does not
reduce, but rather the constraints on plasticity become stable.

According to the first view, maturational and/or
environmental factors cause neurochemical changes in certain
brain areas which increase the rate of pruning leaving strong
existing patterns in full functional capacity. Areas with strong
synaptic connectivity become permanently linked, and therefore
indicate the end of a sensitive period. Several sensitive periods
appear to end as an animal (or human) approaches sexual
maturity (20). For instance, heightened plasticity in the sound
localization pathway in barn owls declines as these juveniles
approach adulthood (22).

The second view proposes that the process of learning
may produce changes in the brain that reduce the system’s
overall plasticity (23). Studies using computer-simulated neural
networks (24) support the view that unspecialized brain systems
have higher levels of plasticity, meaning that the connections
within these systems are sensitive and adaptable. As the system
specializes and changes, it becomes rigid and less sensitive as a
result. For instance, it is more difficult to learn a second language
as an adult when a primary language has already been learnt. This
means that learning in one particular way impedes learning in
another and, therefore, reduces plasticity. Unless earlier-learned
abilities are neglected or lost, new learningmay always be limited.

The third view suggests that plasticity does not reduce but
rather the constraints of plasticity become stable. For example,
Thomas and Johnson (23) describe the change in information
received by visual cortex regions as the distance between an
infant’s eyes increases (23). To keep up with the increasing
distance between the eyes, the cortical areas of the brain must
remain malleable. However, plasticity does not decline once
growth stops. Instead, it becomes constrained by fixation of the
eyes once the child stops growing. Thus, the plasticity becomes
“hidden” by the features that constrain it.

A further conceptual model known as the “stress acceleration
model” argues that experiences of toxic stress or trauma
may lead to faster (or accelerated) maturation of the
neural circuits responsible for emotional processing and
is therefore evidence of early system adaptation (25). The
model suggests that support from a caregiver enables the
child to develop emotional circuits following a normal
developmental pattern. In the absence of this support,
development of emotional circuitry is forced to accelerate.
While this is potentially adaptive in the short term, premature

closure of the sensitive period for emotional development
may lead to poor emotional functioning in the long
term (26).

Reopening Sensitive Periods
Recent work has also explored the possibility of “reopening”
sensitive periods. For example, MDMA has been found to reopen
a striatal-sensitive period involved in social reward learning in
rodents (27). Fluoxetine (a treatment for MDD) can increase
plasticity of the visual cortex in patients with amblyopia (28).
Antidepressants are also associated with increased neurogenesis
in the hippocampus (29) and may a potential mechanism
for antidepressant effect. However, suppression of plasticity by
fluoxetine elsewhere has also been reported (30). Valproate (a
treatment for epilepsy and BD) can reopen auditory sensitive
periods for determining absolute pitch (31). The reopening
of sensitive periods for emotional circuitry such as those
compromised in the HPA-axis are yet to be investigated.

The Stress Response
The human response to a threat results in hyperarousal;
facilitated by the sympathetic nervous system. This hyperarousal
can be viewed on a continuum, including states of calmness to
arousal to alarm, fear, and terror – this final stage commonly
referred to as the “fight, flight or freeze” response (32).
Hyperarousal causes physiological changes such as increases in
blood pressure, heart rate and respiration, cognitive changes
such as hypervigilance and detachment from unessential
environmental cues, and an initiation of outward behaviors such
as crying or shouting (33). While these responses are an adaptive
mechanism in adults, it is not as useful for children or infants
who lack the physical capabilities to flee or defend themselves.
Instead, the primary purpose for this response in children is to
attract a primary caregiver who can protect or remove them from
the situation. Importantly, the traumatic stress response (i.e. the
“toxic stress response” response) differs from the regular stress
response in that the neurochemical changes, which are initially
beneficial, often outlive the threat of the stressor. This means
that the hyperarousal state continues even when the stressor
has dissipated. This becomes problematic, causing disruptions
to homeostasis, and the emergence of a maladaptive feedback
cycle (34). A complex set of neurobiological interactions underlie
this process. While researchers differ between which brain areas
are included in the model of the traumatic stress response in
children (4, 35–38), most agree that it is embedded within
three major circuits: the HPA axis, the limbic system, and the
prefrontal cortex.

The HPA Axis
The HPA axis represents the major neuroendocrine stress
response system that serves to adapt an organism to demanding
change. The release of Corticotropin Releasing Hormone (CRH)
by the hypothalamus induces alertness and increased attentional
capacity. CRH prompts the release of adrenocorticotropic
hormone (ACTH) from the pituitary, which subsequently
induces the secretion of adrenal cortisol and cortisone. Under
normal conditions, cortisol is released with a distinct diurnal
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rhythm, characterized by levels increasing during the night just
prior to waking, a transient acute spike in release following
awakening (the cortisol awakening response), followed by a
steady decline throughout the day until sleep. Physical or
psychological stressor also induces a temporary spike of cortisol
(39). In contrast, reduced morning cortisol levels have repeatedly
been observed in chronically stressed individuals (40–42). This
may be due to a protective downregulation of the HPA axis to
avoid overexposure to stress hormones (43).

A potential mechanism underlying the mediating effects of
adverse experiences during childhood on adult psychopathology
has been seminally modeled inMcEwen’s (44) theory of Allostatic
Load (44). This theory posits that chronic stressors cause a
long-lasting deviation of the normal stress state, resulting in
a new established set point. This predisposes an individual to
increased vulnerability for developing pathologies, both physical
and psychological (45).

Pituitary volume changes have been reported in MDD with
both increased (46, 47), reduced or not change in volume
reported (48–50). In contrast, BD is mostly associated with
reduced pituitary volumes (51, 52). Similarly, larger pituitary
volumes were found in first episode psychosis (53, 54), clinical
high risk individuals and those with a family history of psychosis
(55). Larger volumes in the at risk groups were found in
those who later transition to psychosis (53, 56). In contrast,
smaller volumes are found with chronic schizophrenia (57, 58),
possibly reflecting pituitary hypoplasia following repeated HPA
overactivity. ELS has been found to be a predictor of increased
anterior, but not posterior pituitary volume in adolescents.

Although the HPA axis is regulated internally through
negative feedback loops withing the axis itself, it is also recieves
dense connections from brain regions involved in the processing
of stress. This regions in include the limbic system and medial
prefrontal cortex (mPFC) (Figure 1).

Limbic Control of the HPA Axis
The Limbic System is a group of interconnected brain regions
involved in emotion, memory.and behavior (59). The amygdala
and hippocampus are key hubs within the limbic system (60).
The amygdala assigns emotional valence to sensory inputs (61),
whereas the hippocampus has roles in memory formation (62).
Both structures have connections with the HPA axis, allowing
modulation of the stress response. While the amygdala is
principally excitatory to HPA axis functioning, the hippocampus
is mostly inhibitory (63–65).

Amygdala
The amygdala lies anterior to the hippocampus in the medial
temporal lobe and consists of three functional nuclear divisions:
the central, basolateral, and corticomedial groups. The HPA
axis is largely influenced by the central and corticomedial
groups which project in abundance to the hypothalamus.
Lesions to these groups have been shown to reduce ACTH and
corticosterone secretion following stress (66, 67). Stimulation
to central nuclei causes overexpression of CRH resulting in an
increase in HPA axis activity (68–70). Amygdalar effects of the

HPA axis have also been shown to be region and stressor specific
(71, 72).

Induced early life stress has been associated with amygdalar
hypertrophy in primates (73), with increased volumes also
found in children exposed to both neglect (74) and mild
maternal disengagement (75). Interestingly, no change in
amygdala volume has been found in individuals exposed to
physical or sexual abuse as children (76, 77). Reviews have
found that amygdalar volumes are reduced bilaterally in
MDD (60) and in pediatric BD (78) with varying amygdalar
connectivity with prefrontal regions in both conditions
(79). Reduced amygdalar volume has been suggested as a
mechanism for stress sensitization to MDD following exposure
to violence in children (26). The evidence for amygdalar
volume differences in psychosis is more nuanced (80) with
some studies of first episode psychosis revealing complex
volume reduction (81–83) while others did not show significant
differences (84). Similar results were found in patients with
schizophrenia (79, 85, 86). The experience of childhood
trauma has been found to be predictor of right and total
amygdalar volumes in first episode psychosis (87) (Hoy).
Perturbations in amygdalar inputs to the HPA axis in the
developing brain due to ELS may presdispose to MDD, BD
and psychosis.

Hippocampus
The hippocampus inhibits the HPA axis through its fornix
outputs to the hypothalamus (59, 63, 64). Hippocampal
stimulation decreases glucocorticoid secretion in rodents (88)
and multiple studies suggest that rodents genetically modified to
have reduced hippocampal function results in dramatic increases
in corticosterone release (89, 90). However, regulation of the HPA
axis by the hippocampus appears to be both region- and stressor-
specific. Trauma also results in significant hippocampal changes
(91) with ELS decreasing adult hippocampal neurogenesis in
rodents (92). Smaller hippocampal volumes have been found
in individuals with Post-traumatic Stress Disorder (PTSD) (93),
and pre-clinical models showing significant reductions in rodent
hippocampal volume following induced stress compared to pre-
stress size (94). Both depression and stress in people with chronic
pain have also been shown to modulate hippocampal metabolite
function (95–97). Despite pre-clinical studies suggesting acute
changes resulting from stress, it has been suggested that reduced
hippocampal volume is not the result of, but rather a risk factor
for conditions such as PTSD (98).

Reduced hippocampal volumes is the most reported finding in
MDD (99–103) including in depressed children (101), indicating
that hippocampal volume changes may be an early marker
for MDD. Childhood trauma has been associated with smaller
hippocampal regions in MDD comparted to those without
childhood trauma (36). Most brain imaging studies have found
no changes in hippocampal volume in BD (104–106), but some
studies have reported reduced volumes, (107–110). Interestingly,
Childhood trauma is associated with increased amygdala gray
matter volume patients with BD compared to those without
trauma (111).
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FIGURE 1 | Brain related areas and the HPA axis. On the left is a midline saggital representation of the brain showing a stylised hippocampus (red), amygdala (green)

and medial prefrontal cortex (yellow). On the right, the classic HPA axis is shown. Inputs to the HPA from the hippocampus are mostly inhibitory, inputs from the

amygdala are mostly excitatory while the prefrontal inputs can be both inhibitory and excitatory depending on whether they originate from the dorsal (inhibitory) or

vental (excitatory) prefrontal areas.

In contrast, reduced hippocampal volume is an established
finding in schizophrenia (82, 108, 112–117), Individuals at ultra-
high risk for the development of psychosis may also demonstrate
reduced hippocampal volumes (80, 83). Childhood trauma has
been found to be predictor of left hippocampal volume in first
episode psychosis.

Prefrontal Cortex Control of the HPA Axis
The medial prefrontal cortex (mPFC) regulates the response
of the amygdala by processing additional sensory information
experienced during a traumatic event (38). Structural changes
have also been observed in the mPFC in patients with PTSD
(118, 119). The prefrontal cortex has an extended sensitive
period and continues to develop into early adulthood, making
it more susceptible to insults through childhood to adolsecence.
Dysregulation in developing executive functional capacities
during childhood may impact the processing of both traumatic
and non-traumatic situations in the future. Reduced mPFC
volume has repeatedly been demonstrated in adults reporting
childhood emotional maltreatment and/or early life adversity
(120, 121). This has significance for a range of psychological
and psychiatric conditions given the vital role of the medial
prefrontal cortex in the “top down” regulation of emotional
behavior. Lesions of the cingulate gyrus are linked to enhanced
ACTH and corticosterone secretion in rats (122). Other studies
imply that the role of the mPFC is substantially more complex.
Lesions of the right infralimbic cortex decrease corticosterone
responses to restraint stress, while lesions restricted to the left
do not affect glucocorticoid secretion at all (123). Additionally,
induced ELS via the maternal separation model reduces pre- and

post-synaptic protein expression of inhibitory neurons in the
mPFC (124). Importantly, however, is that the cingulate gyrus
and infralimbic cortex efferently project to different brain areas.
The cingulate cortex projects to stress inhibitory (dorsomedial
hypothalamus and the paraventricular hypothalamic nucleus),
whilst the infralimbic cortex projects to stress excitatory areas
(stria medullaris and amygdala) (125–128). Overall, these
observations suggest that different mPFC areas are associated
with different roles in HPA axis regulation (129).

Children diagnosed with preschool onset MDD have reduced
right ventromedial PFC volume compared to controls (130).
Many studies have have identified abnormal amygdala-PFC
functional connectivity in MDD compared to controls (131–
134). Similarly in BD, amygdala-PFC functional connectivity
abnormalities have been reported (135). LikeMDD, there are also
reports of amygdala-PFC connectivity abnormalities in BD (136)
and psychosis (137).

Childhood Trauma Causes Adult
Sensitization of the HPA Axis
The process of HPA axis sensitization to stress as a result
of childhood trauma may occur long before adulthood.
Dysregulated cortisol responses are detectable in adolescents
with a history of child abuse (138) and exposure to childhood
violence (139). Importantly however, dysregulated responses are
not consistently associated with psychopathology such as MDD
or PTSD. This suggests that the onset of psychopathological
symptoms, due to neurobiological changes, may be occurring
later in the developmental trajectory.
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A wide disparity exists across studies investigating HPA
axis reactivity in adolescents who have experienced childhood
trauma. While some studies report hyperactivation of the HPA
axis in response to stress (3) others report hypoactivation
(138, 140). Likewise, inconsistencies are observed for diurnal
regulation (141, 142). A potential explanation for these
contradictory findings has been provided by Kuhlman et al. (143).
In their study, adolescents completed the Socially Evaluated
Cold Pressor Task (144) while their parents completed the Early
Trauma Inventory (8). Salivary cortisol samples were taken from
the participants as part of the stress test procedure in addition
to 1 week later during 2 consecutive weekdays as a measure
of diurnal rhythm. Results indicated that exposure to “non-
intentional trauma” (e.g., witnessing an accident or experiencing
a natural disaster) was associated with normal diurnal regulation
but elevated cortisol at bedtime. “Physical abuse” (e.g., being
injured to the point of bruising) was associated with faster
reactivity to acute stress. “Emotional abuse” (e.g., persistently
being ridiculed or insulted by a caregiver) was associated with
delayed recovery following acute stress. The authors suggest that
HPA axis functioning can be perceived as specific to trauma
subtypes rather than inconsistent across studies; however, more
research to establish a concrete connection between reactivity
and subtype in adolescents.

An important question remains, will these findings generalize
to adult sensitization and will such sensitization result in
psychopathology? A retrospective review of current rodent
models shows promising results in favor of this relationship.
Recreations of early life neglect (maternal separation and/or
early weaning) in rodent offspring have allowed for insight
into the potential long-term biological and behavioral effects
of trauma. Neglected rodent offspring have shown increased
susceptibility to anxiety and depressive-like behaviors when
exposed to stress in both adolescence and adulthood (145, 146).
Similarly depressive-like behavior in neglected female rodents
was found when faced with the forced swim test (147). The
same rodents also exhibited significantly elevated corticosterone
levels, indicating a dysregulated HPA axis response and, thus,
heightened sensitivity to stress. Moreover, the preliminary
evidence observed throughout these various rodent models
suggests that early life stress does indeed cause adult sensitization
to stress and likely causes a predisposition to psychopathologies
such as mood disorders and psychosis.

THE HPA AXIS, EARLY LIFE STRESS AND
PSYCHIATRIC CONDITIONS

Early life stress (ELS) due to childhood abuse and/or neglect
has been linked to increased risk of psychiatric illness onset
and recurrence, increased disease severity and poor treatment
response (pharmacotherapy and psychotherapy) (148, 149). The
remainder of this review will target key articles regarding HPA
activity and early life stress in mood, anxiety and psychotic
disorders. Studies investigating daily cortisol secretion (eg,
morning, total daily cortisol etc.) and the cortisol response to
both awakening and stressors will be examined in these disorders,

with an emphasis on recent metaanalyses where appropriate.
The HPA activation directly after awakening is known as the
cortisol awakening response (CAR) and involves a transient
“bump” in cortisol between 30 mins to an hour after awakening,
usually measured as area under the curve (AUC) from sequential
testing during the first hour after awakening. The CAR is
thought to provide a measure of the reactivity and reserve
of the HPA axis. The cortisol response to stressors involve
before and after measurements and are often also described
as AUC. Common stressors used in these studies include
the Trier Social Stress Test (TSST) and other psychological
stressors. HPA responses following physiological manipulation,
e.g., dexamethasone suppression (DST) will also be examined.

Mood Disorders
MDD and BD are the most common mood disorders and
are both associated with poor life quality, increased disability,
and mortality (150). In the United States, MDD and BD have
a lifetime prevalence of 16 and 5% respectively (150). An
MDD episode presents with depressed mood and/or anhedonia
(diminished interest or pleasure) with a collage of other
symptoms including psychomotor and sleep changes. BD has
two distinct pathological phases, a depressed phase similar to an
MDD episode and anmania or hypomanic phase presenting with
periods of elatedmood and increased energy. A systematic review
of 44 articles looking at different subtypes of ELS (sexual abuse,
physical abuse, emotional abuse, physical neglect, and emotional
neglect) concluded that mood disorders are associated with all
forms except emotional neglect (151).

High Daily Cortisol Is Not Specifically Associated

With MDD and ELS
A case-control study found that childhood trauma severity was
not associated with high diurnal salivary cortisol (based on
AUC, measured at awakening, noon and 8 p.m.) in currently
depressed MDD patients with although this association was
present in patients with glucocorticoid resistance (152). Another
study of early adolescent females, aged 9 to 14, with a genetic
predisposition to depressive illness, had higher daily cortisol if
they had experiencedmaltreatment during their childhood (153).
Although no differences were demonstrated in long term hair
cortisol assays between those with childhood trauma vs. those
without, patients who were unresponsive to treatment revealed
lower cortisol levels prior to psychological treatment (154). A
further study investigating differences in baseline cortisol in
patients with comorbid psychiatric illnesses found no baseline
cortisol differences in either children or adults with comorbid
MDD and PTSD (155).

A meta-analysis of 651 depressed children and adolescents
found greater basal cortisol levels in MDD children and
adolescents compared to controls (156). Higher morning cortisol
was reported in a meta-analysis of 1,354 depressed adult patients.
An attenuated effect was observed for the evening salivary
cortisol, however this was based on a smaller number of studies,
all of which were underpowered (157). A further metaanalysis
of 18,374 adult individuals found higher cortisol in MDD when
measured continuously throughout the day, with morning times
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revealing the least difference between the groups. Morning
MDD CRH was also found to be higher compared to controls.
Interestingly, removing the one study (of 16 CRH studies) with
the largest effect size collapsed this CRH increase. ACTH was
also higher overall in MDD patients; however, there was no
difference between control and depressed patients at any one
time of day (158). Similarly, anothermeta-analysis of 727 patients
over 60 years old observed higher basal morning cortisol in
patients. Morning ACTH also showed no difference between
groups (159). A meta-analysis of long-term cortisol secretion 751
patients) through hair assays found no differences betweenMDD
and controls (160). Interestingly, depressed patients with higher
levels of cortisol prior to treatment are less likely to benefit from
psychological therapy in a metaanalysis of 212 MDD patients
investigating cortisol as a predictor of psychological therapy
response in depressive disorders (161) (see Table 1).

No Clear Association Between Cortisol Responses in

MDD With ELS
An increase in CAR in those with childhood neglect has been
found irrespective of a diagnosis of MDD (164, 165). No
correlation between the severity of depression and CAR was
shown in those with early life stress (165).

Lower cortisol and ACTH responses were shown following
the TSST in children with comorbid MDD and PTSD; however,
adults with PTSD commencing in adulthood and those with
social anxiety disorder (SAD) showed no differences. When
HPA axis feedback was measured through metyrapone challenge,
no differences in cortisol levels were found (155). In contrast,
a cohort study found positive association between greater
depressive symptoms, childhood maltreatment and higher
cortisol levels following a TSST (166). Depressed patients with
childhood trauma in a different study showed no differences
in stress cortisol reactivity following images of child abuse
compared to healthy controls (with or without childhood
trauma); however, higher reactivity was found in depressed
patients with no childhood trauma (167). Conflicting responses
to stress tests have been displayed in other meta-analyses.
Cortisol reactivity in the morning and afternoon to psychological
stress was blunted in ametanalysis of 98MDDpatients compared
to controls (168). However, a later meta-analysis of 296 MDD
patients showed no significant difference in peak response
cortisol levels following social stress (169) (see Table 2).

Following dexamethasone suppression an increased cortisol
response was found in MDD patients with childhood trauma
experiences (164). Interestingly, those with low levels of
emotional neglect have shown an enhanced CRH response (170).
Depressed children and adolescents (N = 388) revealed higher
cortisol post DST in a metaanalysis. Conversely, cortisol and
ACTH levels post-CRH infusion were non-significant between
groups (156). Post DST, higher cortisol and reduced ACTH were
found with MDD compared to non-depressed in a metanalysis
of 1,639 adults (158). In a metaanalysis of 15 studies examing
the role of the dexamethasone /CRH test as potential biomarker
for MDD, patients had greater cortisol levels following the
test compared to controls (171). No difference was found in

the cortisol level post-DST in 245 depressed over 60-year-old
adults (159).

Elevated Cortisol Turnover and Long-Term Cortisol in

BD With ELS
A meta-analysis of 367 BD patients found higher morning
cortisol levels were higher in bipolar outpatients and non-
manic patients, relative to controls (172). Similarly, another
meta-analysis observed higher awakening, morning, afternoon,
and evening cortisol for 242 BD patients compared to control
(173). While ACTH was raised in the BD group, CRH levels
showed no differences between groups. A cohort studymeasuring
cortisol metabolites revealed elevated beta reductase, a measure
of cortisol turnover, in BD patients that experienced adverse
childhood events such as physical abuse (162). The same group
also found elevated long term hair cortisol in those patients with
a history of childhood maltreatment (174).

Reduced Response Awakening, Stressors and Axis

Manipulation in BD With ELS
A blunted CAR was found in a cohort study in BD patients
with childhood maltreatment compared to those without (175).
BD patients have a higher cortisol level post-DST relative to
controls, with further elevation during the manic phase (173).
However, the cortisol response to a dexamethasone/CRH test
showed enhanced response in BD in those with low levels of
emotional neglect (170), similar to those with MDD. Similarly,
BD patients with high levels of trauma experienced blunted
cortisol responses with associated increased brain activation
(the right lingual gyrus and increased functional connectivity
between the left amygdala and dorsolateral prefrontal cortex). In
contrast, healthy controls with high trauma levels were associated
with high cortisol response to stress and decreased brain region
activation (163).

Psychotic Disorders
Psychosis can occur as a primary symptom in disorders such
as schizophrenia or manifest as a secondary symptom in
other disorders such as MDD and BD (172). Regardless of
diagnostic etiology, the core symptom of psychosis involves
issues with intact reality testing, resulting in symptoms including
hallucinations and/or delusions. The development of psychosis
appears to have a strong association with early life events (176).

Schizophrenia is the archetypal psychotic illness characterized
by delusions, hallucinations, disorganized speech, disorganized
behavior, and negative symptoms. Schizophrenia has a lifetime
prevalence of 1% and commonly presents in adolescence and
early adulthood (177). It is associated with poor recovery
outcomes and reduced life quality expectancy with co-
morbidities such as coronary heart disease, stroke, type II
diabetes, respiratory diseases, and some cancers (177). A
systematic review of 44 studies examining different subtypes
of ELS (sexual abuse, physical abuse, emotional abuse, physical
neglect, and emotional neglect) concluded that schizophrenia is
associated with all forms (178).
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TABLE 1 | Daily HPA measurements in depression.

References Year Study

type

Total N N of

cases

N of

control

Mode of cortisol

collection

Findings

Nikkheslat et al.

(152)

2019 Case-

Control

218 163 55 Salivary cortisol:

Diurnal

The severity of childhood trauma was associated with

increased diurnal cortisol levels only in individuals with

glucocorticoid resistance

Fischer (154) 2018 Cohort

Study

89 37 0 Hair cortisol No differences were demonstrated in long term cortisol

measurements through hair cortisol between those

with childhood trauma vs. those without

Mayer et al. (155) 2020 Case-

Control

92 56 36 Salivary cortisol and

plasma: baseline

There were no baseline cortisol differences in those

with MDD-PTSD- child, MDD-PTSD adult and MDD-no

trauma

Lopez-Duran et al.

(156)

2009 Meta-

Analysis

1,332 651 736 Salivary, plasma or

urine cortisol: Basal

levels

Depressed children and adolescents were found to

have greater basal cortisol levels than non-depressed

controls

Knorr et al. (157) 2010 Meta-

Analysis

2,406 1,354 1,052 Salivary Cortisol Statistically significant mean difference was found

between MDD and healthy individuals in the morning

and evening

Aas et al. (162) 2011 Meta-

Analysis

18,374 N/A N/A Salivary, blood, CSF,

urine cortisol

73% of MDD individuals have cortisol values greater

than non-depressed individuals. Across all studies,

cortisol seems to be elevated by over half an SD unit

across depressed individuals. Across all studies, ACTH

levels were elevated to a similar degree during MDD

Murri et al. (159) 2013 Meta-

Analysis

3,424 727 2,697 Salivary and plasma

cortisol

Basal morning cortisol was found to be greater in the

morning in MDD patients over 60 years old, morning

ACTH levels do not differ between the depressed and

healthy group

Psarraki et al. (160) 2020 Meta-

Analysis

1,819 751 1,068 Hair cortisol Long term cortisol secretion measured through hair

found no differences between control and MDD

Quidé et al. (163) 2017 Systematic

Review

and Meta-

Analysis

212 212 N/A Pre-Treatment levels

of cortisol inhair,

urine, saliva or blood

The higher the basal and post-challenge cortisol levels

were before starting psychological therapy, the more

symptoms patients experienced at the end of

treatment and/or the smaller their symptom change

A targeted review of key articles andmetanalysis showing daily HPAmeasurements in depression. ACTH, adrenocorticotrophic hormone; CSF, cerebrospinal fluid; MDD, major depressive

disorder; PTSD, posttraumatic stress disorder.

Increased Baseline Cortisol With Blunted Responses

in Psychosis
A meta-analysis examining morning cortisol levels in patients
with schizophrenia [44 studies, n = 2,613) found a small to
medium increase in morning cortisol concentration in patients
compared to controls (172). Interestingly, morning samples
taken before 8am revealed larger differences than those taken
after 8 a.m. Similarly, a higher blood cortisol concentration was
shown in a meta-analysis of 911 patients with first-episode
psychosis (FEP), most consistent in drug-naive patients of an
older presentation (i.e., not adolescents) (179). However, studies
examining saliva cortisol concentrations failed to replicate these
findings. Interestingly, subgroup analysis of longitudinal studies
suggested that cortisol upregulation may be a phenomenon of
FEP only with subsequent decrease after antipsychotic treatment.

A meta-analysis of CAR across the psychosis spectrum [11
studies, n= 879) found that the response was lessened in patients
with psychosis compared to healthy controls (180). Subgroup
analysis found a flattened CAR in patients with schizophrenia
and FEP, but not in individuals with at-risk-mental states, leading
the authors to suggest that the response may be a marker for
transition risk. In a recent meta-analysis of cortisol reactivity to

psychological stress in patients with schizophrenia (4 studies, n
= 180), patients demonstrated a blunted response compared to
controls, with males in particular revealing lower cortisol AUCi
and AUCg following stressors (181). The authors acknowledge
the possibility of publication bias in favor for the male blunted
reactivity in schizophrenia.

Increased Turnover With Less Blunted Responses in

Psychosis With ELS
Using a stable marker of cortisol concentration over several
months (hair), cortisol was elevated in a study of patients
with schizophrenia (n = 28) who had a history of childhood
maltreatment (174). Similarly, elevated cortisol metabolism
(through urinary analysis of cortisol metabolites: e.g., urinary free
cortisol/cortisone, allo-tetrahydrocortisol, tetrahydrocortisol,
and tetrahydrocortisone) was found in schizophrenia patients
(n = 63) with childhood trauma compared to those without
trauma (162).

In a study of 9 to 12 year old children with either clinical
high risk of psychosis (n = 33), a family history of psychosis (n
= 22), or typically developing children (n = 40), no association
was found between the CAR and the numbers of negative
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TABLE 2 | HPA responses in depression.

References Year Study type Total N Number

of

cases

Number

of

controls

Mode of cortisol

collection

Findings

Peng et al. (165) 2014 Case- Control 109 58 51 Salivary cortisol:

CAR

An increase in CAR in those with childhood neglect

irrespective of diagnosis of MDD

Lu et al. (164) 2016 Case- Control 80 35 45 Salivary cortisol:

CAR and DST

An increase in CAR in those with childhood neglect

irrespective of diagnosis of MDD; The DST responses

indicated an increased response in those with MDD

and childhood trauma experiences

Mayer et al.

(155)

2020 Case- Control 92 56 36 Salivary cortisol:

TSST, DST,

TSST cortisol responses demonstrated a lowered

cortisol and ACTH response in those with MDD and

PTSD from childhood vs. controls, however, those with

PTSD from adulthood and those with SAD had no

differences, when HPA axis feedback was measured

through metyrapone challenge, no differences in

cortisol levels were found

Cantave et al.

(166)

2018 Cohort Study 156 156 Salivary cortisol:

CAR

A positive association between higher acute cortisol

levels, greater depressive symptoms and childhood

maltreatment was demonstrated in the TSST

Suzuki et al.

(167)

2014 Case- Control 80 39 41 Salivary cortisol:

Images of child

abuse

MDD patients with childhood trauma showed no

differences in stress cortisol reactivity following images

of child abuse compared to healthy controls (with or

without childhood trauma); however, higher reactivity

was found in patients with no childhood trauma

Watson et al.

(170)

2007 Case- Control 68 10 28 Serum cortisol:

Dex/CRH test

Those with low levels of emotional neglect showed an

enhanced response from the CRH response

Lopez-Duran

et al. (156)

2009 Meta-Analysis 926 388 538 Salivary, plasma or

urine cortisol: DST

Depressed children and adolescents had higher

cortisol production post Dexamethasone suppression

test (DST) in contrast to controls. On the other hand,

cortisol and ACTH levels post-CRH infusion were

non-significant between groups

Aas et al. (162) 2011 Meta-Analysis 1,639 N/A N/A Salivary, blood, CSF,

urine cortisol,

Elevations of cortisol during MDD are greater when the

HPA axis is artificially challenged compared to when it

is not.

Murri et al. (159) 2013 Meta-Analysis 606 245 361 Salivary and plasma

cortisol

No difference was found in the cortisol level post -DST

in MDD over 60-year-old adults compared to controls

Burke et al. (168) 2005 Meta-Analysis 196 98 98 MDD patients’ stress reactivity cortisol level in the

morning and afternoon to psychological stress was

blunted in comparison to the healthy counterparts

Ciufolini et al.

(169)

2014 Meta-Analysis 800 296 504 No significant difference in peak response cortisol

levels post social stress tasks between MDD and

control groups

Mokhtari et al.

(171)

2012 Meta-Analysis 1,121 670 451 MDD subjects had greater cortisol levels in response to

the DEX/CRH test in contrast to healthy controls

A targeted review of key articles and metanalysis showing HPA responses to awakening, psychological stressors and physiological manipulation. ACTH, adrenocorticotrophic hormone

CAR, cortisol awakening response; CRH, corticotrophin releasing hormone; CSF, cerebrospinal fluid; DEX, dexamethasone; DST, dexamethasone suppression test; MDD, major

depressive disorder; PTSD, posttraumatic stress disorder; SAD, social anxiety disorder; TSST, Trier social stress test.

life events in any group (182). However, in the family history
group, CAR was positively correlated with distress experienced
in relation to negative life events at the time of the event and
with the level of distress experienced currently. In contrast,
among typically developing children, CAR values were negatively
correlated with distress experienced at the time of the negative life
event. Schizophrenia spectrum patients (n = 25) demonstrated
a blunted response to a psychosocial stressor (a modified Triers
Social Stress tasking involving public speaking) compared to
controls (n = 25) (183) with patients with a history of more

emotional abuse showing a response closer to controls. Similarly,
in a study of emotional brain function (functional magnetic
resonance imaging while performing an emotional face-matching
task) and cortisol reactivity in patients with schizophrenia (n
= 40) and controls (n = 34) found that cortisol concentrations
reduced in patients and increased in controls following the
task (163). In those exposed to high levels of trauma, higher
post scan cortisol was associated with region activation in the
schizophrenia cohort. As such, ELS and psychosis are associated
with high ambient cortisol and less flattened responses.
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CONCLUSION

The relationship between early life stress (ELS), Hypothalamic
Pituitary Adrenal (HPA) axis activity and psychiatric illnesses
is complex. The development of the brain during childhood
involves sequential and heirarchical development of brain
regions and is susceptible to biological and psychological insults,
particularly during developmentally sensitive periods. Toxic
stress from childhood adversity may result in sympathetic
hyperarousal through sustained allostatic load along the
hodological associations of the HPA axis. Such connections
include limbic structures involved in memory, behavior and
emotion such as the hippocampus, amygdala and the medial
prefrontal cortex. Inconsistencies exist in the literature regarding
the hyperactivation of the HPA axis in adolescents who
experienced childhood trauma. As such, it is thought that HPA
axis changes may specific to the trauma subtype being studied,
with further research needed in the domain.

Our targeted review of the literature surrounding mood
disorders and psychosis suggests that cortisol concentration
is raised across psychiatric disorders. However, both bipolar
disorder (BD) and psychosis is associated with more attenuated
HPA responses to awakening (the cortisol awakening response),
psychologicial stressors (e.g., the Trier Social Stress Test) and
physiological manipulation (e.g., dexamethasone supression) in
those patients who have experienced early life stress compared
to those who have not. These reduced cortisol responses in
BD and psychotic patients exist on a common background of
increased long term cortisol and cortisol turnover. This suggests
a hyperfunctioning HPA axis with little reserve remaining for
a robust cortisol response to extra stress. The evidence from
our targeted review for a similar effect in depression (MDD)
is equivocal, despite the signficantly larger number of studies
examining early life stress and HPA changes in MDD.

Psychosis and BD share a number of commonalities in their
biological basis. Psychosis is often a feature ofmania in Type 1 BD
(a diagnosis of mania requires either psychosis or hospitalization)
(184). Common susceptibility genes for both disorders have
also been identified. The first of such commonalities identified
included zinc finger–binding protein 804A gene (ZNF804A)
on chromosome 2q32 (185). Since then, additional areas of
interest such as 1p36, 1q43, 4p14 and, of particular note, 15q26
have been identified (186). Schizoaffective disorder is another
notable disorder under the heading of psychosis, often described
as the intermediate of BD and schizophrenia, involving both

affective and psychotic tendencies. Further genetic linkages have
been implicated as common to all three disorders, of particular
note COMT located in the 22q11 region (187) as well as
genome wide significance at 1q42 (188). COMT is involved
in the metabolism of catecholamines including noradrenaline
and adrenaline (neurotransmitters known to be involved in
acute stress). In contrast, loss of function polymorphisms in
tryptophan hydroxylase 2 (TPH-2) have been identified in MDD
but have been shown not to be implicated in the pathogenesis
of BD (189) or SZ (190). TPH2 is a key enzyme in formation
of serotonin, with dysfunction of the TPH-2 associated with
shunting of tryptophan toward kynurenine, a key pathway at
the interface of inflammation and the stress response (191). This
may be a mechanism for different cortisol profiles between MDD
and BD/psychosis.

Structural abnormalities common to both BD and
schizophrenia have also been observed on neuroimaging.
Diffusion studies of the uncinate fasciculus (79) (connecting
the amygdala with the medial- and orbitofrontal cortices)
and anterior and posterior thalamic radiations (192)
have shown decreased fractional anistrophy (a marker of
white matter microstructural abnormality) in both BD and
schizophrenia. These connections are known to be involved in
the stress response.

In conclusion, the effect of the early life stress on the
developing brain is highly complex and dependent on unique
characteristics such as individual vulnerability, developmental
sensitivity window, stressor type and duration. The suggestion
of a common HPA profile in both BD and psychosis but not
depression from our targeted review needs verification with
large carefully conducted robust metaanalyses of daily cortisol
concentrations and cortisol responses across these disorders.
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