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To understand the dysfunctional mechanisms underlying maladaptive reasoning of

psychosis, computational models of decision making have widely been applied over

the past decade. Thereby, a particular focus has been on the degree to which beliefs

are updated based on new evidence, expressed by the learning rate in computational

models. Higher order beliefs about the stability of the environment can determine the

attribution of meaningfulness to events that deviate from existing beliefs by interpreting

these either as noise or as true systematic changes (volatility). Both, the inappropriate

downplaying of important changes as noise (belief update too low) as well as the overly

flexible adaptation to random events (belief update too high) were theoretically and

empirically linked to symptoms of psychosis. Whereas models with fixed learning rates

fail to adjust learning in reaction to dynamic changes, increasingly complex learning

models have been adopted in samples with clinical and subclinical psychosis lately. These

ranged from advanced reinforcement learning models, over fully Bayesian belief updating

models to approximations of fully Bayesian models with hierarchical learning or change

point detection algorithms. It remains difficult to draw comparisons across findings of

learning alterations in psychosis modeled by different approaches e.g., the Hierarchical

Gaussian Filter and change point detection. Therefore, this review aims to summarize

and compare computational definitions and findings of dynamic belief updating without

perceptual ambiguity in (sub)clinical psychosis across these different mathematical

approaches. There was strong heterogeneity in tasks and samples. Overall, individuals

with schizophrenia and delusion-proneness showed lower behavioral performance linked

to failed differentiation between uninformative noise and environmental change. This was

indicated by increased belief updating and an overestimation of volatility, which was

associated with cognitive deficits. Correlational evidence for computational mechanisms

and positive symptoms is still sparse and might diverge from the group finding of instable

beliefs. Based on the reviewed studies, we highlight some aspects to be considered

to advance the field with regard to task design, modeling approach, and inclusion
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of participants across the psychosis spectrum. Taken together, our review shows that

computational psychiatry offers powerful tools to advance our mechanistic insights into

the cognitive anatomy of psychotic experiences.

Keywords: computational psychiatry, Bayesian learning, Hierarchical Gaussian Filter, change point detection,

schizophrenia, psychosis, belief updating, reinforcement learning

INTRODUCTION

The computational psychiatry approach aims at explaining
psychiatric symptoms via disruptions of mechanisms that
underlie information processing (1, 2). How these mechanisms
work (or: how information is processed) is described in
computational models encompassing the equations that
link the processing of sensory inputs to behavior. These
generative models try to shed light on the “black box” of
the mind. They serve as our dynamic representation of the
changing environments that we aim to predict in order to
adapt our behavior. Therefore, our beliefs about the world
are constantly tested against sensory evidence and updated
when our predictions have failed us (causing a prediction
error= input - belief).

Inherent to psychotic symptoms is the mismatch between the
internal beliefs about the world and the “true” environment, as
in hallucinations reflecting perceptions without sensory inputs
or delusions reflecting false beliefs about the world held with
strong conviction despite contradictory evidence. Thus, the tools
of computational psychiatry have been of high relevance to
psychosis research over the past decade. It has been proposed that
the altered integration of new evidence to update beliefs is at the
core of psychotic experience (3, 4). As such, spurious evidence
may be regarded as meaningful leading to a state of aberrant
salience (5–8). For instance, I may assume that the neighbors
are on to me (belief) based on the experience that they once
did not greet me (sensory evidence). Moreover, certain beliefs
may be held with abnormal conviction despite contradictory
evidence as in delusional ideations. In our example, I may be
convinced that the neighbors are wiretapping me (belief) though
I have not found any bugs after rigorous searching (evidence).
Both phenomena, updating beliefs too much or too little, can
be computationally described via the concepts of precision and
volatility. When the environment is changing (high volatility),
it is very useful to consider any input that deviates from my
beliefs (prediction error) as important and precise evidence.
In computational terms, the learning rate applied to such a
prediction error should be high in order to update the belief
(new belief = old belief + high learning rate ∗ prediction error).
In contrast, when the environment is stable (low volatility), it
is adaptive to keep sensory precision of deviating and noisy
inputs low and beliefs should not be updated (low learning rate).
Notably, our examples show that the estimation of precision
and volatility in psychosis might be altered in both directions
possibly depending on the stage of the disorder [i.e. delusional
mood vs. chronic delusions, see (9)]. With regard to symptom
domains, these higher-level learning deficits, i.e. inference about
the hidden state of the environment being either noisy or truly

changing, were proposed to specifically affect delusions (10, 11).
However, such deficit may also cause the formation of negative
symptoms via decreased motivational values being acquired
during reinforcement learning (4).

For successful dynamic belief updating, learning rates must
be adapted to the noisiness and volatility of the environment.
Both things should usually be indirectly inferred and dissociated
from each other by interacting with the environment via trial
and error. Or put differently, higher-order learning requires
learning when to learn and this process needs to be implemented
in a dynamic learning model. There are different modeling
frameworks taking on this challenging approach in different
ways. As formulated by Pearce and Hall (12), learning rates
or “associability” decreases with time and increases with the
absolute size of previous prediction errors. In contrast to
such error-based models, Hierarchical Hidden Markov Models
(HMM) are fully Bayesian and instead of updating beliefs, the
probabilities of different “states” (my neighbors are suspicious vs.
my neighbors are friendly) are tracked and weighted against each
other [for an example implementation, see (13)]. There are two
relatively recent modeling frameworks, that function as error-
update approximations to a fully (and therefore, costly) Bayesian
learner: the Hierarchical Gaussian Filter [HGF; (14, 15)] and
the change point detection modeling [CPD; (16)]. In the HGF,
learning takes place in a hierarchy where the upper-level belief
reflects the estimated volatility that is informed by lower-level
(sensory) prediction errors. The equivalent to a learning rate is
the precision weight, where upper- and lower-level precisions
are weighted against each other and therefore act as a “volatility
vs. noise” trade off. Whereas the HGF was designed to learn
about continuous changes in the environment, change point
detection theory models learning about discrete changes. Here,
the assumed hazard rate (how often the environment is thought
to change) informs the probability of a change point that is
weighted against the relative uncertainty (how little we know)
and the estimated noise in the environment.

Though these models have been applied to investigate the
same question, namely dynamic belief updating in psychosis,
the different modeling environments and terminologies (e.g.
volatility belief vs. change point probability) have often impeded
the comparability of results. They differ in their number of free
parameters, their fitting procedures and their experimental tasks
they are applied to. At least in parts, this heterogeneity is owed
to computational psychiatry still being a relatively young field
that has yet to find and agree on a methodological gold standard.
Though, there are promising suggestions for modeling standards
(17), such as parameter recovery or model selection studies
checking all these criteria and involving clinical data are still
warranted. This lack of a gold standard calls for more technical
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considerations about the modeling that should be taken into
account when interpreting the results of dynamic belief updating
in psychosis especially across studies.

Here, we review dynamic learning models and their respective
behavioral findings in subclinical and clinical populations with
psychotic experiences. Thereby, we focus on the two influential
dynamic learning models, the HGF and change point detection
theory. We performed a literature search for publications citing
a relevant paper from both modeling approaches (14, 16) and
reporting results in participants from the psychosis spectrum.
For a more comprehensive review, we extended our scope to
other selected modeling approaches, such as, among others,
extensions of Pearce-Hall learning (12) and Hidden Markov
Models (13, 18). For the scope of this review, we are focusing on
the potentially impaired learning about changing environments
and its relation to the continuum of schizophrenia symptoms.
Thus, we restricted our review to learning tasks with dynamic
environments and/or noisy inputs (see Table 1) and excluded
paradigms explicitly manipulating perceptual uncertainty. We
will briefly touch upon the latter phenomenon in our discussion
section, but would refer to a more in depth review on the
role of priors and (ambiguous) sensory evidence in perception
as a model for hallucinations (10). In the following, we will
individually describe the core foundations of these different
modeling approaches together with a summary of the respective
results on psychosis. In our discussion, we will interpret
the similarities and differences in behavioral findings across
the different approaches while minding the diverse modeling
backgrounds. Our aim is to draw conclusions about dynamic
belief updating in psychosis and highlight the difficulties and
potentials of computational modeling of behavior, also regarding
future computational psychiatry studies.

THE HIERARCHICAL GAUSSIAN FILTER

Based on our literature review, the HGF clearly outweighs other
model types by the number of applications in psychosis studies.
We found ten articles that used the HGF for modeling the
learning process in changing and/or noisy environments of
participants from the psychosis spectrum.

The Practical Side
The HGF models are implemented in the tapas toolbox by
the Translational Neuromodeling Unit (TNU) project, which
is therefore easily accessible via a free download. Another
practical advantage lies in the relatively easy adjustment of these
existing models to individual task data via the combination
of “perceptual or learning models” (generating the dynamic
learning trajectories, like prediction errors and beliefs, e.g.
HGF or Rescorla-Wagner) and “decision or response models”
(how learning trajectories translate into behavior, e.g. softmax).
Thereby, individual task-based adjustments are usually done in
the response models whereas the often more complex “learning
models” can remain (relatively) stable across task applications.

The Theory and Key Parameters
The HGF is a generative model mapping prior beliefs about the
changing hidden states of the world to sequentially appearing
sensory evidence. Beliefs span multiple (but usually three) levels
and are continuously evolving in Gaussian random walks. The
belief update combines Bayesian principles (weighting prior
beliefs against sensory evidence according to their respective
probability distribution, i.e. precision/inverse uncertainty) with
the biologically plausible framework of hierarchical prediction
errors. The three levels describe different kinds of beliefs about
the state of the world. The first level describes µ1 the belief about
the state of the sensory input. This level is only relevant when
there is perceptual ambiguity (outcome uncertainty σ1) about the
input; otherwise and as in tasks with binary inputs like rewards
and losses, this is the sigmoid transformation of the second level
belief. On the second level, the belief µ2 reflects the tendency x2
(or probabilistic strength) of a state x1 being true (e.g., stimulus
A leads to reward) and is associated with expected uncertainty σ2
(uncertainty that can be predicted by themodel, e.g. highest when
this tendency is close to 0.5). On the third and last level (though
the HGF framework would allow for additional levels), the belief
about the environmental volatility (µ3) is tracked. Crucially, the
higher-level beliefs work downstream by determining the impact
of lower-level prediction errors on changing the beliefs. The core
algorithm lies in the definition of precision weights that are used
equivalent to dynamic learning rates, weighing the influence of
prediction errors on updates (Equation 1).

π̂1

π2
=

π̂1

π̂2 + π̂1
=

π̂1
1

σ
(t − 1)
2 + exp

(
κµ

(t − 1)
3 + ω2

) + π̂1
(1)

Those precision weights consist of the lower-level predicted
precision π̂1 in the numerator and the same-level precision
π2in the denominator. In a three-level HGF, the 2nd level’s
precision contains the higher-level belief µ3, which reflects the
volatility belief, as well as the expected uncertainty σ2. Thereby,
learning rates are high when the environment is thought to be
volatile and changing (as reflected in high values of µ3) and
thus prediction errors are weighted more strongly. In contrast,
when the environment is thought be stable or when there is low
expected uncertainty, learning rates are low and prediction errors
are “explained away” as noise.

Among the free model parameters to be fitted individually,
there is usually ω2, the step-size of the Gaussian random walk
on the second level, or put a bit simpler, the fixed proportion of
the dynamic learning rate. There is κ for coupling the influence
of the third level’s belief on the second level. When this parameter
is fixed to 0, the HGF reduces to a two-level model. The ϑ

or ω3 parameter (the same parameter is meant, the letter only
depends on the toolbox version) reflects the meta-volatility
and determines the step-size of updates in the beliefs about
volatility. In a modified version of the HGF (21, 23) the third-
level belief also contains a “reverting parameter” m, reflecting a
value where the volatility belief is steadily being pulled back to,
in order to prevent strong drifts. Apart from these parameters,
starting points for the dynamic belief and uncertainty trajectories
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TABLE 1 | Overview of the selected studies with their respective tasks and modeling details.

First author Year Sample Task (Best) Model Simulation (1) of

raw results/ for

(2) parameter

recovery

Computational parameters or

trajectories altered in psychosis

and/ or schizophrenia

Model

com-parison*

Input / behavioral

response

Group

differences

Symptom

correlations

Adams et al. (19) 2018 79 PSZ or delusional P,

22 nonpsychotic mood

disorders, 146 HC

Probability estimates

beads task with

trial-wise confidence

and probability rating;

HGF2 with

evolution rate,

initial variance,

belief instability

and response

stochasticity

no / yes In clinical

psychosis: higher

κ1 (stronger belief

update following

disconfirming

events) and lower

v (inverse decision

noise)

v correlated with

higher IQ in PSZ

yes binary / continuous

Katthagen et al.

(20)

2018 42 PSZ,42 HC Implicit Salience

Paradigm: outcome

detection following

cues with relevant and

irrelevant features for

outcome prediction;

reversals for

reinforcement and

relevance (160 trials);

HGF2-Relevance

weighted

prediction error

and irrelevance

bias and w/o

Precision

Feedback;

yes / no Bias to irrelevant

information (mean

β_irrel) increased

in PSZ

β_irrel correlated

with increased

negative

symptoms

yes binary / continuous

(reaction time)

Cole et al. (21) 2020 13 CHR

(antipsychotic-naïve),

13 HC

RLT with stable and

volatile phases (160

trials)

Autoregressive

HGF3-DU-V

no / yes Higher m3 in CHR,

group-by-phase

interaction on µ3

trajectory with

larger increase of

µ3 after first

reversal in CHR

/ yes binary / binary

Deserno et al. (22) 2020 70 PSZ, 64 HC RLT with stable and

volatile phases (160

trials)

HGF3-DU-V yes / no heightened initial

µ3 and κ in PSZ

Initial µ3

correlated with

lower executive

functioning and

lower cognitive

speed

yes binary / binary

(Continued)
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TABLE 1 | Continued

First author Year Sample Task (Best) Model Simulation (1) of

raw results/ for

(2) parameter

recovery

Computational parameters or

trajectories altered in psychosis

and/ or schizophrenia

Model

comparison*

Input / behavioral

response

Group

differences

Symptom

correlations

Diaconescu et al.

(23)

2020 70 HP,

81 LP (subclinical)

Advice-taking

experimental paradigm

with two framings

(between-subjects:

situational vs.

dispositional) with

stable and volatile

phases (210 trials);

HGF3-V-

integrated advice

taking

no / no Overall: less

pronounced

framing effects in

HP; Parameters:

ω2 and ζ differed

less across task

frames in HP

(interaction with

frame); Precision

trajectories: only in

LP lower precision

belief in

dispositional vs.

situational frame;

impact of volatility

was stronger in

the situational

compared to the

dispositional frame

only in LP;

/ yes binary / binary

Henco et al. (24) 2020 31 HC, 28 MDD, 29

PSZ, 28 BPD

RLT with parallel

social/non-social cues

(120 trials)

Autoregressive

HGF3-DU-V (both

cues)

yes / yes Higher ζ (weighing

social over

non-social info) in

PSZ (and BPD)

compared to HC

/ yes binary / binary

Reed et al. (25) 2020 27 HP, 77 LP (clinical

and non-clinical)

RLT with 3 options,

fixed and adaptive

reversals (160 trials)

Autoregressive

HGF3-DU-V

yes / yes Higher initial µ3

and κ, only online

sample: lower ω

κ (Block 1)

positively

correlated with

paranoia,

depression and

anxiety

no binary / categorical (3

options)

Suthaharan et al.

(26)

2021 193 HP,

793 LP

RLT with 3 (social or

nonsocial) options,

fixed and adaptive

reversals (160 trials,

see Reed et al.)

Autoregressive

HGF3-DU-V

no / no HP: lower ϑ ,

higher initial µ3,

higher κ, lower ω

initial µ3

correlated with

more conspiracy

and anti-vaccine

beliefs

no binary / categorical (3

options)
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TABLE 1 | Continued

First author Year Sample Task (Best) Model Simulation (1) of

raw results/ for

(2) parameter

recovery

Computational parameters or

trajectories altered in psychosis

and/ or schizophrenia

Model

comparison*

Input / behavioral

response

Group

differences

Symptom

correlations

Kaplan et al. (27) 2016 17 PSZ,

24 HC,

35 unaffected siblings

of PSZ

Dynamic numerical

inference task (320

trials)

Normative

reduced Bayesian

change point

detection model

no / no Higher estimated

posterior

probabilities of

change point in

PSZ vs. HC

/ no continuous/ binary

Nassar et al. (28) 2021 94 PSZ,

33 HC

Helicopter location

inference task: Position

of helicopter must be

inferred in change point

or drifting oddball

conditions, with

appetitive and

non-appetitive framing

(400 trials)

Normative

reduced Bayesian

change point

detection model

with perseveration

+ 2 context error

terms

yes / yes Behavior of PSZ

not better

explained by

normative model

with high hazard

rate

Perseveration

factor negatively

related to

cognition in PSZ

but not HC

yes continuous /

continuous

Schlagenhauf

et al. (13)

2014 24 PSZ

(unmedicated),

24 HC

Probabilistic RLT (200

trials)

HMM (R/P) for

22/24 HC but only

13/24 PSZ

yes / no Reward sensitivity

differed between

HC and poor-fit

PSZ but not HC

and good-fit PSZ;

overestimation of

transition rate in

PSZ.

Model fit of HMM

correlated with

lower positive

symptoms in PSZ

yes binary / binary

Vinckier et al. (29) 2015 21 HC (under Ketamine

and Placebo)

RLT with stable task

phases, 3 fixed

reversals (240 trials)

Hierarchical

learning with

double-update,

where c scales the

(nondifferential)

effect of

confidence on α

and β; confidence

relies on

choice-optimality;

reinforce =

outcome sign;

no / no Ketamine reduced

confidence-weight

on learning rate α

and softmax

temperature β

/ yes binary / binary

(Continued)
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TABLE 1 | Continued

First author Year Sample Task (Best) Model Simulation (1) of

raw results/ for

(2) parameter

recovery

Computational parameters or

trajectories altered in psychosis

and/ or schizophrenia

Model

comparison*

Input / behavioral

response

Group

differences

Symptom

correlations

Stuke et al. (30) 2017 98 HC Probabilistic reasoning

task presented as a

beads task (fishponds)

with auditory cue

indicating the source

(80% correct) of drawn

fish (30 rounds)

Non-linear RW

model with

adapting

resistance against

large surprise.

no / no Not applicable Decreased

resilience

parameter against

high and irrelevant

prediction errors

correlated with

delusional ideation

and hallucinatory

experiences.

yes binary / continuous

Hernaus et al. (31) 2018 26 PSZ 23 HC RLT [(32)] with 3

options, fixed and

adaptive reversals (160

trials)

Krugel et al. (32):

reinforcement

learning with

dynamic α based

on previous

prediction errors

and with free β

yes / no Impaired α

modulation

(smaller increases

under volatile

circumstances,

smaller decreases

under stable

circumstances),

more pronounced

in PSZ with high

avolition

/ yes binary / binary

Nour et al. (18) 2018 39 HC Belief updating task

[(33)]: Finding out which

out of two parallel and

reversing cues (tone,

shape) predicts

reinforcement (180

trials)

HMM with free

parameters for cue

validity (indicating

reinforcement) and

transition rate

(between

relevance states)

no / no / / no binary / binary

(Continued)
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TABLE 1 | Continued

First author Year Sample Task (Best) Model Simulation (1) of

raw results/ for

(2) parameter

recovery

Computational parameters or

trajectories altered in psychosis

and/ or schizophrenia

Model

comparison*

Input / behavioral

response

Group

differences

Symptom

correlations

Baker et al. (11) 2019 24 PSZ 21 HC Incentivized

information-sampling

task (modified version

of the beads task with

varying ratios, 60:40,

75:25, 90:10, 100:0)

Bayesian inference

with weights for

recency bias on

priors and sensory

likelihood weight

yes / yes Decreased

information

seeking in PSZ

when adjusting for

delusion severity,

but this was driven

by

socio-economic

status

Prior-weight ω1

affected slower

updating and

correlated with

higher PDI scores

(total and

subscores), as well

as with

suspiciousness/persecution

(PANSS-P6)

yes binary / continuous

Haarsma et al. (34) 2020 24 ARMS 20 FEP 30

HC

Predicting rewards

drawn from

distributions with fixed

means and cued high

or low precision (186

trials)

Pearce Hall model

with precision

adaptation and

separate

parameters for

signed and

unsigned

prediction errors

yes / no For FEP best fit of

RW without

precision

weighting; HC and

ARMS participants

show higher α in

the high-precision

condition, FEP do

not

/ yes continuous /

continuous

Hierarchical Gaussian Filter models in green, Change point detection modeling in yellow, Selection of various other dynamic models in grey. ARMS, At Risk Mental State; CHR, Clinical High Risk; FEP, First Episode Patients; HC, Healthy

Controls; HP, High Paranoia; LP, Low Paranoia; PSZ, Patients with Schizophrenia; RLT, Reversal Learning Task; DU, Double Update; HGF, Hierarchical Gaussian Filter; HMM, Hidden Markov Model; RW, Rescorla-Wagner; V, Volatility;

PANSS, Positive and Negative Syndrome Scale; PDI, Peters Delusion Inventory; Computational parameters or trajectories: α, learning rate; β, softmax temperature; δ, prediction error; k, 2nd and 3rd level coupling (HGF models); µ3,

dynamic volatility belief; ω, constant component of 2nd level belief update/evolution rate; ϑ , meta-volatility; m3; mean-reversion equilibrium; *Model selection in terms of formal comparison between quantitative model fit indices.
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(µ0
3 and σ 0

2 ) can also be fitted to individual behavior. For
example trajectories of 2nd and 3rd level beliefs fitted during
a probabilistic reversal learning task, see Figure 1. Besides the
strong potential of uncovering dysfunctional mechanisms via
the variety of free parameters, it should be noted that sufficient
parameter recovery as a basis to make valid interpretations was
not given for all parameters, especially the meta-volatility ϑ

(21, 35). Further, as the HGF assumes learning via continuous
Gaussian random walks, simulations have shown that when
applied to fast changing paradigms, i.e. in changing states as in
reversal learning, it seems inferior to the CPD (36) or the Volatile
Kalman Filter (37).

HGF: Psychosis Findings
In the context of psychosis, the HGF was applied to behavioral
responses of the following paradigm types: reversal learning
(21, 22, 25, 26), social advice taking (23, 24), an implicit salience
paradigm (20), and a modified version of the beads task (19).

For volatile reversal learning (as depicted in Figure 1),
subjects have to choose between neutral stimuli in order to
find out the better option, i.e. the stimulus that has the
highest probability of being rewarded or leading to the most
points. Each choice is followed by feedback, given either
by monetary rewards/losses (22) or by points (21, 25, 26).
Critically, the “ground truth” contingencies change over time,
by either reversing (i.e., the better stimulus becomes worse,
such as 0.8 to 0.2), while the previously less valuable stimulus
is reinforced more often (0.2 to 0.8) and/or a change in the
probabilities (i.e., probability of 0.9 reinforcement lowering to
0.6). In the studies by Cole et al. (21) and Deserno et al. (22),
volatility manipulation only took place in terms of the number
of performance-independent reversals while otherwise keeping
stable probabilistic contingencies (0.8/0.2). In the studies by
Suthaharan et al. (26) and Reed et al. (25), such reversals did
not only appear at fixed time points but also in line with task
performance, i.e. after having chosen the better option in 9
out 10 trials. Crucially, there were also unsignaled contingency
transitions. In the beginning, the three stimuli had 90, 50, and
10% reinforcement rates and halfway through the task, those
probabilities changed to 80, 40, 20%. Despite these differences
in task design and clinical characteristics, results have been
rather consistent across studies. Patients with manifest psychosis
showed lower overall performance and more switching between
choices (22, 25, 26), while no “raw” performance data were
reported for the study in clinical high risk participants (CHR)
(21). Parameters determining the “basic level” of volatility, either
as the starting point of the belief trajectory or the reverting
value of this belief, were increased in patients with schizophrenia
(22), clinical high-risk subjects (21) and in subjects with high
(mostly subclinical) paranoia (25, 26). Further, the influence of
this higher-level volatility belief on learning about the lower-level
association strength, captured in the κ parameter, was stronger
in patients with schizophrenia and high paranoia (22, 25, 26).
However, this difference in the kappa parameter was absent in
CHR (21).

Most of these computational studies on psychosis investigated
altered learning as a “content-free” cognitive process that can

potentially be generalized across contexts. However, especially
delusions are often characterized by a strong social component,
such as the typical assumption that others are hiding their
harmful intentions. Some studies have investigated this by
introducing social aspects into learning paradigms with ranging
complexity: from “classic” reversal learning between different
social avatars (26), over integrating the associative strengths with
rewards over social and non-social cues (24) to a combination of
the latter with context-manipulations via cover-stories (23). One
study comparing the use of social avatars (emojis) to non-social
stimuli (color of card-decks) for reversal learning in participants
with subclinical (and still very low) paranoia, did not find any
differential effects on the learning process, neither in raw data
nor in computational analyses, though the stimuli were perceived
as sabotaging by the delusion-prone group (26). In a reversal
task, where social (gaze direction) and non-social information
(card deck) had to be integrated simultaneously, patients with
schizophrenia performed overall worse and relied more on the
social compared to the non-social information (24). The latter
was reflected in a response model parameter weighting social
over non-social beliefs in the decision process. Here, both cue
types had independent associative strengths that varied over the
course of the experiment and thus required parallel volatility-
dependent learning which was captured in separate 3-level-
HGFs for parallel learning about two cues comparable to the
perceptual models in (20). Further, there was no instruction
“personalizing” the social cue as representing an individual
with (hidden) intentions. This was different in the study by
Diaconescu et al. (23), that investigated social inference (i.e.,
about the intention of others) in subclinical paranoia. Subjects
had to predict the outcome of a binary lottery and received social
(video of an adviser) and non-social (pie chart) advice. Notably,
the adviser was either introduced to give correct or false advice
due to either task structure (situational) vs. acting based on his
intentions (dispositional). Unlike in the otherwise very similar
study by Henco et al. (24), nothing could be learned about the
non-social cue representing the true reward probability. Hence,
computational modeling was only used to infer the subject’s
beliefs about the adviser’s validity which was volatile across the
task.Whereas both groups applied hierarchical learning, only low
paranoia subjects were susceptible to the task framing. When the
adviser’s intentions were highlighted, they took social advice less
into account (higher weighting of non-social information) and
updated their belief about the adviser’s validity less rapidly (lower
ω2 learning parameter). In contrast, high paranoia subjects did
not differentiate between framings [for raw data results, see
(38)]. Further, volatility affected precision beliefs more in the
situational than in the dispositional framing, but this effect was
only present in low paranoia. Though there was no main effect of
group here, the decreased susceptibility to social framings seems
a bit at odds with the finding that patients with schizophrenia
follow social cues more than the simultaneously presented, non-
social ones (24).

It has long been proposed that schizophrenia patients
have trouble down-regulating irrelevant information (5–8).
Transferring this to belief updating, irrelevant stimuli may elicit
learning signals in the brain causing the formation of aberrant
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FIGURE 1 | Reversal learning task example and the associated HGF learning trajectories fitted to binary choice data of an individual participant. Upper plot: Depiction

of trial sequence in a volatile reversal learning task with geometric stimuli (rewarded in this trial) [as in (22)]. Participants had to make a binary choice between one out

of two stimuli via a button press and were presented with either a reward or loss outcome. Lower plot: Upper panel: Blue line represents one subject’s individual

trajectory of higher-level belief µ3 over the course of the task from trial 1–160. Lower panel: Underlying contingencies are depicted in light brown with anti-correlated

reward probabilities of one of the stimuli, reward contingencies remain stable in the beginning and end of the task with a volatile reversal period in between. Red line

represents the belief µ2 and reflects the tendency x2 (or probabilistic strength) of stimulus A leading to reward. Black line represents the dynamic learning rate on the

second level belief µ2.

associations (39, 40) and blurred dissociation between relevant
and irrelevant events (4). In line with this, the HGF was applied
to modeling biased belief updating toward irrelevant (20) and
disconfirming evidence (19). For investigating the bias toward
irrelevance in an outcome detection task, preceding cues varied
in two dimensions whereby only one of them was relevant for
predicting the outcome and these predictive value changed over
time (20). Reaction times to the outcomes were best described

by a 2-level-HGF defining subjective relevance based on the
first level precision π1. The best model further contained a
bias to irrelevant information which was heightened in patients
with schizophrenia exhibiting more negative symptoms. Adams
et al. (19) investigated biased belief updating with a modified
beads task, where patients had to infer the underlying urn of
ongoing draws of beads. As the environment was stable (no
underlying changes in urns), a 2-level HGF was applied to
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model choice behavior. The parameter κ1 [in former studies
used for the coupling between levels 2 and 3 as in Equation
(1), e.g. in (22)] now played a key role in coupling levels 1
and 2 in the sigmoid transformation of the second-level belief
for the behaviorally relevant first-level belief; higher κ1values
caused stronger updating following disconfirming events and
lower updating following consistent draws. Besides higher levels
of decision noise, this κ1 parameter was also increased in patients
with schizophrenia interpreted as a bias to more drastic belief
updating toward disconfirming evidence.

CHANGE POINT DETECTION THEORY

We identified two papers that modeled dynamic learning in
psychosis using change point detection algorithms (27, 28). The
centerpiece of change point algorithms is a “normative model”
derived from a Bayesian ideal observer that describes optimal
learning behavior (16). The approach has also been applied in
other patient populations (41).

The Practical Side
Resources of change point detection algorithms are not
systematically documented in a toolbox, but code (mostly
in Matlab) is freely available from repositories of the
seminal authors (https://sites.brown.edu/mattlab/resources/).
As described for the HGF, inter-individual differences in
behavior can be captured via fitting of free model parameters
(27). Alternatively, and more often used for this approach,
participants’ adherence to the normative model with optimal
computational learning parameters is used in combination
with linear regression. In these models, regression coefficients
capture whether the trial-wise update can be predicted by the
normative learning parameters (42, 43). Further, different model
predictions can be computed by altering specific parameters of
the normative model in line with learning aberrations that are
hypothesized to be altered in psychosis.

The Theory and Key Parameters
Volatile environments are characterized by fluctuating action-
outcome contingencies. In such environments, beliefs are
required not to evolve gradually but shift discretely. According
to change point detection theory and in line with Bayesian
learning, an agent’s belief can be formalized as a distribution
with the mean reflecting the current prediction. Deviating inputs
can be due to noise (as reflected in the variance) or due to a
change in the generative distribution (mirroring environmental
volatility). In other words, one infers whether the given input (Xt)
was generated by the previously learned Gaussian distribution
given the current belief and noise [N(Xt|Belieft, Noise)] or, in
case of a change point, from a novel distribution. Like the
HGF, change point detection modeling reflects a prediction-
error-based approximation to costly optimal Bayesian learning.
Beliefs are learned via prediction error-driven updates that are
weighted via dynamic learning rates according to two dynamic
components: (i) change point probability �, and (ii) uncertainty
τ . According to ( Equation 2), learning rates α are scaled by the
current uncertainty belief when no environmental change point

occurred (� ∼= 0). This can be overridden when a change point
is detected, i.e. � ∼= 1, allowing a rapid elevation of the learning
rate (see Equation 2).

αt = �t + τ t × (1 − �t) (2)

The probability of a change point (�) is high when the
agent observed a large prediction error which signals a true
change in the environment (stemming from a novel generative
distribution). The agent must adopt a high learning rate to
rapidly update her belief according to the new observation. Thus,
� increases after large prediction errors so that old beliefs can
be disregarded, and rapidly decreases right afterwards so that
new information can be integrated. Besides prediction error
magnitude, a set-level-estimate of environmental volatility (how
frequent change points are in general), termed “hazard rate”
feeds into this. If the agent assumes few change points (low
hazard rate), she can tolerate larger prediction errors without
increasing the learning rate and assuming a true change point.
After a change point has occurred, the agent is highly uncertain
about the new belief, represented in high relative uncertainty
τ , since the new belief is based on scarce prior information.
Accordingly, she adopts a high learning rate to integrate the new
observation in the current belief. Intuitively, when information
from the same generative distribution accumulates, beliefs
become more precise, and uncertainty decreases. During such
phases, the learning rate slowly decreases to allow stability of
beliefs. It should be noted that previous applications of the
CPD followed a rather descriptive approach by introducing
central “ground truth” information of the task into the modeling
process that remained unknown to the individual, as the hazard
rate or uncertainty due to noise [e.g., (28, 43)]. Thereby,
behavioral differences can only be normatively interpreted
in terms of deviations from optimal learning, instead of
explicitlymodeling the interindividual differences bymechanistic
parameters underlying such sub-optimal learning.

CPD: Psychosis Findings
Change point detection algorithms were applied to data from
two paradigms that required dynamic belief updating in volatile
environments, including the dynamic numerical inference task
(27) and the helicopter task (28). The underlying structures were
very similar: continuous inputs were sampled from Gaussian
distributions whose means changed discretely at several time
(“change”) points. Subjects had to dynamically infer these
underlying means. Thereby, they had to differentiate random
noise from meaningful change points. These two components
had opposing effects on learning rates. Notably, in addition
to inferred prediction errors and learning rates derived via
computational modeling, continuous inputs and responses allow
for the calculation of directly observed (or raw) prediction errors
and learning rates.

In the dynamic numerical inference task (27) subjects
were presented with a stream of integers and indicated
via button press when they assumed a change in the
underlyingmean. Raw behavioral prediction errors were larger in
patients with schizophrenia than in controls, suggesting overall
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worse performance. Additionally, patients misinterpreted small
prediction errors as change points that were considered noise by
controls. A maximum likelihood approach was adopted to fit the
model to behavioral data and estimate inferred noise and hazard
rate as free parameters. While groups did not differ in these
parameters, individual posteriors of change point probability
were higher in patients vs. controls. Taken together, raw and
modeling results indicate that patients overestimated the number
of environmental change points.

In a large sample of patients with schizophrenia and
schizoaffective disorder, Nassar and colleagues (28) adopted
the well-established helicopter task (16, 42, 43). In this task,
participants must track the location of a hidden helicopter (see
Figure 2) in an uncertain and changing environment with the
goal to catch bags that the helicopter drops. The helicopter stays
in place for some time, but occasionally moves to an entirely
different location (change point). There was also an explicitly
instructed “oddball condition,” in which underlying means
drifted slowly and surprising outcomes were one-off outliers
that did not signal a change point. Across both conditions,
patients more often used learning rates close to zero or close
to one, and less often moderate learning rates. As such, they
failed to integrate over prior observations which is necessary
to maximize precision, but either perseverated or completely
replaced their belief. Nassar et al. (28) simulated data with
increased hazard rates, corresponding to an overestimation
of environmental volatility. This models an agent who, when
observing a large prediction error, learns too fast in the
change point condition mistaking noise for change points.
In the oddball condition, learning would be too slow, since
updating “too much” in response to the oddballs would
distract from learning about the one underlying, stable state.
However, neither patients nor controls adhered to this model.
Instead, Bayesian model comparison favored a variation of the
normative model with free parameters for the perseveration
probability. Interestingly, these parameters contributed most to
a classifier for patient status, suggesting that patients perseverate
more. Critically, the perseveration parameters were not related
to positive or negative clinical symptoms but to overall
cognitive function.

A Selection of Other Models: Pearce-Hall,
Modified Rescorla-Wagner Learning and
Bayesian Inference
In this section, we will highlight a diverse range of computational
studies on psychosis beyond the presented frameworks of the
HGF or CPD; namely Pearce-Hall learning with precision
weights (34), Rescorla-Wagner learning with different kinds
of learning rate modulation (29–31), Hidden Markov models
[HMM; (13, 18)] and Bayesian inference (11).

In non-hierarchical models, there is a high variety of how
to computationally define dynamic learning rates. A central
question is when learning should increase, for those events that
are novel and thereby unreliable in predicting outcomes or for
those that have proven to be reliable in the past? The models by
Pearce and Hall (12) and Mackintosh (44) diverge here. Whereas

Mackintosh proposed that one learns more about stimuli with
ongoing occurrence, Pearce andHall proposed that learning rates
(or associability) are highest during the first occurrences of a
novel stimulus {for [also more recent] hybrid solutions, please
see (45–47)}. A variation of a Pearce-Hall model (8) was applied
to a psychosis dataset (34). In “classic” Pearce-Hall learning, the
associative strength k of a stimulus represents a dynamic learning
rate used to update the stimulus value µ. The learning rate is
affected by the opposing effects of (i) a learning decay factor γ

over time (see above) and (ii) the previous absolute prediction
error |δ(t−1)|. The former reflects the idea that we learn most
in the beginning and then less when encountering the same
stimulus-outcome pairing repeatedly. However, the learning
rate can then again be upregulated to support novel learning
when large prediction errors occur signaling that something
has changed.

µ(t) = µ(t − 1) +
k(t)δ(t)

ω
(3)

k(t) = γC

∣∣∣δ(t − 1)
∣∣∣

ω
+ (1 − γ )k(t − 1) (4)

Diederen and Schultz (48) have applied this modeling approach
to a novel learning task, where subjects had to predict the
(hidden) mean of an underlying distribution. In order to
investigate the effects of precision (inverse variance) scaling on
prediction errors, the width of these distributions varied and
was explicitly signaled to the participants. For computational
modeling, the Pearce-Hall model was adapted now containing
the ω-trajectory, that was informed by the true variance
of the distributions and scaled learning rates as well as
prediction errors, directly (see Equations 3 and 4). This
framework was tested in a sample representing a broad
psychosis spectrum: first-episode psychosis (FEP) patients, at-
risk-mental-state (ARMS) individuals and healthy controls.
While ARMS and healthy controls used precision-weighting
and followed a Pearce-Hall learning rule, FEP patients were
best fit by a simple Rescorla-Wagner model with fixed
learning rates and no precision-weighting (34). More specifically,
FEP generally exhibited impaired task performance because
their learning was not appropriately adapted to different
levels of precision.

In close relation to the Pearce-Hall model, Krugel et al.
(32) proposed another formulation for learning rate modulation
in error-update learning, applied to the already mentioned
adaptive reversal task (25, 26). Here, the learning rate depends
on the slope of averaged previous prediction errors. Thereby,
with increasing absolute prediction errors, learning increases
and vice versa for the opposite direction. When this task
and model were administered to a sample of medicated
patients with schizophrenia and controls, there were no group
differences in the fitted free parameter (31). However, when
comparing learning rate trajectories, patients exhibited smaller
decreases in learning rates before reversals and smaller increases
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FIGURE 2 | Example of the Helicopter paradigm (12) and the associated CPD learning trajectories. Upper plot: Depiction of trial sequence in the helicopter task, in

which a hidden helicopter moves horizontally and drops a bucket in each trial. Participants have to give a continuous prediction of the bucket location via joystick

which is followed by feedback with a visualized prediction error (the distance between their prediction and the actual bucket location in red). Middle plot: Light green

represents the optimal trajectory of change-point probability and dark green represents the optimal trajectory of change-point probability (CPP) over the course of 140

trials. Lower plot: Dots represent the helicopter’s locations, dispersing around the true mean (dashed line) in the low noise block (light brown) and the high noise block

(light blue). Y-axis corresponds to the horizontal scale in the upper part.

in learning rate after reversals. This blunted, less dynamic
learning rate modulation was more pronounced in patients with
high avolition.

While in the previous two models the learning rate
increased with high (preceding) prediction errors, Stuke et al.
(30) proposed an opposing model where learning rates are
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downregulated when the current prediction error is high.
However, these formulations do not need to be at odds.
The former models work well in unstable environments
where prediction errors can signal true volatility. In contrast,
when the environment is known to be stable but noisy, the
mechanism proposed here works as “resilience” against irrelevant
information. Computationally, the influence of large prediction
errors is downregulated according to its absolute size and a
resilience parameter. Using a modification of a cued beads task,
subjects had to infer one out of two origin lakes (i.e. underlying
distributions) of drawn fishes. They found that attenuated
resilience against irrelevant information correlated with higher
jumping to conclusion behavior (i.e. reaching a premature
decision without gathering enough evidence experimentally
reflected in reduced draws-to-decisions), as well as more
delusional ideation.

Relying on Rescorla-Wagner learning about “Q-values” that
reflect the expected reward for respective actions [e.g. choosing
stimulus x; (49)], Vinckier et al. (29) introduced a computational
definition of confidence. Confidence was operationalized as
a higher-level learning trajectory affecting the lower-level
learning rates and choice behavior. This trajectory reflects
the subjective certainty that the chosen stimulus leads to the
most optimal outcome. By its coupling with the learning rate
for Q-values, in states of high confidence, value updating
via disconfirming outcomes (different valence than expected)
are down-regulated whereas belief confirming outcomes (same
valence as value) are upregulated. In low confidence, this
dissociation is “turned off” because then, all information is
valuable. Further, confidence directly affects choice behavior via
the coupling with decision noise; whereas high confidence leads
to more exploitation, low confidence leads to more exploration,
i.e. choice stochasticity. Tested in healthy controls following a
ketamine challenge, this model explained choice behavior in a
probabilistic reversal task. Although there were no correlations
with psychotic-like symptoms, ketamine attenuated the effect of
confidence on lower-level learning rates and choice behavior. The
authors concluded that this psychosis-like doubt or uncertainty
might explain the failure to stabilize acquired knowledge in
noisy environments.

So far, the computational models presented here reflected
versions of error-based belief updates with varying complexity.
There, beliefs reflect Q-values of stimulus-outcome associations
that are computationally represented in an array of point
estimates. Another line of models is based on Bayesian
learning, where posterior beliefs reflect the estimated
probability of potential hypotheses (or task states) being
true given current evidence. Thereby, beliefs are represented
as probability distributions with their entropies reflecting the
respective uncertainty. Optimal Bayesian learning requires
high computational costs. Hidden Markov Models (HMM)
represent a very efficient application because only the last step is
needed to inform the present one and probabilities of transitions
are supposed to remain stable. These transitions take place
between the hidden states of the task, as in reversal learning,
where the good stimulus reverses over time (e.g. state x1 ={
stimulus A → reward; stimulus B → punishment } and state

x2 =
{
stimulus A → punishment; stimulus B → reward }).

Especially when tested against other, less complex models, it can
reveal whether subjects only learn about Q-values or whether
they try to infer the hidden structure of the task. Such a model
comparison was carried out after modeling probabilistic reversal
learning in unmedicated patients with schizophrenia and healthy
controls (13). The healthy participants used their inferred
knowledge of the task structure as indicated by a better model fit
of the HMM. In contrast, a subgroup of patients characterized
by high positive symptoms severity used simpler learning not
taking into account the structure of the task. Schizophrenia
patients showed impaired task performance and overestimated
the probability of reversals compared to controls as indicated by
higher transition rate parameters in the HMM. Nour et al. (18)
employed an HMM together with a learning paradigm where
healthy subjects had to infer the currently relevant cue modality
(visual vs. auditory cues). This allowed them to dissociate
meaningful Bayesian surprise (via applying Kullblack-Leibler
divergence to the individually modeled beliefs) indicating a
change in task states from meaningless sensory (information-
theoretic) surprise. Free parameters indicated the cue validity
reflecting the probabilistic association with rewards as well as the
state transition rate for how often a change in relevance between
cue modalities would occur. Whereas these free parameters
did not relate to subclinical psychosis measures, overall task
performance and the magnitude of belief shifts on informative
compared to non-informative trials both negatively related
to paranoia. In another Bayesian inference model, this time
reflecting an ideal observer, Baker et al. (11) modeled behavior in
an information sampling paradigm. Their self-paced version of
the beads task penalized for the number of draws until decision
as well as for incorrect decisions. Thus, the ideal observer has to
counterbalance the costs of (future) draws increasing certainty
with those costs of incorrect decision due to too low certainty.
According to an HMM approach, decision making relies on
Bayesian inferencing concerning the hidden states potentially
underlying the evidence. When applied to the beads task this
hidden state reflects the identity of the origin jar the beads might
be drawn from [for a similar task design with alternate modeling,
see the study by Adams et al. (19) in the HGF paragraph].
Trial-by-trial, subjects had to give explicit probability estimates
on the jar’s identity and those estimates were used for modeling
the posterior beliefs. The best model comprised free parameters
scaling the impact of prior beliefs, reflecting a primacy vs.
recency bias of prior knowledge, as well as the weight of new
sensory evidence on belief updates. In contrast to previous
assumptions on the jumping to conclusions bias proposed to
underlie psychosis (50), Baker et al. (11) observed increased
draws-to-decision behavior in patients with schizophrenia, who
exhibited increased delusions. On the computational level, this
was explained by a stronger reliance on prior beliefs formed early
in the information sampling process.

In line with the HGF and CPD, the models of this section
implement the assumptions that beliefs are updated when
meaningful change is inferred whereas they remain stable in
noisy environments. As mentioned, implementations of dynamic
learning rates vary widely and we will draw comparisons amongst
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them in the following as well as in the discussion (there, with a
stronger focus on the dissociation between noise and meaningful
change). Also being error-update models, it may seem redundant
to note that prediction errors are crucial in increasing the update
weights in the HGF and CPD. This is similar in the presented
versions of ‘model-free’ learning, i.e. when no task structure is
inferred. Here, high updates are operationalized via prediction
errors affecting the learning rate, either via the previous trial’s
prediction error (12, 48), the current one (30) or the history of
PEs reflected in their slope (32). As mentioned and in contrast
to other similar models, the prediction error in the model by
Stuke et al. (30) has an opposing effect on learning. In this task’s
stable environment, a high PE signals probabilistic noise and the
individual tendency to downplay such information is captured
in a free parameter. In relation to that and also working in
a stable environment, the decay factor in Pearce Hall learning
(12, 48) downregulates learning from information later in the
task. In the adaptive model, this is complemented by the inverse
precision directly based on the reward distribution of the task,
and that further downregulates learning (48). Thereby, this task-
informed trajectory serves a very similar function as the first-
level uncertainty from the HGF, the noise parameter in the CPD
and (inversely) the certainty trajectory of the model by Vinckier
et al. (29). The latter model further describes a direct relationship
between certainty driving more exploitative behavior, which
is similar to the use of the 3rd level belief in the HGF as
dynamic decision noise. Taken together, in our examples of non-
hierarchical learning, there is only expected uncertainty driving
learning up or down; learning rates are based on (1) theQ-values’
optimality (29), (2) prediction errors (30, 32, 48) and/or (3) their
(signaled) precision (48). In contrast, the CPD, HGF and HMMs
further take into account hidden changes of the environment
(unexpected uncertainty) and propose respective computational
correlates. In the HMM, the transition rate parameter between
task states is an equivalent to the meta-volatility of the HGF or
the hazard rate in the CPD. In Bayesian inference, the recency
bias for updating results in slower updating and lower learning
rates (11). It might thereby serve a similar function as the decay
factor (12) and though not being tested in a task with a changing
environment (11), further points toward lower volatility/change
point estimates.

DISCUSSION

In this review, we presented various studies that targeted the
computational underpinnings of dynamic belief updating in
psychosis. There was strong variety across tasks, models and
patient groups. Tasks included reversal learning paradigms with
varying difficulty (numbers of reversals and noise levels) that
either used a social framing (23, 24, 26) or none (13, 21, 22,
25, 31). Further, there were versions of the beads task (11, 19,
30) as well as relevance inference in conditioning paradigms
(18, 20) and tasks that required predicting the mean of numeric
distributions (27, 28, 34). Moreover, within this wide range of
tasks, very similar tasks were modeled in different frameworks,
e.g. reversal learning tasks with the HGF [e.g., (21, 22)] or HMM

[e.g., (13)] and numeric predictions with modified Pearce-Hall
learning models (34) as well as with change point detection
modeling (27, 28). Further, as we defined psychosis very broadly
in our search scope, populations ranged from healthy subjects
with some degree of self-reported delusional ideation (18, 25,
26, 30) over clinical high-risk patients (21, 34) to chronic
schizophrenia patients (19, 20, 22, 27, 28, 31), with only few
studies spanning transdiagnostic patient groups (19, 24, 25).

Given the high methodological and clinical heterogeneity, we
aim to synthesize the psychosis finding on learning under noise
and volatility across models and tasks. To achieve this, we will
first compare how the different computational approaches model
meaningful changes of the environment and how they deal with
imprecise information and decision noise. Please note that we
follow a solely descriptive approach here, for comparisons with
a stronger emphasis on simulations see e.g. (36). Secondly, we
will summarize the results across models and tasks and discuss
their implications for our clinical understanding of psychosis.
Lastly, we will end with selected aspects to be considered in
future studies.

Comparing the Different Modeling
Approaches
Modeling Meaningful Changes in the Environment
All dynamic models implement the idea that when the
environment changes learning should increase, whereas updates
decrease over time when the environment remains stable.
In the experimental paradigms this change is operationalized
differently. For tasks with binary inputs and responses these
changes are reflected in either reversals of the better option
in reversal learning tasks [e.g. (13)] or similarly, in changes
in trustworthiness of the advisor during advice (23). For the
tasks using continuous inputs and responses, changes are
operationalized via changes in the mean of the underlying
distribution [e.g. (28)]. In line with these different task constructs,
the computational correlates of meaningful change differ as well.

In the modified reinforcement learning models (32, 48) there
is no belief trajectory explicitly tracking the environmental
volatility. Instead, previous prediction errors are used to
signal surprise and upregulate the current learning rate. In
PH, a constant decay factor counterweights the effect of
surprise and accounts for decreased updating during stable
environmental conditions.

In both the CPD and the HGF as well as the confidence-
learning model (29), dynamic “meta”-beliefs are learned that
reflect the volatility of the environment. In the study by Vinckier
et al. (29), this meta-belief reflects the subjective confidence or
certainty that a respective choice leads to optimal outcomes and
in states of high confidence, disconfirming evidence (i.e., high
prediction errors of the opposing direction) are down-regulated
and thus explained away as noise. Interindividual differences in
how strongly confidence affects lower-level updates are reflected
in a free weighting parameter γ. This is similar to the κ-parameter
in the HGF that regulates how much higher-level beliefs affect
the lower-level updates. In the HGF, the meta-belief reflects
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the environmental volatility belief and opposed to the Vinckier-
model, higher-levels would affect higher updates for all lower-
level prediction errors [as opposed to higher learning rates
applied to only the disconfirming PEs at high uncertainty (29)].
Presumably, subjective confidence might be mirrored in the
precision ratio, encompassing unexpected uncertainty about the
environmental change as well as about expected uncertainty due
to noisy (i.e. probabilistic) information. Thus, for stable but noisy
environments, subjective confidence might be mirrored in first-
level beliefs [probability estimates of the hidden state to be x, as
implemented in (19)]. In dynamic environments, one could also
interpret the HGF’s volatility as the inverse subjective confidence
and this becomes clearer when looking at the precision weights;
the lower-level precision in the denominator of the update
weight determining the learning rates encompasses the volatility
belief (see Equation 1). However, this remains speculative, as
explicit trial-by-trial confidence ratings have not been combined
with this line of modeling [apart from a 2level-HGF (19)].
Interindividual differences in volatility learning are parametrized
in the m3-parameter, as well as the initial starting pointµ0

3 and ϑ ,
which represents the step-size of belief updating about volatility,
sometimes also called ω3. The starting point seems to be crucial
in determining the volatility level not only during the beginning
but instead for the whole task, as can be seen by heightened
µ3-levels across the whole task (22). The step-size parameter
ϑ can be regarded as the “meta-volatility,” i.e. how quickly the
volatility belief can change. In the HGF, the m3-parameter draws
the volatility belief and thereby also the update to a certain
equilibrium. Depending on the value of this equilibrium, this can
have increasing (if the parameter is higher than the current belief)
or decreasing (for lower equilibria) effects on the learning rate.

In CPD, the change point probability serves a very similar
purpose to the volatility belief by upregulating the learning rate
when change points are thought to be more likely than noisy
inputs. The parameter informing the interval length between
change points is the hazard rate. This parameter is usually fixed
and close or equivalent to the ground truth in the task design. It
can be compared to the transition rate in HMMs (also usually
fixed), reflecting the likelihood of changes between states. In
CPD, a decay of the learning rate is implemented via the dynamic
trajectory of relative uncertainty that closely follows the change
point probability. It is thus not simply dependent on time, but
time in between change points.

Modeling Noisy Feedback
Tasks and models further differ in how they define and deal
with meaningless or irrelevant noise in the sense of information-
theoretic surprise (51–53). In binary task designs where subjects
can choose between categories, noise is usually operationalized
via probabilistic events, i.e. the better stimulus leading to loss or
the worse one leading to reward in 10 percent of trials (in 0.9/0.1
contingencies). In prediction tasks (27, 28, 34) with continuous
inputs and responses, noise is reflected in the variance of the
underlying distribution. In the adaptive PH model (48), this
variance (or standard deviation) is directly fed into the model
weighting learning rates as well as prediction errors. Thereby,
high noise leads to lower updates. In an equally stable, but binary

task design where high prediction errors were only elicited by
probabilistic events (30) the prediction error itself was used to
directly downregulate the learning rate. The definition of noise
in CPD is more comparable to adaptive PH model; it is a (again
usually fixed) parameter σNoise that downregulates the relative
uncertainty and thereby the learning rate. In the HGF, there
is no clear-cut parameter or trajectory for noise. However, the
dynamic uncertainty σ2 associated with the second-level belief
reflects the informational uncertainty. It is lower the more the
(stimulus-outcome-contingency) belief differs from 0.5. This is
in contrast to CPD and adaptive PH, because this trajectory does
not down-regulate the learning rate, but increases the precision
ratio (equaling the learning rate) instead. In other words, the
lower the precision of the belief the more needs to be learned.
This is more in line with the operationalization by Vinckier et al.
(29), where high confidence (being similar to precision) decreases
learning, but here specifically from disconfirming prediction
errors whereas it is universal in the HGF.

Decision Noise
Noise does not only play a role in terms of probabilistic and
uninformative feedback, it is often also applied to describe
unpredictable behavior, as in the term “decision noise.” The latter
refers to stochasticity in choices, in the sense that participants do
not follow the learned values. High decision noise can indicate
that the wrong model is used, e.g. in case patients employ a
simple heuristic to guide their decisions. Therefore, careful model
comparison is warranted and differences in model fit between
groups need to be considered. On the other hand, high decision
noise can be seen as a tendency for exploration over exploitation
of the acquired knowledge, i.e. learning trajectories like Q-
values. In paradigms with binary choices, the beta temperature
parameter, determining the steepness of the softmax function,
reflects decision noise as a stable tendency across the task.
Notably, some of the reviewed studies also propose a dynamic
operationalization of noisy behavior depending on the beliefs
on volatility (21–26) or confidence (29). This means that in
states of high volatility or low confidence subjects would choose
and explore the currently less optimal option more often.
While information-seeking is undoubtedly useful in changing
or uncertain environments, it is not the only reason for choice
stochasticity that may also reflect noisy, less precise reward
learning (54). The dissociation between both, exploration due to
information seeking vs. learning noise, is non-trivial and requires
more complex task designs than e.g. binary (in terms of inputs
and responses) reversal tasks as mostly presented in this review
(see Table 1). However, this constraint should be kept in mind
when interpreting results on higher-order learning that are fitted
on noisy choices, e.g. high switching rates in stable task phases.

Synthesis of Psychosis Findings
Across most studies reviewed for this article, psychosis related to
behavioral deficits in performing the experimental paradigms. As
has been shown in the previous paragraphs, models differed in
their mechanistic explanations. Despite the wide range in task
designs and clinical statuses, the computational findings seem
surprisingly in line; overall, in psychosis, there is a tendency
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to not stabilize beliefs but to constantly update them and
thereby failing to reach an equilibrium in higher-level beliefs that
would enable participants to downplay noise. Psychologically,
this might lead to an experience of constantly increased alertness
or uncertainty (not to be confounded with the computational
definitions in the HGF or CPD). However, studies differ in
where in the learning hierarchy this alteration may be located.
In this second section of the discussion, we will first compare
the findings on noise detection and higher-level learning in
psychosis. We will then describe the computational mechanisms
that were found to underlie these findings. Lastly, we will
discuss the lack of relationships with clinical symptoms and the
potential methodological pitfalls that may impede uncovering
such correlations.

Over-interpreting Noise as Environmental
Change Causing Instable Beliefs
A long and prominent tradition in schizophrenia research has
highlighted the role of insufficient down-regulation of irrelevant
information in the formation of psychotic symptoms (4–8, 40).
In computational approaches this may find its correlates in
high prediction errors elicited by probabilistic events in stable
environments (19, 30), task-irrelevant information (18, 20) or
less precise inputs (27, 28, 34). Nevertheless, this might be partly
due to high cognitive task demands, since the noisiness of the
environment had to be indirectly inferred in most paradigms.
However, even when the variance of inputs was explicitly cued,
patients still did not adapt their belief update accordingly. Adams
et al. (19) proposed an attractor-like mechanism leading to
unstable beliefs with larger updates toward unexpected evidence
and smaller updates to expected evidence. This is in line with
the observation by Nassar et al. (28) that learning rates were
either very high or very low in PSZ. Both, no precision weighting
and a bias for disconfirming events, were observed in noisy, but
stable environments where higher-level beliefs were not taken
into account (19, 34).

In theory, when irrelevant noise is given too much weight, the
associations cannot approximate to an equilibrium and thereby,
higher-level beliefs on volatility may increase while estimated
confidence would remain low. This is in line with many of the
studies that manipulated this higher-order context in psychosis:
change point probabilities [(28), but see (27)] and volatility
estimates were increased (21, 22, 25, 26) and under ketamine
serving as a model for psychosis, the effects of confidence
were decreased (29). Alternatively to the idea that the over-
interpretation of lower-level noise prevents any sense of stability,
these latter findings may also suggest that the environment seems
to be constantly changing to the psychotic mind causing hyper-
updating of beliefs. Though we doubt that the causal direction of
these phenomena can be disentangled with the given paradigms
(please see the next section for a methodological discussion),
these findings overall indicate a state of increased uncertainty in
psychosis. It should however be noted that the findings by Nassar
et al. (28) draw a more complex picture; learning rates were not
constantly high, but there were also trials of perseveration (“all
or nothing”). And though it seems functional to rapidly adapt

behavior in states of high volatility, this does not seem to pay off
in psychosis; compared to controls, schizophrenia patients still
showed worse performance levels when only taking into account
the ground truth volatile tasks phases [(22, 24); no equivalent raw
data analyses reported by the other studies].

The Computational Parameters Altered in
Psychosis
A variety of computational mechanisms might underlie the
increased uncertainty attributed to the environment in psychosis.
While learning parameters were not altered in the CPD studies
(also due to a different modeling approach, see next section),
HGF parameters were found to differ in psychosis (see Table 1).
Here, increased volatility estimates were related to increased
parameters for the mean reverting equilibrium (21), the initial
volatility belief (22, 25, 26) and the coupling between higher
and lower-level beliefs belief (22, 25, 26). Interestingly, the
latter parameter κ was not found to be increased in CHR (21).
However, this difference cannot be easily attributed to symptom
severity or clinical state since κ was also increased in a largely
healthy sample with subclinical delusional ideations (25). Thus,
a methodological reason seems more likely. Unlike in the other
reversal studies (22, 25, 26), the volatile and thus more difficult
phase containing several reversals came last in the task used by
Cole et al. (21). Therefore, one might speculate that in the other
studies, subjects did not “recover” in their performance when
phases with more reversals or more difficult contingencies were
followed by easier or more stable phases. This once adaptive
increase in uncertainty about the environment could not be
accordingly reversed, which might be captured by the increased
κ parameter. But note that findings in delusion-proneness were
similar though less pronounced in an alternate version of the task
beginning with the more difficult contingencies (25). However,
such heightened volatility beliefs were not due to decreasedmeta-
volatility (i.e. slower learning about volatility), as only Suthaharan
et al. (26) reported lower ϑ values in delusion proneness and
there also seem to be methodological difficulties concerning the
fitting and thus specific interpretability of this parameter. Taken
together, these findings point toward a biased tracking of only
high volatility. Context-independent over-estimation of volatility
in psychosis might still allow for rapid updating in truly volatile
environments. But crucially, when the environment turns stable
again this does not re-stabilize the beliefs. In line with this notion
of reactance, a different modeling approach revealed that patients
relied more on prior information gathered earlier in the task
when environments remained stable (11).

The Relationship Between Belief Updating
and Symptom Domains
In contrast to the reviewed findings of higher volatility
beliefs in psychosis, clinical and subclinical hallucinations were
accompanied by decreased phasic volatility signatures when
inputs encompassed perceptual ambiguity (55, 56). According
to the hypothesis, hallucinations result from an overreliance
of perceptual beliefs over sensory evidence (57, 58). In other
words, when a subject has built the expectation that a stimulus
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appears in a specific context, this prior belief may bias
perception. This was investigated by first inducing Pavlovian
learning between a visual target and a co-occurring tone. In
the task itself, the intensity as well as the occurrence of the
tone was gradually decreased. In line with the hypothesis,
clinical and non-clinical voice-hearers (55), as well as CHR
(56) overestimated the occurrence of the tone. Computationally,
this was reflected in a higher weighting of prior beliefs over
the sensory input (55, 56). In a different task design with
ambiguous visual stimuli, delusion-prone subjects were more
susceptible to social information that biased perception away
from current sensory inputs [(59); also see next paragraph]. These
findings in the perceptual domain suggest different alterations
in dynamic belief updating between perceptual and higher-
cognitive systems in the development of psychotic symptoms
[e.g. (10)]. To delineate those, tasks targeting the perceptual
and the higher-cognitive domain need to be assessed in the
same participants.

Crucially, the specificity of higher-level learning deficits to
symptoms of psychosis remains largely unclear. Theoretical
accounts have proposed a link between aberrant learning due to
increased endogenous subjective uncertainty [e.g., (9, 60)] and
delusions, specifically. And etiologically, reacting to changing
environments with heightened and uncorrectable uncertainty
might relate to an upregulation of mistrust following traumatic
experiences (61). Indeed, many of the group differences in
the studies reviewed here point toward instable beliefs being
caused by higher-level beliefs about environmental uncertainty
(encompassing change points and volatility beliefs). However,
the correlational evidence for such deficit being involved
in the formation of clinical symptoms of psychosis, or
delusions in particular, is still lacking (see our Table 1).
Instead, computational parameters often related to measures
of general cognition (19, 22, 28). It has further been shown
that working memory greatly contributes to reinforcement
learning (62) and in tasks differentiating this from incremental
belief updating, schizophrenia patients showed deficits in the
working memory domain only (63). Nevertheless, this does not
exclude a relationship between higher level learning deficits
and psychotic symptoms. Instead, the reviewed experimental
paradigms were often transferred without many changes from
cognitive neuroscience studies designed for healthy controls
[e.g., (32, 64, 65)]. These often seem to be too difficult and
demanding for patients as can be seen in the lower raw data
performance and in the use of less complex models not sufficing
the task structure (13, 34). Such floor effects might prevent
the uncovering of presumably more fine-grained psychosis
related behavioral alterations beyond decision noise. In terms of
modeling, this might further be complicated via the conflation
between the concepts of high volatility, decision noise and
information seeking. However, it should be noted that one
study that addressed such methodological issues elegantly found
a different pattern in the beads paradigm. When controlling
for cognition, socio-economic status and task comprehension,
delusions were specifically correlated with increased reliance
on prior beliefs resulting in more information seeking (11).
Crucially, this delusion-specific belief updating alteration was

at odds with the pattern in the overall group of schizophrenia
patients who seemed to jump to conclusions via decreased
information seeking. Further studies applying such rigor in
terms of patients’ characterization and task design are warranted.
Until then, we can only conclude that (1) schizophrenia
patients and delusion prone subjects overall show instable beliefs
mechanistically explained by increased uncertainty estimation
and (2) that relying too much on prior information reflects the
mechanism specific to (sticking to) delusions.

Further, the use of stimuli inherent to typical psychosis topics
remains a promising approach (23, 24). Psychotic reasoning often
revolves around social topics as seen in persecution and hostility
by others (66). In their review on uncertainty and delusions,
Feeney et al. (60) propose that this might be due to particular
deficits high in the learning hierarchy, as belief updating about
social content is more complex. So far, studies taking on this
challenge of social framings on learning along the psychosis
continuum have produced a rather diverse picture; ranging
from no differential effects on learning (26) over decreased
susceptibility to any social information (23), to increased learning
from social cues (24). The variance in findings might be affected
by differences in contingencies of the associations (and the
respective uncertainty) in the tasks. As has been shown by
Rossi-Goldthorpe et al. (59) in the field of perception, higher
susceptibility to positive and negative social cues was observed to
be more pronounced in states of higher uncertainty about one’s
own perception as well as when these social beliefs were more
uncertain (as in 0.5 compared to 0.75 probability of the social
prompt to be either misleading or helpful). Future studies should
carefully disentangle, whether this tendency for self-deception
also holds for higher-level beliefs as for associations between
neutral events and hostile interpretation, as in our example
from the introduction where the neighbors’ behavior is tracked
and over-interpreted. As the data by Rossi-Goldthorpe et al.
(59) suggest for perception, increased uncertainty serves as the
prerequisite for social susceptibility. It remains to be disentangled
for the area of belief updating, whether increased uncertainty
is (at least initially) causal in driving attention to social but
unreliable events, while a reciprocal interaction might also be
clinically reasonable.

Outlook
As reviewed above, alterations in dynamic belief updating are
at the core of the development and maintenance of psychotic
symptoms. Computational methods provide powerful tools
to investigate the underlying mechanisms and already some
consistent findings emerged. Based on the reviewed studies, the
following aspects should be considered regarding task design,
modeling, and participants.

Task Designs: Not Too Complex but Maximally

Informative
Behavioral tasks should be carefully designed in order to achieve
the challenging task of balancing clinical applicability and
maximally informative readouts. In other words, participants,
and among them patients with cognitive deficits, should be
able to perform these tasks while the behavioral readouts
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should be well-suited to dissociate between updating too much
or just performing noisily. The latter could be achieved by
experimentally manipulating the level of volatility and noise
in separate conditions. In addition, the use of continuous
instead of binary inputs and responses may be better suited for
differentiating volatility and noise. Cognitive demands should
be minimized as far as possible for participants, especially in
patient populations whomay be affected by cognitive impairment
or symptom burden. Important measures such as prediction
errors could explicitly be shown in the paradigm [e.g. as in
the paradigms by Nassar et al. (16) or Diederen and Schultz
(48)], instead of having to infer these as hidden states by using
computational modeling. The addition of trial-wise confidence
estimates can improve fitting of higher-level beliefs (67); however,
such modifications increase the cognitive demands and task
lengths and might not be suitable for all patient samples.
Another important issue of task design relates to the kind of
stimuli used and their social and affective importance to the
participants. As mentioned above psychotic experiences often
center around social situations and emotions seem to be highly
relevant for the emergence of delusion formation (68). Therefore,
it might be promising to explore paradigms of belief formation
using affectively relevant stimuli or ideally to assess the belief
updating mechanism in an affectively neutral and emotional
relevant context.

Modeling: Applying the Gold Standard
Regarding behavioral computational modeling, there are
excellent suggestions and tutorials for establishing a gold
standard (17). These have yet to be meet by clinical studies.
For example, simulation and parameter recovery, already
assessed by many of the studies (see Table 1), should be used to
show that certain model parameters indeed explain observable
behavior. In general, identifiability may be hindered when using
very complex models and incorporate many free parameters.
Regarding clinical studies, two interconnected aspects seem
especially important: poor task performance and the use of
different models by different participants. Poor task performance
(chance level performance) can result in high decision noise and
may impede model identifiability and interpretability of model
parameters. Furthermore, different strategies may be used by
individual participants resulting in different models explaining
the observed behavior of participants best. The latter can be
identified with model comparisons on the group and individual
level, but there is yet no established standard to deal with those
issues. Participants can be excluded due to performance cut-offs
or poor model fit, but this limits the generalizability and may
result in excluding the more severely affected patients. On the
other hand, comparability of parameters across participants may
be compromised if models are not identifiable due to chance
level behavior or if different models were used by participants.
One approach may be to use nested models, where the different
strategies are incorporated into one model and the individual
degree of using a particular strategy is expressed by a free
parameter (31, 69). Another issue concerns fitting procedures.
In all accounts but the CPD (28) parameters of interest that
“act” directly on the learning or decision process are freely fitted.

This might be the more intuitive option, since interindividual
differences directly appear at the mechanisms of interest. Apart
from decision noise however, the values of these parameters are
usually not directly (anti)proportional to optimality; especially
when there is a variety of free parameters, different constellations
of parameters can explain very similar responses (70). Therefore,
simulations are warranted to control for parameter and model
recovery [(17, 70); see Table 1]. In contrast, the CPD uses
normative modeling (28). Optimal learning is simulated based
on parameters (such as the hazard rate or noise) that resemble
that actual task environment. These optimal trajectories are
then used as predictors for behavior, so that results refer to the
optimality degree.

Sample: Psychosis Spectrum
Participants across the psychosis spectrum should be
investigated with similar tasks and computational models,
ideally in transdiagnostic and longitudinal studies. This
would allow us to investigate if changes in computational
parameters depend on disease states (CHR, FEP, chronic)
and to assess specific associations with psychopathology
(delusions, hallucinations, and negative symptoms and their
differentiation from neurocognitive impairments). Importantly,
careful control analyses for general cognitive abilities, socio-
economic status and task comprehension, are warranted to
avoid misleading results (11). To achieve this, collaborative
efforts are necessary. Tasks and scripts should be public to help
other researchers to apply the exact same task with the same
instructions and modeling approach, in order to compare data
across sites.

CONCLUSION

Taken together, our review showed that different methodological
approaches converge on the finding that psychotic participants
tend to overestimate the changes in the environment related to
a state of high uncertainty about the task-adaptive responses.
To further investigate the exact nature of this alterations,
reliable tasks across participants from the psychosis spectrum
in combination with meeting high methodological standards
on the computational modeling side are warranted. Such
a computational psychiatry approach holds the promise to
advance our mechanistic insight into the cognitive anatomy of
psychotic experience.
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