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It is widely accepted, given the complex nature of schizophrenia (SCZ) gene networks,

that a few or a small number of genes are unlikely to represent the underlying

functional pathways responsible for SCZ pathogenesis. Several studies from large

cohorts have been performed to search for key SCZ network genes using different

analytical approaches, such as differential expression tests, genome-wide association

study (GWAS), copy number variations, and differential methylations, or from the analysis

of mutations residing in the coding regions of the genome. However, only a small

portion (<10%) of candidate genes identified in these studies were considered SCZ

disease-associated genes in SCZ pathways. RNA sequencing (RNA-seq) has been a

powerful method to detect functional signals. In this study, we used RNA-seq data

from the dorsolateral prefrontal cortex (DLPFC) from 254 individuals and RNA-seq

data from the amygdala region from 46 individuals. Analysis was performed using

machine learning methods, including random forest and factor analysis, to prioritize the

numbers of genes from previous SCZ studies. For genes most differentially expressed

between SCZ and healthy controls, 18 were added to known SCZ-associated pathways.

These include three genes (GNB2, ITPR1, and PLCB2) for the glutamatergic synapse

pathway, six genes (P2RX6, EDNRB, GHR, GRID2, TSPO, and S1PR1) for neuroactive

ligand–receptor interaction, eight genes (CAMK2G, MAP2K1, RAF1, PDE3A, RRAS2,

VAV1, ATP1B2, and GLI3) for the cAMP signaling pathway, and four genes (GNB2,

CAMK2G, ITPR1, and PLCB2) for the dopaminergic synapse pathway. Besides the

previously established pathways, 103 additional gene interactions were expanded to

SCZ-associated networks, which were shared among both the DLPFC and amygdala

regions. The novel knowledge of molecular targets gained from this study brings

opportunities for a more complete picture of the SCZ pathogenesis. A noticeable fact

is that hub genes, in the expanded networks, are not necessary differentially expressed
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or containing hotspots from GWAS studies, indicating that individual methods, such as

differential expression tests, are not enough to identify the underlying SCZ pathways and

that more integrative analysis is required to unfold the pathobiology of SCZ.

Keywords: schizophrenia, machine learning, biological network, amygdala, dorsolateral prefrontal cortex (DLFPC)

INTRODUCTION

Schizophrenia (SCZ) is a chronic and severely disabling
neurodevelopmental disorder that affects people of all races and
background worldwide. The redundancy of the gene networks
underlying SCZ indicates that many gene combinations have
the potential to result in a brain dysfunction that can manifest
as SCZ or a related neurodevelopmental disorder (1, 2). Next-
generation sequencing enables one to measure the transcriptome
gene expression through RNA-seq; however, recent studies from
large cohorts show that differentially expressed genes alone are
not the final solution to understand the molecular underpinnings
underlying SCZ networks, as a number of biological processes,
such asmethylation, eQTLs. and copy number variations (CNVs)
in the DNA sequence, are among the biological processes that
contribute to the biological pathways of SCZ (3–8). Almost
6,000 genes with supportive evidence from these studies were
identified, but only a small portion (<10%) could be labeled
as SCZ-associated genes based on information from disease
databases, and even a smaller portion of these genes was found
to be functionally relevant to SCZ-related biological pathways.

In this study, we selected the most informative genes that
demonstrated differential expression/variation between SCZ and
healthy controls based on previous studies; we then added
them into known SCZ-associated pathways, and we subsequently
reworked the SCZ-associated pathways using an experimental
gene interaction database. In other words, we applied machine
learning methods, including random forest and factor analysis,
on transcriptome RNA sequencing (RNA-seq) data generated
from 254 human dorsolateral prefrontal cortex (DLPFC) samples
and 46 human post-mortem amygdala samples, which covered
all genes previously linked to SCZ with supportive evidence,
to identify the driving biological signals representing SCZ in
brain tissues. We found that two different brain loci (DLPFC
and amygdala) show certain levels of similarities, and only small
portions of hub genes in expanded networks are differentially
expressed at the RNA level. These results suggest that SCZ gene
interactions are likely functionally impacting multiple locations
of the brain and that platforms capturing multiple different
domains of molecular data need to be integrated to reveal the
entire picture of the gene networks underlying SCZ.

METHODS AND MATERIALS

Selections for SCZ Genes With Supportive
Evidence From Previous Studies
Differentially expressed SCZ genes were selected from the
previous study on post-mortem DLPFC tissues from 258 SCZ
cases and 279 controls with European, African American,

Hispanic, and East Asian ancestries (9). Genome-wide
association study (GWAS) gene targets were collected through
the Psychiatric Genomics Consortium GWAS (10) (36,989 cases
and 113,075 controls) and the CLOZUK GWAS (7) (11,260
cases and 24,542 controls). Differential methylation genes
were collected based on multiple literatures (3, 4, 11). Genes
impacted by copy number variations (CNVs) were collected
based on a comparative study of 21,094 cases and 20,227 controls
(6). Genes with eQTL hits were collected based on multiple
recently published literatures (5, 8, 12). The genes identified
in linkage studies were collected based on the meta-analysis
of 32 genome-wide linkage studies of schizophrenia (13). The
genomic variation of SCZ genes was extracted from multiple
exome sequencing studies (14–16). The gene expression levels
in brain tissues were obtained from the GeneCard database.
All the extracted genes were merged to form the “gene pool”
for selection processes. In total, there are 460 GWAS genes,
223 genes identified in previous linkage studies, 392 genes
containing SCZ-associated CNVs, 3,540 genes with at least one
SCZ-correlated exome mutation, 1,890 genes with differential
methylation, and 683 genes differentially expressed in SCZ
case/control studies.

Identification of SCZ-Associated Genes
Based on Disease Database
The selected SCZ genes with at least one supportive evidence
were considered as the background or the “gene pool” for
analysis. Genes from the pool that were identified in a disease
database, including DisGeNET (17), GLAD4U (18), and Online
Mendelian Inheritance in Man, were categorized as “SCZ-
associated genes” or “gene set A,” while the rests in the gene
pool were categorized as “gene set B.” The gene enrichment
analysis was performed by DAVID bioinformatics platform (19)
and WebGestalt (20).

RNA-Seq Data for Dorsolateral Prefrontal
Cortex and Amygdala
The RNA-seq data of DLPFC samples were obtained from the
CommonMind consortium FTP sites directly. To eliminate the
confounding effects of different populations, we only selected
SCZ patients and controls who are of European ancestry (EA).
A total of 254 RNA-seq BAM files were obtained, including
120 SCZ patients and 134 healthy controls. The samples with a
minimum of 50 million mapped reads and <5% rRNA-aligned
reads were retained for downstream analysis. In total, 46 post-
mortem amygdala tissues, including 22 SCZ patients and 24
healthy controls, were obtained. Like the DLPFC samples, all
individuals for amygdala tissues are EA. More details of the
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samples and sequencing procedures could be found in the
previous publication (21).

RNA Expression Matrix
The genomic template used for coding the genes’ expressions
is hg19 refSeq, and the long non-coding RNA template is
GENCODE version 19 (22). The expressionmatrix was generated
based on Cuffnorm functions in Cufflink package version 2.2.1
(23), and the SCZ and controls groups are normalized. Additional
quality control (QC) of expression data was performed in
accordance with Sheng et al. (24). To eliminate potential noise
signals, genes with expression of FPKM values<1 and genes with
collinearity over 80% were removed. Further QCs were adopted
in the following machine learning algorithms.

Gene Selection Using Machine Learning
Algorithms
Machine learning algorithms, including random forest and factor
analysis, were applied to select and reduce the informative
gene features between SCZ cases and controls for DLPFC and
amygdala, respectively. Random forest is one of the most widely
used algorithms for feature selection, which computes the relative
importance or contribution of each gene feature in the prediction
and then scales the relevance down so that the sum of all scores is
1. All the genes with zero relative importance were removed. The
modeling codes are based on the Scikit-learn package in Python
language (25).

Factor analysis was applied to the entire sample set for further
clustering gene features. Factor analysis is a statistical method
used to describe the variability among observed, correlated
variables in terms of a potentially lower number of unobserved
variables called factors, and the methods have been proven to
be a good interpreter for gene networks and pathways. The
Python-based factor_analyzer package was used in the analysis.

Expanding SCZ-Associated Pathways and
Networks
The Kyoto Encyclopedia of Genes and Genomes database (data
release version 2020/04) was applied as a pathway reference
for SCZ-associated pathway analysis (26), and the gene pool
described in the previous section was used as background for
enrichment analysis. Gene set A, which is composed of SCZ-
associated genes identified in a disease database, was examined
in an enrichment analysis, and the corresponding pathways
were considered as SCZ-associated pathways. Gene set B that
remained in the selection processes from factors that represent
top variances went through an enrichment analysis again with
set A, and the genes in set B were considered as candidate genes
of SCZ-associated pathways if they were assigned to the same
pathways enriched with set A genes. In other words, the newly
added candidate genes of SCZ-associated pathways must be in
the corresponding pathway already but have not been identified
in disease databases previously.

The SCZ-associated pathways remained significant after false
discovery rate (FDR) adjustments were further expanded into
networks that do not require candidate genes from set B
identified in the pathways. Gene interaction databases, such as

BioGrid (27), were applied in the expansion procedures, and
the visualizations were done by CytoScape (28). Hub genes were
extracted from the developed networks based on the number of
interactions (degree of connectivity).

RESULTS

Candidate Genes in SCZ-Associated
Pathways Based on DLPFC
There are 5,948 genes with at least one supportive evidence of
SCZ involvement from previous SCZ studies, and these genes
served as the gene pool for our study. Of those, 534 SCZ-
associated genes (∼9%) (set A) were identified through the
SCZ disease database, which left 5,414 genes out (set B). The
enrichment analysis for set A using the pool as background
revealed five SCZ-associated pathways, including 35 genes found
in dopaminergic synapse networks (FDR = 2.7 × 10−13), 49
genes in neuroactive ligand–receptor interaction networks (1.6×
10−12), 26 genes in glutamatergic synapse pathways (1.9×10−10),
34 genes in cAMP signaling pathways (6.4× 10−8), and 24 genes
in serotonergic synapse pathways (7.6× 10− 7).

Using machine learning methods, including random forest
followed by factor analysis, on 254 DLPFC samples (120 SCZ
vs. 134 controls) reduced the number of informative genes
in set B from 5,414 to 1,068 genes (top 29 factors represent
70% variances between SCZ and controls; Figures 1A,C). Each
factor was combined with set A, and enrichment analysis was
performed again to assess whether previous SCZ-associated
pathways remained associated, and if so, the genes (i.e.,
factors), which were in the pathway but not in set A, were
considered as candidate SCZ-associated genes. This resulted in
18 SCZ-associated genes being identified that matched with
the previous five SCZ-associated pathways (Table 1), including
GNB2, CAMK2G, P2RX6, MAP2K1, and RAF1 from factor
1, CYP2D6 and ITPR1 from factor 2, EDNRB, GHR, GRID2,
PDE3A, and RRAS2 from factor 3, S1PR1, ATP1B2, and GLI3
from factor 5, and PLCB2, TSPO, and VAV1 from factor 9.
Notably, some candidate genes showed up in multiple SCZ-
associated pathways, suggesting that they may confer higher
impacts than other genes—for example, GNB2 is involved as
a modulator/transducer of various transmembrane signaling
systems and activator of kainate receptors upon glutamate
binding (29). More specifically in the glutamatergic synapse
pathway, GNB2 controls exocytosis in the presynaptic terminal
by inhibition of glutamate releases and interaction with the GRM
family genes GRM2, GRM3, GRM4, GRM7, and GRM8. In the
dopaminergic synapse pathway, GNB2 takes signals from the
DRD family and delivery to the PLC gene family to regulate
neural excitability. Previous studies show that GNB2 and its
coding proteins are highly expressed in brain tissue, and de novo
mutations in GNB2 show effects on synaptic proteins and genes
involved in schizophrenia and other neuropsychiatric diseases
(14). The ITPR1 gene provides instructions for channels that
control the flow of calcium ions. The ITPR1 channel delivers
Ca++ from calcium signaling pathways to protein kinase C,
regulating synaptic plasticity via IP3 signals from PLCB in
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FIGURE 1 | Number of genes after filtering and factor analysis cumulative curve. (A) Number of genes after multiple filtering methods for dorsolateral prefrontal cortex

(DLPFC). (B) Number of genes after multiple filtering methods for amygdala. (C) Factor analysis cumulative curve and number of remaining genes for DLPFC. (D)

Factor analysis cumulative curve and number of remaining genes for amygdala.

TABLE 1 | Results from an integrative analysis uncovering 18 schizophrenia-associated candidate genes and corresponding pathways.

Genes Factor Dopaminergic

synapse

pathway

Neuroactive

ligand–receptor

interaction

Glutamatergic

synapse

pathway

cAMP signaling

pathway

Serotonergic

synapse

GNB2 1 Y - Y - Y

CAMK2G 1 Y - - Y -

P2RX6 1 - Y - - -

MAP2K1 1 - - - Y Y

RAF1 1 - - - Y Y

CYP2D6 2 - - - - Y

ITPR1 2 Y - Y - -

EDNRB 3 - Y - - -

GHR 3 - Y - - -

GRID2 3 - Y - - -

PDE3A 3 - - - Y -

RRAS2 3 - - - Y -

S1PR1 5 - Y - - -

ATP1B2 5 - - - Y -

GLI3 5 - - - Y -

PLCB2 9 Y - Y - Y

TSPO 9 - Y - - -

VAV1 9 - - - Y -
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dopaminergic synapse pathways. ITPR1 interacts directly with
GRM1 and GRM5 genes in the glutamatergic synapse pathway.
The CNV duplications in ITPR1 were shown to be associated
with attention deficit/hyperactivity disorder (ADHD) and autism
spectrum disorder (ASD) (30), and CNVs in genes at the chr3p26
locus, including but not limited to CNTN4, have been associated
with ADHD and ASD and shown to impair glutamatergic
signaling (31, 32).

SCZ-Associated Pathway Expansion to
Networks Using Gene Interaction Database
Besides selecting candidate genes within identified SCZ-
associated pathways, the pathways were further expanded to
networks based on gene interaction database analysis. In other
words, genes in set A that were identified in SCZ-associated
pathways, including 35 genes in dopaminergic synapse pathways,
49 genes in neuroactive ligand–receptor interaction networks,
26 genes in glutamatergic synapse pathways, 34 genes in
cAMP signaling pathways, and 24 genes in serotonergic synapse
networks, were connected to factor analysis-identified genes
through gene interaction database analysis to form potential
SCZ networks. Using 254 DLPFC samples and interactions
identified in BioGrid, as described in the method section,
265 direct interactions were built between set A genes in
dopaminergic synapse pathways and set B genes selected by
factor analysis, including 85 interactions for neuroactive ligand–
receptor interaction networks, 71 interactions for glutamatergic
synapse pathways, 239 interactions for cAMP signaling pathways,
and 78 interactions for serotonergic synapse pathways.

In addition, 46 amygdala brain samples were also analyzed
independently besides DLPFC to check the specificity and
consistency of gene networks between the two major functional
regions of the brain in SCZ. To control confounding effects
from population differences, we limited the ethnicity to European
ancestors for both cases and controls. Similar patterns were
seen in amygdala (Figures 1B,D), with 1,119 genes remaining
in the factor analysis (677 genes in the top 15 factors represent
70% variances between SCZ cases vs. controls). Of those, 464
(41.7%) genes remained in the factor analysis for amygdala and
were also identified in DLPFC, including 185 (27.3%) genes in
the top factors. The results suggest that some SCZ networks
are consistent among different functional loci of the brain. The
differences could be due to (and explain) functional alterations
within these two brain regions, whereas they may also be due to
technical reasons, such as sample size differences, batch effects,
etc. In the network expansion processes, 177 direct interactions
were built between set A genes in dopaminergic synapse
pathways and the set B genes that remained in the factor analysis
for amygdala, including 62 interactions for neuroactive ligand–
receptor interaction networks, 55 interactions for glutamatergic
synapse pathways, 141 interactions for cAMP signaling pathways,
and 54 interactions for serotonergic synapse pathways. A total
of 103 interactions are found in both DLPFC and amygdala
(Table 2). The union of networks for both loci provides a more
complete picture of SCZ-associated networks upon expansions
(Figures 2A–E).

TABLE 2 | Interactions in both dorsolateral prefrontal cortex (DLPFC) and

amygdala from expanding schizophrenia-associated networks.

Set A genes Set B genes

remaining in

top factors

Factor

number

(DLPFC)

Factor

number

(amygdala)

Pathway

CACNA1C PCBD1 1 1

CASP3 DBNL 1 1

GNAS FSCN1 1 4

GNAS XPO1 3 5

HTR3A FITM2 1 1

HTR3A HIST1H1C 9 6

MAPK3 TEK 3 2 Serotonergic

synapse pathway

MAPK3 DUSP5 19 6

PLA2G4A JAK1 3 1

PRKCA FSCN1 1 4

PRKCA HIST1H1C 9 6

PRKCA AKAP12 3 7

SLC18A1 EMC7 3 2

CHRNA3 TMEM219 1 1

GABBR1 DDIT3 1 6

GRIN1 CAMK2G 1 4

GRIN2A PTK2B 2 2

GRIN2B CAMK2G 1 4 Neuroactive

ligand–receptor

interaction

LPAR1 FITM2 1 1

NR3C1 SMARCC2 2 2

PTGER3 RETSAT 1 3

VIPR2 FITM2 1 1

CACNA1C PCBD1 1 1

GNAS FSCN1 1 4

GNAS XPO1 3 5

GRIN1 CAMK2G 1 4

GRIN2A PTK2B 2 2

GRIN2B CAMK2G 1 4

MAPK3 TEK 3 2 Glutamatergic

synapse pathway

MAPK3 DUSP5 19 6

PLA2G4A JAK1 3 1

PRKCA FSCN1 1 4

PRKCA HIST1H1C 9 6

PRKCA AKAP12 3 7

SHANK3 CRKL 2 1

AKT1 SMARCC2 2 2

AKT1 FAM110C 3 2

AKT1 TEK 3 2

AKT1 DCTN1 1 4

AKT1 TCOF1 2 4

ARRB2 SF3B1 3 2

ARRB2 SMARCC2 2 2

ARRB2 RPLP0 9 2

ARRB2 RPL22 3 3

ARRB2 TCOF1 2 4

(Continued)
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TABLE 2 | Continued

Set A genes Set B genes

remaining in

top factors

Factor

number

(DLPFC)

Factor

number

(amygdala)

Pathway

ARRB2 XPO1 3 5

ARRB2 HIST1H1C 9 6

ARRB2 SF3B2 1 10

CACNA1C PCBD1 1 1

CALM1 SF3B1 3 2

CALM1 RPL22 3 3

CALM1 CAMK2G 1 4

CAMK2A DBNL 1 1 Dopaminergic

synapse pathway

CAMK2A ARL3 3 4

CAMK2A CAMK2G 1 4

CAMK2A DCTN1 1 4

GNAS FSCN1 1 4

GNAS XPO1 3 5

GRIN2A PTK2B 2 2

GRIN2B CAMK2G 1 4

GSK3A RBM8A 1 3

GSK3B C14orf1 3 1

GSK3B SF3B1 3 2

GSK3B TLE1 2 4

GSK3B RNF220 1 4

GSK3B XPO1 3 5

PPP2R2B PPP4C 1 1

PRKCA FSCN1 1 4

PRKCA HIST1H1C 9 6

PRKCA AKAP12 3 7

SLC18A1 EMC7 3 2

AKT1 SMARCC2 2 2

AKT1 FAM110C 3 2

AKT1 TEK 3 2

AKT1 DCTN1 1 4

AKT1 TCOF1 2 4

CACNA1C PCBD1 1 1

CALM1 SF3B1 3 2

CALM1 RPL22 3 3

CALM1 CAMK2G 1 4

CAMK2A DBNL 1 1

CAMK2A ARL3 3 4

CAMK2A CAMK2G 1 4

CAMK2A DCTN1 1 4

GABBR1 DDIT3 1 6

GNAS FSCN1 1 4

GNAS XPO1 3 5 cAMP signaling

pathway

GRIN1 CAMK2G 1 4

GRIN2A PTK2B 2 2

GRIN2B CAMK2G 1 4

MAPK3 TEK 3 2

MAPK3 DUSP5 19 6

(Continued)

TABLE 2 | Continued

Set A genes Set B genes

remaining in

top factors

Factor

number

(DLPFC)

Factor

number

(amygdala)

Pathway

PDE4B XPO1 3 5

PDE4D AKAP12 3 7

PTGER3 RETSAT 1 3

RELA PPP4C 1 1

RELA SETD6 3 1

RELA MKRN2 3 1

RELA MACROD1 1 1

RELA AATF 3 2

RELA TLE1 2 4

RELA XPO1 3 5

VIPR2 FITM2 1 1

DISCUSSION

The DLPFC dysfunction is one of the most important
differentiators in the pathogenesis of SCZ (33). DLPFC is an
area in the prefrontal cortex that connects the thalamus and
the hippocampus. DLPFC is important in many brain functions,
such as working memory, planning, and reasoning. Previous
studies suggest an association between decreased DLPFC
activity and disabling disorganization symptoms and memory
deficits in individuals with SCZ (33, 34). The consequences of
amygdala dysfunction have also been highlighted in SCZ (35).
Anatomically, amygdala consists of two almond-shaped groups
of nuclei located deep and medially within the temporal lobes of
the human brain. Functionally, the amygdala plays a primary role
in the processing of memory, decision-making, and emotional
reactions, and previous studies suggest that dysregulation of the
amygdala region contributes to the pathogenesis of SCZ (2). As
a result, combining the networks built from both loci would
provide an expanded view and potentially new knowledge of SCZ
gene networks.

Multiple SCZ studies have been performed in large cohorts
to explore potential key regulators of SCZ networks, including
differential tests for gene expression and methylation, GWASs,
CNVs, eQTLs, and mutation studies based on exome sequencing
data. Around 6,000 genes have been identified with supportive
evidence of their contribution to SCZ, consistent with the
assumption that SCZ is a highly complex biological disorder
involving the combined effects of many genes, each conferring
a small increase in susceptibility to the illness. On the other
hand, the selection for informative signals from a large number of
genes (28% of the entire human coding genes) is challenging and
becomes the main obstacle to pinpoint the essential key drivers of
the SCZ network regulators. So far, only small portions (∼9%) of
genes with supportive evidence for SCZ involvement have been
mapped to SCZ-associated pathways. Machine learning methods
have been proven to be effective in reducing the feature vectors
while capturing essential data differences in studies of many
fields, including genetic expression studies (36). Therefore, in this
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FIGURE 2 | Expanded schizophrenia-associated pathways using machine learning selected genes in dorsolateral prefrontal cortex union amygdala based on gene

interaction database. (A) Dopaminergic synapse pathway. (B) Neuroactive ligand–receptor interaction. (C) Genes in glutamatergic synapse pathway. (D) cAMP

signaling pathway. (E) Serotonergic synapse pathway.

study, we applied random forests and factor analysis involving
DLPFC and amygdala RNA-seq expression data to select themost
informative gene signals in SCZ by merging results from the
two brain regions that have been implicated in SCZ, taking an
experimentally based gene interaction database approach.

To facilitate research on psychiatric diseases, the
PsychENCODE project produces a public resource of genomic

data using tissue- and cell type-specific samples (37). As a
resource of PsychENCODE, the CommonMind Consortium
provides transcriptomic and epigenomic data for SCZ and
bipolar disorder (38). Based on 534 SCZ-associated genes
from disease databases, we identified five well-replicated
and significantly enriched SCZ pathways that are critical in
the neurodevelopment processes underlying SCZ, including
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TABLE 3 | Hub genes from known SCZ-associated genes (gene set A) and from gene set B with supportive evidence from at least two pathways.

GeneID Pathway GWAS Linkage

association

studies

CNV Differential

methylations

Differential

expression

Exome

mutations

Brain

expression

Hub genes from gene set A

CACNA1C mGluR, dopamine synapse, cAMP,

serotonergic synapse

1 0 0 1 0 1 High

GNAS mGluR, dopamine synapse, cAMP,

serotonergic synapse

0 0 0 1 0 1 High

GRIA1 mGluR, dopamine synapse, cAMP,

neuroactive ligand–receptor

interaction

0 1 0 0 0 0 High

GRIA3 mGluR, dopamine synapse, cAMP,

neuroactive ligand–receptor

interaction

0 0 0 0 0 1 High

DRD2 Dopamine synapse, neuroactive

ligand–receptor interaction, cAMP

1 1 0 0 0 0 Low

GNAO1 mGluR, dopamine synapse,

serotonergic synapse

0 0 0 0 0 1 High

MAPK3 mGluR, cAMP, serotonergic synapse 0 0 1 0 0 0 High

PLCB1 mGluR, dopamine synapse,

serotonergic synapse

0 0 0 1 0 0 High

PRKCA mGluR, dopamine synapse,

serotonergic synapse

0 0 0 1 0 0 High

AKT1 Dopamine synapse, cAMP 0 1 0 0 0 1 High

CACNA1B Dopamine synapse, serotonergic

synapse

0 0 0 0 0 1 High

CALM1 Dopamine synapse, cAMP 0 0 0 1 0 0 High

CAMK2A Dopamine synapse, cAMP 0 0 0 0 0 1 High

CAMK2B Dopamine synapse, cAMP 0 0 0 0 0 1 High

DRD3 Dopamine synapse, neuroactive

ligand–receptor interaction

0 1 0 0 0 1 Low

GRIK5 mGluR, neuroactive ligand–receptor

interaction

0 0 0 0 0 1 High

MAPK8 Dopamine synapse, cAMP 0 0 0 0 0 1 High

PLA2G4A mGluR, serotonergic synapse 0 1 0 0 0 0 Low

PPP3CC mGluR, dopamine synapse 0 1 0 0 0 0 High

PTGER3 Neuroactive ligand–receptor

interaction, cAMP

0 0 0 0 0 1 Low

SLC18A1 Dopamine synapse, serotonergic

synapse

0 1 0 0 0 0 Low

VIPR2 Neuroactive ligand–receptor

interaction, cAMP

0 0 1 0 0 0 Low

Hub genes from gene set B

CAMK2G mGluR, dopamine synapse, cAMP,

neuroactive ligand–receptor

interaction

0 0 0 1 1 0 High

MYC mGluR, dopamine synapse, cAMP,

serotonergic synapse

0 0 0 1 0 0 High

SDCBP mGluR, dopamine synapse, cAMP,

neuroactive ligand–receptor

interaction

0 0 0 0 0 1 High

ARNT Dopamine synapse, cAMP,

serotonergic synapse

0 1 0 0 0 0 High

EPB41L1 Dopamine synapse, neuroactive

ligand–receptor interaction, cAMP

0 0 0 0 0 1 High

ERBB2 Dopamine synapse, neuroactive

ligand–receptor interaction, cAMP

0 0 0 0 0 1 High

(Continued)
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TABLE 3 | Continued

GeneID Pathway GWAS Linkage

association

studies

CNV Differential

methylations

Differential

expression

Exome

mutations

Brain

expression

FSCN1 mGluR, dopamine synapse,

serotonergic synapse

0 0 0 1 1 1 High

SLC9A3R1 mGluR, dopamine synapse,

serotonergic synapse

0 0 0 0 0 1 High

AURKA Dopamine synapse, cAMP 0 0 0 0 0 1 Low

CDK4 Dopamine synapse, cAMP 0 0 0 1 0 1 High

CLIC6 Dopamine synapse, neuroactive

ligand–receptor interaction

0 0 0 0 0 1 Low

CMTM4 Neuroactive ligand–receptor

interaction, cAMP

0 0 0 1 0 0 High

DCTN1 Dopamine synapse, cAMP 0 0 0 0 0 1 High

DERL1 cAMP, serotonergic synapse 0 0 0 1 1 0 High

DGUOK Dopamine synapse, cAMP 0 0 0 0 0 1 High

EIF2AK3 Dopamine synapse, cAMP 0 0 0 1 0 0 High

FUS Dopamine synapse, cAMP 0 0 0 1 0 0 High

GNB2 Dopamine synapse, cAMP 0 0 0 1 0 1 High

GRID2 mGluR, neuroactive ligand–receptor

interaction

0 0 0 0 0 1 Low

HIST1H1C Dopamine synapse, serotonergic

synapse

0 0 0 1 0 0 High

ILK Dopamine synapse, cAMP 0 0 0 0 0 1 High

ITPR1 Dopamine synapse, cAMP 0 0 0 1 0 1 High

MAP2K1 Dopamine synapse, cAMP 0 0 0 0 0 1 High

PPP1CB Dopamine synapse, cAMP 0 0 0 0 0 1 High

RAF1 Dopamine synapse, cAMP 0 0 0 1 0 0 High

SLC39A1 Neuroactive ligand–receptor

interaction, cAMP

0 0 0 1 0 0 High

SNCG cAMP, serotonergic synapse 0 0 0 0 0 1 High

UBR5 Dopamine synapse, cAMP 0 0 0 1 0 1 High

XPO1 Dopamine synapse, cAMP 0 0 0 1 1 1 High

YWHAQ Dopamine synapse, cAMP 0 0 0 0 0 1 High

dopaminergic synapse pathways, neuroactive ligand–receptor
interaction networks, glutamatergic synapse pathways, cAMP
signaling pathways, and serotonergic synapse pathways. This
approach uncovered 18 genes from the factor analysis which
belong to these same pathways and were incorporated as SCZ-
associated gene candidates. Consequently, these pathways have
been expanded based on gene interaction database information
to broaden the SCZ knowledgebase. As a result, 294 interactions
based on DLPFC and 216 interactions based on amygdala,
including 103 interactions identified in both loci, have been
incorporated to inform SCZ pathogenesis. These data underline
the interactive gene networks that exist between DLPFC and
amygdala and emphasize the different functions of these loci
that may be uniquely implicated in SCZ pathogenesis. The new
knowledge gained from this study could bring opportunities
to conquer SCZ by targeting these new molecular targets using
innovative precision-based strategies.

Hub genes, which have more than one edge in the expanded
networks, usually have more impact on the entire networks

due to high connectivity within the networks. As a result, hub
genes in the expanded networks were extracted and explored
in further detail (Table 3). Notably, the weaker the support,
such as single analysis support only, the more it is inversely
correlated with the number of hub genes (Figures 3A,B)—for
example, among hub genes identified within the 534 identified
SCZ-associated gene set (set A), only two of them (4.8%)
were captured by differential expression alone and six of them
(14.6%) were uncovered by GWAS. For the hub genes from
set B, the portion is 15.2% from differential expression tests
and 5.6% from GWAS study. These results suggest that a
more integrative analysis is warranted to enrich the number
and role of genes mapping to SCZ gene networks, and studies
focused on defined aspects may have limitations to reveal the
broader picture of SCZ pathogenesis. The direction of effects
was not emphasized in this study mainly because conflicts
of the evidence when integrating databases from independent
studies are inevitable and addressing these conflictions may
cause the negligence of interesting genes in this study—for
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FIGURE 3 | Percentage of supportive evidence for hub genes in expanding networks. (A) Hub genes from disease identified as schizophrenia-associated genes (gene

set A). (B) Hub genes from gene set B.
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example, the hub geneFSCN1 shown in Table 3, which contains
a potential damaging de novo missense mutation p.E162D,
is hypomethylated in schizophrenia but has a low gene
expression compared to controls. On the other hand, the hub
gene DERL1 is hypomethylated in schizophrenia but with a
higher gene expression. Another limitation for this study is
that candidate genes from the previous genetic studies were
mainly selected based on physical proximity in the human
genome and might not represent a functional link. More
extensive gene and gene set analysis in those genetic regions,
e.g., using Multi-marker Analysis of GenoMic Annotation
(39), is warranted, especially for the genes as potential novel
therapeutic targets.
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