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Previous morphometric studies of Borderline Personality Disorder (BPD) reported

inconsistent alterations in cortical and subcortical areas. However, these studies have

investigated the brain at the voxel level using mass univariate methods or region of

interest approaches, which are subject to several artifacts and do not enable detection of

more complex patterns of structural alterations that may separate BPD from other clinical

populations and healthy controls (HC). Multiple Kernel Learning (MKL) is a whole-brain

multivariate supervised machine learning method able to classify individuals and predict

an objective diagnosis based on structural features. As such, this method can help

identifying objective biomarkers related to BPD pathophysiology and predict new cases.

To this aim, we applied MKL to structural images of patients with BPD and matched HCs.

Moreover, to ensure that results are specific for BPD and not for general psychological

disorders, we also applied MKL to BPD against a group of patients with bipolar disorder,

for their similarities in affective instability. Results showed that a circuit, including basal

ganglia, amygdala, and portions of the temporal lobes and of the orbitofrontal cortex,

correctly classified BPD against HC (80%). Notably, this circuit positively correlates

with the affective sector of the Zanarini questionnaire, thus indicating an involvement

of this circuit with affective disturbances. Moreover, by contrasting BPD with BD, the

spurious regions were excluded, and a specific circuit for BPDwas outlined. These results

support that BPD is characterized by anomalies in a cortico-subcortical circuit related to

affective instability and that this circuit discriminates BPD from controls and from other

clinical populations.
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INTRODUCTION

The diagnosis of personality disorders based only on observable
signs and symptoms is highly problematic considering the
difficulties in distinguishing trait-dependent manifestations from
active symptoms common to other mental disorders (1). One
case in point is Borderline Personality Disorder (BPD), which
is not only the most commonly diagnosed personality disorder
affecting presumably 2% of the population (2) but also one
of the most problematic diagnostic categories (1). Relevant
dimensions that characterize BPD are affective difficulties, socio-
interpersonal difficulties, and impulsivity (3, 4), which may lead
to extremely diversified pattern of symptoms across patients
(5). Moreover, the high comorbidity—e.g., with eating, abuse,
personality, and affective disorders (2, 6)—and the insidious
overlap of symptoms with other psychopathology (1) contribute
to the difficulty of BPD diagnosis, with high rate of misdiagnosis
for this disorder (7).

The problem of reliable diagnosis in psychiatry has been
previously addressed in the literature (8), and affective
neuroscience has been identified as a field that can crucially
contribute to the overcoming of current limitations in
available diagnostic systems through the detection of
neurobiological markers for specific psychopathological
conditions. Neuroimaging investigations of BPD have provided
important insights concerning its neural correlates but limited
contributions for the discrimination of healthy and pathological
conditions. Structural alterations have been found in the
prefrontal cortex and in several limbic structures (9). Related to
these structural alterations, functional alterations consistent with
the clinical manifestations of the disorder have been identified:
Altered activity of dorsolateral prefrontal and limbic brain
regions in response to emotional stimuli is consistent with the
conceptualization of BPD as an emotion dysregulation disorder
(9–13); the hyperactivity of the default mode network areas
at rest is consistent with difficulties in both interpersonal and
affective regulation (13–16). Structural studies partially confirm
alterations in some of these regions (9, 17–22). Structural
alterations have been previously reported in patients with
BPD for what concerns the thalamus (6, 21, 23), the amygdala
(9, 24–26), and the fusiform area (27). However, previous
studies suffer from major limitations. First, they have used mass
univariate analysis that examines each voxel in isolation and
does not take into account statistical dependencies among voxels
(28–30). Moreover, individual differences were not taken into
consideration, as the average of individuals inside each group was
only considered. In some cases, region of interest (ROI) analyses
were used instead of whole-brain approaches, thus limiting
results on a limited set of a priori–defined regions (31). Last but
not least, these results could not be tested for generalization to
new unobserved cases.

An alternative approach that has proven extremely useful
for diagnostic classification of subjects on the basis of MRI
signal patterns is the use of machine learning for the separation
of patients from healthy controls (HCs). Machine learning,
also called multi-voxel pattern analysis (MVPA) in the context
of neuroscience, can dramatically increase the sensitivity of

human brain imaging by accumulating information across
multiple voxels of MRI signal, i.e., by taking into account
the information contained in a distributed spatial pattern of
brain activity rather than a single voxel or location (32). A
commonly applied implementation of machine learning is the
use of a classification algorithm that is trained to distinguish
between two classes of data using whole-brain pattern-based
information. Such techniques have proven extremely useful
for the decoding of between-subject classification of brain
imaging data in a number of psychiatric and neurological
diseases, reaching a good classification (from 60 to 90%) in the
cases of depression (33), schizophrenia (34), and social anxiety
disorder (35). Among classification algorithms, the Multiple
Kernel Learning (MKL) algorithm has the additional advantage
to allow the identification of the most relevant sources for
the classification, e.g., brain regions contributing to the model.
Authors have recently used MKL to make predictions based on
anatomical localization (36, 37) and to help to determine which
are the most relevant brain regions that contribute to group
classification to predict differential diagnosis between mood
disorders (38).

The first aim of the present study is to explore, for the first
time, the potentiality of MKL for the diagnostic classification of
patients with BPD on the basis of their brain structural features.
In line with this aim, we applied MKL to the classification of
patients with BPD and HCs. We hypothesized that some of
the brain structures previously identified in separate studies can
effectively discriminate these groups of participants. Because
MKL allows the understanding of which brain structures, among
all areas, maximally discriminate the two groups in the classifier,
we were also interested in understanding which brain structures
are more relevant for the understanding of neurobiological
features of BPD. We hypothesized to find a widely distributed
circuit including portions of the orbitofrontal cortex (OFC)
and of the temporal lobe, for their relations with affective
disturbances and lack of control over emotions, as well as
subcortical structures such as the amygdala and the basal ganglia
for emotion dysregulation and impulsivity displayed by patients
with BPD.

A second relevant aspect of BPD diagnosis concerns its
specificity compared with other forms of psychopathologies. One
of the most critical aspects of differential diagnosis regards the
consideration of affective symptomatology as a manifestation
of a clinical syndrome, instead of a more general personality
impairment. Typically, patients with BPD seems be at increased
risk of being misdiagnosed with bipolar disorder (BD) (7).
Affective disturbances have been described as a core feature
of both disorders (39, 40). Mood swings and anger reactions
typically described in BPD can be easily observed also in maniac
episodes of the BD (41). Similarly, the impulsiveness observed
in maniac episodes is frequently considered as a core aspect of
borderline personality (29, 30, 42–44). In a meta-analysis (45),
abnormalities in the amygdala and parahippocampal gyrus were
reported, and a smaller volume of the right medial OFC was
detected in both BD and BPD. In another study, differences
consisting in more volumetric alterations and larger diffusion in
BD (involving several cortical and subcortical structures) than
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BPD (confined tomainly fronto-limbic regions) have been found.
In a recent study, Lapomarda et al. (29) applied unsupervised
machine learning to compare BPD, BD, and controls. A blind
source separation method known as Independent Component
Analysis (ICA) (28–31, 46–48) was applied to gray and white
matter. Compared with controls, patients with BD increased gray
matter in a network involving mostly subcortical structures and
cerebellar areas, possibly related to abnormal mood. In contrast,
patients with BPD showed milder alterations compared with
patients with BD and controls. Moreover, BPD differed from BD
and controls for a white matter circuit including frontal-parietal
and temporal regions possibly associated with dysfunctional top-
down emotion regulation (29, 49–51). However, one limitation
of the method used in that study is that the unsupervised
machine learning used (ICA) is not suitable for classification
or for creating biomarkers to predict the diagnosis of new
cases as it strictly depends on the sample used. Moreover,
ICA was applied simultaneously to BPD, BD, and HC. Thus,
the results found for BPD depended on the simultaneous
comparison of all three groups. Thus, following the first aim,
we intended to apply the same methodology but this time to
classify BPD against BD. This will let us understand which
brain structures maximally discriminate the two groups and
may help the differential diagnoses of such patients. We
predicted that the classifier can correctly classify BPD from
BD and that similar regions involved in the classification of
BPD against HC will discriminate BPD against BD. Moreover,
by subtracting the circuit that correctly separates BPD from
BD, from the circuit that separates BPD from HC, a possible
neural substrate to serve as a starting point for developing a
biomarker specific for BPD can be outlined. This circuit may
serve as a baseline for future investigations intended to develop
a biomarker for correctly diagnosing BPD from structural
brain features.

METHODS

Participants
We selected 20 patients with BPD (Mage = 35.75, SDage =

8.61), 30 patients with BD type I (BD; Mage = 37.17, SDage

= 8.64), and 45 healthy participants as controls (HC; Mage

= 36.80, SDage = 8.43), matched for age and sex. All the
data were extracted from the shared OpenNeuro database (52).
Demographic information about participants is displayed in
Table 1.

Patients with BPD were selected from Clinical Research
Imaging Centre in Edinburgh (OpenNeuro database, accession
number ds000214). The recruitment took place in outpatient
and support services from around Edinburgh. The diagnosis
was verified using Structured Clinical Interview for DSM-
IV (SCID-II). The Zanarini Rating Scale for BPD (ZAN-
BPD) was administered to assess the current symptoms.
Exclusion criteria included pregnancy, MRI contraindications,
diagnosis of a psychotic disorder, and current illicit substance
dependence. All participants gave written informed consent
approved by the Lothian National Health Service Research
Ethics Committee. Patients with BPD were acquired with

a 3T Siemens Magneton Verio with TR = 2,300 (ms),
TE= 2.98 (ms), and 160 slices. Patients with BD and HCs
were selected from UCLA Consortium for Neuropsychiatric
Phenomics (OpenNeuro database, accession number ds000030).
They were recruited via community advertisements in the Los
Angeles area. Self-reported history of psychopathology was
verified with the SCID-IV (53). Inclusion criteria comprised
the following: at least 8 years of education, no history of
head injury with loss of consciousness or cognitive sequelae,
no use of psychoactive medications or substance dependence
within past 6 months, and no history of major mental illness.
Participants were excluded if they had history of significant
medical illness, contraindications for MRI, and mood-altering
medication on scan day (based on self-report). All participants
gave written informed consent approved by the University
of California, Los Angeles Institutional Review Board. A
high-resolution T1-weighted 3D magnetization prepared rapid
gradient echo scan was acquired for each participant. HCs
and patients with BD were acquired with a 3T Siemens
Magneton Trio with TR = 1,900 (ms), TE = 2.26 (ms), and
176 slices.

Preprocessing
After quality check of the images to exclude artifacts and before
any analyses, all data were preprocessed with the same pipeline
using the segmentation routines provided by the Computational
Anatomy Toolbox (CAT12, http://www.neuro.uni-jena.de/cat/),
a toolbox available for SPM12 software (http://www.fil.ion.ucl.ac.
uk/spm/software) in the MATLAB environment. Segmentation
of gray and white matter and cerebrospinal fluid was thus
obtained. Modulated normalized writing option was chosen.
Diffeomorphic Anatomical Registration through Exponential
Lie algebra (DARTEL) tool, a potential alternative to SPM’s
traditional registration approaches that operates using a whole-
brain approach, was used (47, 48, 54). Normalization to MNI
space with spatial smoothing (full width at half maximum of
Gaussian smoothing kernel [8, 8, 8]) was then applied on
DARTEL images.

Data Analysis
MVPA on the basis of MKL method was carried out in the
Pattern Recognition for Neuroimaging Toolbox (PRoNTo) (55,
56). Between-group analyses, with patients with BPD against
HC, and then patients with BPD against patients with BD,
were entered as two classes in separate MKL analyses with the
preprocessed gray matter images. In MKL, heterogenous kernels
are linearly combined (57), to define a decision boundary. MKL
has been shown to enhance the interpretability of the decision
function and improve performances (57). Whole-brain analyses
were performed using a general mask provided inside PRoNTo.
Data were mean centered and normalized, and age and gender
were regressed out. The predictive function was defined during
a training phase where the algorithm learned patterns from the
provided data to predict a label (diagnosis). Whereas, during
a test phase, the algorithm is used to predict outcome in an
independent dataset. Leave-one-subject-out cross-validation was
performed, making the test set independent from the training set.
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TABLE 1 | Demographic information about participants.

BPD BD HC p-values

Participants 20 30 45

Age (years) Mage = 35.75 (±8.61) Mage = 37.17 (±8.64) Mage = 36.80 (±8.43) F (2,92) = 0.172

p = 0.842

Gender F = 17 F = 21 F = 34 F (2,92) = 0.725

p = 0.487

Education ≥8 ≥8 ≥8

Screening Neurological disease,

psychoactive substance, mental

illness (SCID-II, SCID-IV)

Neurological disease,

psychoactive substance, mental

illness (SCID-II, SCID-IV)

Neurological disease,

psychoactive substance, mental

illness (SCID-II, SCID-IV)

Exclusion criteria Diagnosis in at least two different

categories, pregnancy, MRI

contraindications, neurological

disease

Diagnosis in at least two different

categories, pregnancy, MRI

contraindications, neurological

disease

Diagnosis for any psychiatric or

neurologic disease, pregnancy,

MRI contraindications

The presented values for “Age” and “Education” are the relative arithmetic averages of years. Values in round brackets are the standard deviations.

Each class accuracy was calculated averaging classification results
across all the folds of cross-validation (55). Statistical significance
of the classifications was tested using permutation testing with
1,000 permutations with random assignment of group class to
input image. The resulting null-hypothesis distribution was used
to calculate the p-value of the accuracies or the proportion of
permutations that yielded a greater accuracy than the accuracy
found for the classification models. The Automated Anatomical
Labeling [AAL; (58)] atlas, built using the WFU- PickUp Atlas
toolbox of SPM and consisting of 116 brain regions, was used
to explore regional contribution of each classification model.
In MKL approach, being a hierarchical model of the brain,
it was possible to derive weight contribution of each region
to the decision function. Regions were ranked according to
their contribution to the model and averaged across folds.
Only regions with >1% contribution to the decision function
f are displayed. Through the pair-wise classification, common,
and unique structural features among the two contrasts were
identified [see (59), for a similar approach], using the formula
BPD specificity = (BPD 6= HC) ∧ (BPD 6= BD). If
one structural area separated BPD against HC, and the same
also separated BPD against BD, this feature was selected as
a specific neural abnormality uniquely associated with BPD.
By contrast, regions that separated BPD against HC, but not
BPD against BD, were excluded (in other words, this region
may be similarly affected in both BPD and BD, and so, it
cannot be considered specific for BPD). Surf Ice software was
used to plot the brain maps (https://www.nitrc.org/projects/
surfice/).

RESULTS

No significant differences were found for age [F(2,92) =

0.172, p = 0.842], gender [F(2,92) = 0.725, p = 0.487],
HDRS, and medication load comparing BPD, HC, and BD
(all p > 0.05).

BPD Against Controls
The MKL returned a total accuracy of 84.62%, bipolar
disorder (BA) of 76.39% (p = 0.002), class predictive
values of 91.6–97.78%, and AUC value of 88% (Figure 1).
Model performance significantly exceeds the threshold
of randomly guessing the labels, thus confirming that
the algorithm has successfully learned a predictive
function (56). A positive correlation was found between
Zanarini affective sector scores and betas extracted from
the classifier (r = 0.45, p = 0.047), thus confirming
a relation between the circuit that predicts BPD and
affective disturbances.

Regions with larger contribution to the model (weight
> 1%) were in order of importance: the right Putamen,
the left thalamus, the right fusiform gyrus, the right
amygdala, the lingual gyrus, the right middle and superior
OFC, the left pallidum, the left fusiform gyrus, and
portions of the cerebellum (see Figure 1; Table 2). To
characterize the direction of these areas, simple voxel-
to-voxel comparisons were computed. Raw data were
extracted from the gray matter (GM) images of both
BPD and HC after masking for the circuit found by MKL
analysis. A threshold of 0.001 uncorrected was used.
This analysis showed that all areas were characterized
by greater GM for BPD relative to HC, except the
putamen, the pallidus, and the thalamus, which showed the
opposite trend.

BPD Against BD
The MKL returned a total accuracy of 80%, BA of 79.17%
(p= 0.001), class predictive values of 75% for BPD
and 83.33% for BD, and AUC value of 83% (Figure 2).
Model performance significantly exceeds the threshold of
randomly guessing the labels, thus confirming that the
algorithm has successfully learned a predictive function
(56). Regions with larger contribution to the model
(weight > 1%) were in order of importance: the right
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FIGURE 1 | Results from BPD against HC. Multiple Kernel Learning machine classification of patients with Borderline Personality Disorder (BPD) and healthy controls

(HC) based on structural (GM) features. (A) Left: Density version of histogram plot of function values. Right: Receiver Operator Curve, Areas Under the Curve = 0.88.

ROI weights in percentage and in voxel size are displayed in the two bar plots. (B) Surface plots, including subcortical reconstruction of the significant regions.

pallidum, the right inferior frontal cortex, the right
amygdala, portions of the cerebellum, the right superior
temporal pole, the right fusiform, the right inferior

temporal area, the right putamen, the left caudate, and
the right superior part of the OFC among others (see
Figure 2; Table 3).
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FIGURE 2 | Results from BPD against BD. Multiple Kernel Learning machine classification of patients with Borderline Personality Disorder (BPD) and healthy controls

(HC) based on structural (GM) features. (A) Left: Density version of histogram plot of function values. Right: Receiver Operator Curve, Areas Under the Curve = 0.83.

ROI weights in percentage and in voxel size are displayed in the two bar plots. (B) Surface plots, including subcortical reconstruction of the significant regions.

BPD Against HC and BD
Areas surviving both contrasts (e.g., areas that
separate BPD from both control groups) were in

order of importance (weight contribution derived
from BD against HC model): the right Putamen, the
right amygdala, the superior and mid parts of the
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TABLE 2 | Main regions derived from the classification of BPD against controls.

ROI labels ROI weight (%) ROI size (voxels)

Putamen_R 21.1314 2,560

Thalamus_L 11.0615 2,420

Temporal_Mid_L 10.4139 11,409

Fusiform_R 8.3912 5,731

Amygdala_R 6.7290 571

Lingual_R 6.6867 5,574

Frontal_Sup_Orb_R 5.9255 1,352

Pallidum_L 5.5983 637

Frontal_Mid_Orb_R 4.2866 1,583

Occipital_Mid_R 3.9392 4,649

Parietal_Sup_R 3.3007 3,557

Vermis_7 1.9245 458

Fusiform_L 1.7186 5,282

Cerebelum_Crus2_L 1.6214 4,105

Cerebelum_7b_L 1.5011 863

Heschl_L 1.2470 549

ROI labels are derived from the AAL atlas. Please note that only regions whose contribution

exceeded the 1% are displayed.

orbitofrontal, the fusiform area, and the left 7b part of
the cerebellum.

DISCUSSION

The detection of neuroimaging-based biomarkers of BPD may
crucially contribute to overcome the limitations of diagnostic
procedures exclusively based on subjective evaluations of clinical
signs and symptoms and to further elucidate the neural
mechanisms of such disorder. With this regard, traditional
univariate approaches that identify structural and functional
abnormalities in brain regions associated with a mental disorder
are not suitable for individual diagnosis, mostly because of
large inter-individual variance in regional fMRI activations.
To overcome this gap, the first aim of the present study
is to apply a multivariate whole-brain machine learning
approach to distinguish BPD from HCs on the basis of
structural brain features. Yet, to ensure that results are specific
for BPD and not for similar mental disorders, the second
aim of the present study is to compare the BPD brain
alterations with a commonly associated mental disorder that is
BD (45, 60).

Overall, results showed that patients with BPD were correctly
and reliably classified against HC (total accuracy of 84.62%)
and BD (total accuracy of 80%). To our knowledge, this
is the first study using machine learning methodology to
identify a BPD-specific neural circuit to serve as a possible
biomarker based on structural features. The success of the
present procedure in predicting BPD against HC and another
clinical control group (BD) fosters the machine learning
approach as a useful method to allow classification of structural
brain images of each patient, in line with other applications
of machine learning for clinical diagnosis classifications [for

reviews, see the works of Fu and Costafreda (61) and
Wolfers et al. (62)].

The most relevant sources for the classification of BPD
and HC included structural alterations in several subcortical
structures (such as the amygdala, the thalamus, the pallidum,
and the putamen), in the fusiform gyrus, in the OFC, and in
the cerebellum. Notably, we also observed significant associations
between these brain alterations and the affective sector of
the Zanarini questionnaire, thus strengthening the association
between brain such alterations and affective disturbances
characterizing this pathology. The localization of the highest
accuracy scores in subcortical regions is consistent with the
results of past univariate comparisons of BPD and HC (9, 17, 20,
21). The putamen, which is the structure with the greatest weight
in the model, and the pallidum both belong to the basal ganglia
and underpin reward processing and impulsivity behaviors (18,
19, 29, 30). In BPD, an increased activity of these brain regions
is associated with impulsivity and aggressiveness traits (63), as
well as with the processing of negative stimuli and emotion
dysregulation (64). Structural alterations of the thalamus have
been previously reported in patients with BPD (6, 21, 23). Of
note, Nenadić et al. (6) found a negative correlation between
the GM concentration of the thalamus and symptoms severity.
Our results confirm such reduced GM in the thalamus as well
as in the basal ganglia in patients with BPD. The activity in
this brain area is linked not only to emotion (65) and reward
(66) but also to general mental operations such as attention,
memory, and consciousness (67). The amygdala, another region
with larger contribution in the model, is probably one of the
most targeted areas in structural BPD investigations (9, 24–26).
Having a primary role in decoding affective information and in
generating emotional arousal and triggering behavioral responses
(68, 69), alterations in the amygdala have been extensively
reported in BPD (17). Several studies reported an increased
responsivity of the amygdala during processing of negative
stimuli (9), which suggest a hypersensitivity of this structure in
BPD. Such increased responsivity is supported by the fact that, in
our additional analyses (raw data voxel-to-voxel comparisons),
we also found these areas to have greater GM in BPD as compared
with HC.

With regard to cortical areas, the fusiform gyrus was
another area highly contributing to the classification.
This area is involved in humans’ face processing (70) and
plays certainly a key role in social cognition (71, 72). Its
structural abnormalities in BPD have been already reported
in other studies (27), and functional alterations of this
area emerged mostly in studies using social stimuli (73),
especially emotional faces (27). There is also evidence
that fusiform cortex volume correlated positively with
insufficient self-control (6). Our further analyses showed
increased GM as compared with HC in this area, further
supporting the hypothesis of the abnormal activity found in the
previous studies.

The OFC, with its anatomical connections with cortical
and subcortical limbic areas, is another key area in BPD
neuroimaging literature (18, 74). In support of our findings,
a recent meta-analysis (45) reported that structural differences
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TABLE 3 | Main regions derived from the classification of BPD against BD.

ROI label ROI weight % ROI size

Pallidum_R 19.3420 608

Frontal_Inf_Tri_R 11.4499 3,654

Amygdala_R 9.2810 571

Vermis_6 8.1206 797

Temporal_Pole_sup_R 7.2565 2,085

Fusiform_R 6.5385 5,731

Putamen_R 6.3606 2,560

Tempora_Inf_R 4.2000 7,209

Cerebellum_8_L 4.0807 2,619

Caudate_L 3.8829 2,212

Frontal_Sup_Orb_R 3.7407 1,352

Frontal_Mid_Orb_R 3.0579 1,769

Vermis_4_5 2.9622 1,489

Cerebellum_10_L 2.3693 342

Cerebellum_7b_L 2.2482 863

Frontal_Inf_Oper_L 1.2234 2,479

Thalamus_L 1.0755 2,420

ROI labels are derived from the AAL atlas. Please note that only regions whose contribution

exceeded the 1% are displayed.

between BPD and control in the OFC were robust and consistent
across the selected literature (i.e., 13 studies). The OFC has
been involved in many humans’ behavior among which actions
inhibition, and control and regulation of emotional responses
(18, 74). Notably, these studies found smaller GM concentration
in the medial part of the OFC for BPD compared with controls.
Whereas, in our analyses, we found GM increased in the right
lateral part of the OFC for BPD compared with control. Future
studies are needed to better understand the role of different
portions of the OFC in BPD. Other studies reported a negative
relationship in the local gyrification of this area and impulsivity in
BPD (17, 75). In addition, the OFC and the right inferior frontal
gyrus seem to play a key role in anger and its regulation (76),
which is known to be dysregulated in BPD.

Finally, in addition, the cerebellum, among other functions,
is also involved in affective evaluation, in interaction with
the prefrontal cortex and basal ganglia (77). Accordingly, the
cerebellar–thalamus–striatum circuit could be linked to reward
and mood alterations in BPD (29). In line with previous
observations (6), we found increased GM in the cerebellum for
BPD compared with HC.

To identify a possible substrate to serve as a future biomarker
for BPD, we also compared BPD with another clinical control
group of patients with BD. Despite the previous observation
of a shared neural substrate between BPD and BD (60), the
machine learning approach used in the present study offered
the advantage to clearly disentangle the potential ambiguity
due to the similarity of clinical signs shared by both disorders,
accounting for a neural differentiation between these two
pathological conditions (30). With regard to the source of
such neural differentiation, again, subcortical brain structures
resulted to have the highest discriminative power, suggesting that
emotional reactivity (i.e., the amygdala) and impulsivity (i.e.,

the pallidum, the putamen, and the caudate) that discriminate
BPD from HC also discriminate between BPD and BD. The
involvement of the striatum in the regulation of voluntary actions
as well as in motivated behaviors (78) may represent a coherent
substrate for BPD symptomatology related to the impulsivity,
intended as aggressiveness, substance abuse, self-mutilation, and
eating disorders (60). Abnormalities in the amygdala, on the
other hand, explain the hypersensitivity of patients with BPD to
emotionally salient stimuli, especially the negative ones [e.g., (9)],
and the typical rapid-cycling mood changes in these patients.

The cluster of abnormalities in brain regions involved in
socio-affective processes may be a further aspect distinguishing
BPD from BD. Indeed, a specific deficit in BPD, which
is only marginal in BD, concerns the handling of social
relationships (1). In BPD, interpersonal experiences are often
characterized “by rapid attachment, anxious dependency, and
fear of abandonment” [(1), p. 4]. According to this social
deficiency, the alteration characterizing BPD embraced the
temporal regions and the fusiform area, both associated to the
processing of socio-affective stimuli (emotional faces). Similarly,
the vermis is considered as the limbic portion of the cerebellum,
which, in turn, has been recently suggested a structure related to
social brain (79).

Finally, by considering only the regions that discriminate
BPD from both HC and BD, we were able to outline a possible
biomarker specific for BPD. Results indicate that the alterations
in the triad involving putamen, amygdala, and OFC represent
the specificity of this disorder (42–44). This circuit has been
largely associated with affective instability and anger control as a
consequence of dysfunctional emotion regulation (see Figure 3)
(3, 10, 11, 29, 30, 80, 81).

The present study provides the first evidence of a specific
neural circuit that correctly classify patients with BPD, but such
a scientific advance does not come without some limitations
to point out. First, the sample size of patients with BPD was
small. This is mainly because it is difficult to find open datasets
including BPD data. For other disorders such as schizophrenia,
depression, and anxiety, large datasets are now publicly available,
but not for personality disorders.We acknowledged that a limited
sample size in predictive models has been recently questioned
because it may affect cross-validation error (82). However, there
is also evidence that bigger sample size does not improve bias in
performance estimates when this validationmethod is used [(83);
see also (84), for different considerations on this topic]. Future
studies with larger sample are needed to replicate these findings.
A second limitation concerns mostly the type of the sample that
consisted in patients on drugs. Although this can be a factor to
be controlled in functional studies, in structural investigations, it
should less affect results and individual variability (28, 31).

Despite the limitations, the present study represents a first
attempt to addressed scholars’ concerns that mental disorders
are still lacking reliable and specific biomarkers (85–87),
especially when considering BPD and personality disorders
(88–90). The present finding encourages the employment of
this methodology to disclose pathophysiology and improve
classification of mental diseases (85, 89). We hope that this study
will inspire future investigations in which a larger sample size
will be used and in which BPD will be also distinguished from
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FIGURE 3 | A model for BPD circuit. Areas surviving both contrasts (BPD against HC, and BPD against BD) are displayed as well as their potential functional meaning.

other psychopathologies, such as schizophrenia (91) or major
depression (92).
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