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Background: Symptoms of obsessive-compulsive disorder (OCD) have been

conceptualized as manifestations of decision-making deficits. Patients with OCD exhibit

impairment during the decision-making process, as assessed by the Iowa Gambling

Task (IGT). This impairment is independent of clinical severity and disease progression.

However, the association between the decision-making deficit and resting-state brain

activity of patients with OCD has not been examined.

Methods: Fifty unmedicated patients with OCD and 55 matched control subjects

completed IGT. Resting-state brain activity was examined using the fractional amplitude

of low-frequency fluctuations (fALFFs). fALFF analysis focused on the slow-4 and 5

bands. Group comparisons were performed to determine the association between IGT

performance and fALFFs.

Results: There was a significant group difference in the association between the IGT

total net score and slow-4 fALFFs in the left putamen (voxel height threshold of p <

0.001; cluster size threshold of p < 0.05; family wise error-corrected). Higher putamen

slow-4 fALFFs were correlated with lower IGT scores for OCD patients (r = −0.485; p <

0.0005) and higher IGT scores for control subjects (r = 0.402; p < 0.005). There was no

group difference in the association between the IGT total net score and slow-5 fALFFs.

Conclusions: These findings in unmedicated patients demonstrate the importance

of resting-state putamen activity for decision-making deficit associated with OCD, as

measured by IGT. The inverse correlation may be explained by the hypersensitive

response of the putamen in patients with OCD.

Keywords: obsessive-compulsive disorder (OCD), Iowa Gambling Task (IGT), decision-making, putamen, resting-

state functional MRI, fractional amplitude of low-frequency fluctuations (fALFF)
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INTRODUCTION

Obsessive-compulsive disorder (OCD) is associated with chronic
doubt and difficulty making decisions (1). Therefore, it has
been suggested that OCD symptoms can be conceptualized
as manifestations of a decision-making deficit. Neurocognitive
research has highlighted decision-making deficits as the core
feature of OCD (2–6). In this context, decision-making refers to
the ability of an individual to process environmental information
and choose an action that can yield a benefit. A benefit is achieved
after the action as an immediate reward or after a certain period
of time as a long-term reward. According to learning theory,
the process during which individuals learn by trial and error
to distinguish long-term rewards from immediate rewards and
adjust their behaviors to maximize the ultimate benefit is called
reinforcement learning (7). The Iowa Gambling Task (IGT) (8)
is a well-established neuropsychological test that can assess the
decision-making ability through reinforcement learning. IGT
has been widely used in studies evaluating the decision-making
deficits of patients with OCD (6, 9–14).

According to a meta-analysis of IGT performance in patients
with OCD (15), patients perform significantly worse than control
subjects (CTL). Moreover, IGT performance in patients with
OCD is clinically important because it predicts the therapeutic
response to serotonin reuptake inhibitors (6, 12). However, IGT
performance is not necessarily correlated with the severity of
overt clinical symptoms as measured by scales such as the Yale–
Brown Obsessive Compulsive Scale (Y-BOCS) and Hamilton
Anxiety Rating Scale (HAM-A) (6, 13, 16–18). Cavedini et al.
(2) compared the poor IGT performance in depression and
OCD patients and argued that the impairment observed in
patients with depression is a state characteristic related to
depressive mood, whereas in patients with OCD, the impairment
constitutes a trait characteristic unrelated to the severity of
overt symptoms. Furthermore, Zhang et al. (19) examined IGT
performance in three OCD patient groups (i.e., non-medicated
patients, medicated patients, and remitted patients) and found
that all three groups performed worse than CTL; therefore, they
concluded that the poor IGT performance in patients with OCD
is trait-related. Because IGT performance in patients with OCD
indicates a stable and long-lasting deficit that is not proportional
to the severity of clinical phenotypes, some have regarded this
performance as an endophenotype candidate for this disorder
(9, 18–22).

Numerous studies have evaluated the brain activity during
IGT performed by healthy individuals (23–28). IGT performance
correlates with the activity of the frontal regions, including the
ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal
cortex (dlPFC), orbitofrontal cortex (OFC), supplementary
motor area, and pre-supplementary motor area, as well as
the striatum, insula, anterior cingulate cortex (ACC), and
posterior cingulate cortex. These regions are involved in
reward information processing. Regarding the neurobiological
hypothesis of OCD, the cortico-striatal-thalamo-cortical (CSTC)
loopmodel (29) is widely accepted, and the regions related to IGT
performance largely overlap with the CSTC loops.

Nevertheless, neuroimaging studies evaluating the IGT
performance in patients with OCD are limited. To the best of our
knowledge, only two such studies have been conducted (30, 31),
which examined the brain activity during each phase of the task;
patients showed underactivation in the striatum and the frontal
regions, including the vmPFC, dlPFC, and OFC, compared
to controls during all three phases (i.e., outcome anticipation,
decision-making, and outcome presentation). However, both
of these studies have limitations. First, they targeted only
adolescent patients with OCD and included patients using
medication. Second, they used a shortened version of the IGT
to reduce the stress that participants would experience during
the simultaneous task performance and image acquisition. The
administration of the shortened IGT version in the two studies
resulted in no group differences in the IGT total net score.

If the poor IGT performance in patients with OCD is an
endophenotype candidate for this disorder, then the abnormality
might be detected in a purer form during the resting state,
which is free from task load and symptom provocation. The
aforementioned neuroimaging studies on IGT performance have
focused mainly on task-evoked brain activation. However, if the
poor IGT performance that occurs with OCD is derived from any
trait-related problem, aberrations may be found in the intrinsic
brain activity at rest. Moreover, performing neurocognitive
assessments separately from image acquisition has the advantage
of being less stressful for participants. In this case, it is
not necessary to use a shortened version of IGT. Regarding
other psychiatric disorders that can involve decision-making
deficits (for example, pathological gambling, substance abuse,
and eating disorders), some studies have revealed associations
between impaired IGT performance and aberrant resting-state
brain activity (32–34). However, no studies have examined the
association between IGT performance and resting-state brain
activity in patients with OCD.

Resting-state brain activity can be measured by the amplitude
of low-frequency fluctuations (ALFFs) or fractional ALFFs
(fALFFs) (35, 36). These measurements enable the assessment
of the entire brain without a priori selection of regions of
interest. The fALFFs comprise a relative measure of the ALFFs
and are defined as the total power within a specific frequency
band divided by the total power of the whole detectable
frequency range. Compared to the measurement of ALFFs,
which are susceptible to pulsatile artifacts, fALFF measurements
have higher sensitivity and specificity (35, 36). Furthermore,
in recent studies, low-frequency fluctuations were divided
into several independent bands (slow-5, 0.01–0.027Hz; slow-4,
0.027–0.073Hz; slow-3, 0.073–0.198Hz; slow-2, 0.198–0.25Hz),
and the features of various psychiatric disorders were investigated
according to the properties of each band (37–41). Evidence
has shown that the slow-2 and 3 bands are susceptible to
physiological noise, such as cardiac signals, whereas the slow-4
and 5 bands can sensitively reveal neural activity (36). Slow-4
fluctuations are most robust in the basal ganglia and represent
dopaminergic activities (36, 37, 42), whereas slow-5 fluctuations
are more dominant than slow-4 fluctuations in the prefrontal
cortices (especially in the ventromedial parts) (36, 37).
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Abnormalities in fALFFs that occur with OCD have been
investigated by numerous studies, but inconsistent results have
been observed (40, 43–50). This inconsistency could be attributed
to several factors, such as including patients using medications
(40, 43, 47) and focusing exclusively on female patients (46). In
contrast, Gao et al. (45) and Yang et al. (49) compared a large
number of unmedicated patients with OCD and CTL and found
significant group differences in fALFFs in the dlPFC, putamen,
and superior frontal gyrus, as well as a negative correlation
between functional connectivity in the striato-thalamic junction
and symptom severity evaluated with the Y-BOCS. Because the
CSTC loopmodel is supported by these findings of fALFF studies,
it seems likely that resting-state CSTC abnormalities are related
to decision-making deficit in OCD.

Here, we conducted a fALFF study of the resting-state brain
activity in a large number of unmedicated adult patients with
OCD and examined its relationship with IGT performance;
then, we compared the results with those of CTL. Furthermore,
we examined differences in fALFFs in whole-brain voxels of
patients with OCD and CTL by considering the possibility of
abnormalities related to decision-making deficit occurring in
OCD without showing a direct correlation with IGT scores.
As discussed previously, poor IGT performance in patients
with OCD is thought to reflect a relatively invariable cognitive
impairment, independent of the emotional disturbance (anxiety)
severity. This suggests the involvement of the dorsal/cognitive
part of the CSTC loops in poor IGT performance. Among the
diverse brain regions involved in IGT performance in healthy
individuals, the dlPFC and dorsal striatum belong to the dorsal
CSTC loop. These are key regions for cognitive processing that
allow individuals to learn to achieve large long-term rewards
while incurring small immediate losses (51–56). In addition,
the aforementioned fALFF studies on a large sample of patients
with OCD (45, 49) have found abnormalities in these regions.
Therefore, we hypothesized that the abnormalities responsible for
the decision-making deficit associated with OCDwould be found
in these regions. Because slow-4 and 5 fALFFs sensitively reflect
the neuroactivity of the basal ganglia and prefrontal cortices,
respectively, we conducted a fALFF analysis, focusing mainly on
these two bands.

MATERIALS AND METHODS

Subjects
A total of 105 participants were recruited for this study, including
50 medication-free patients with OCD and 55 control subjects
matched for age and sex. All patients with OCD were diagnosed
using the Structured Clinical Interview for Diagnostic and
Statistical Manual of Mental Disorders, fourth edition (DSM-
IV), Axis I Disorders (patient edition), and fulfilled the DSM-
IV criteria. We ensured that none of the participants met the
criteria for any current comorbid Axis I disorder and that all
participants also fulfilled the Diagnostic and Statistical Manual of
Mental Disorders, fifth edition (DSM-5), criteria for OCD. The
control subjects were recruited from the local community and
interviewed according to the Structured Clinical Interview for
DSM-IV (non-patient edition). None of the participants reported

history of any psychiatric disorders. Candidates with a history
of significant head injury, epilepsy, or intellectual disability
were excluded.

This study was conducted in accordance with the principles of
the Declaration of Helsinki. Ethical approval was obtained from
the Kyushu University Ethics Committee. The study details were
explained to all participants, and written informed consent was
obtained from all participants.

Clinical Assessment
The participants were clinically assessed in the same manner as
performed during previous studies (57–59). The Japanese version
of the Y-BOCS (60) was used to assess the global severity of OCD
symptoms, while the Hamilton Rating Scale for Anxiety (HAM-
A) (61) and the Hamilton Rating Scale for Depression (HAM-D,
17-item version) (62) were used to quantify the degrees of anxiety
and depression. The Japanese version of the National Adult
Reading Test (63) was used to measure the verbal intelligence
quotient (IQ). Demographic and clinical data were statistically
analyzed using the chi-square test, Student’s t-test, and Mann-
Whitney U test to detect group differences between the OCD and
CTL groups.

Neuropsychological Assessment
IGT was performed according to the original procedures
developed by Bechara et al. (8); however, the hypothetical money
was converted from United States dollars to Japanese yen. The
participants selected cards from four decks labeled A, B, C, and
D. At the start of the game, the participants were told that a loan
of 200,000 yen was available. After picking a card, the participants
would either win or lose some money. They could select cards
from any deck, and the task was self-paced. The goal of the game
was to win as much money as possible.

Card decks A and B were disadvantageous because they
resulted in a net loss over time. Although they yielded larger
immediate rewards, they inflicted larger penalties. In contrast,
card decks C and D were advantageous because the total of the
rewards was larger than that of the penalties. The participants
were not informed of the risks of rewards and punishments in
each deck or of the number of card selections allowed.

A total of 100 cards were selected to complete the task.
Task performance was measured by the net score, which
was calculated as the number of cards picked from the
advantageous decks minus the number of cards picked from the
disadvantageous decks.

Image Data Acquisition and Preprocessing
Magnetic resonance imaging (MRI) data were acquired in the
same manner as described previously (57–59). Image data were
obtained using a 3.0-T MRI scanner (Achieva TX; Phillips
Healthcare, Best, the Netherlands). T2∗-weighted gradient-echo
planar imaging sequence (echo time, 30ms; repetition time,
2,500ms; field of view, 212 × 212mm; matrix, 64 × 64; slice
thickness, 3.2mm; flip angle, 80◦) and high-resolution T1-
weighted anatomical image (echo time, 3.8ms; repetition time,
8.2ms; field of view, 240× 240mm; flip angle, 8◦; slice thickness,
1mm; inversion time, 1,026ms) results were acquired for each
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TABLE 1 | Demographic and clinical characteristics of the participants.

Variable OCD (n = 50) CTL (n = 55) Statistics

χ
2 t df p-value

Demographic and clinical characteristics

Sex, male/female 20/30 24/31 0.142 1 0.706

Hand, Edinburgh Handedness Inventory 68.00(61.09) 84.52(34.54) 1.67 75.773 0.100

Age, years 32.80(11.58) 34.2(11.66) 0.61 103 0.543

Estimated verbal IQa 104.30(8.42)b 106.91(8.76) 1.54 103 0.127

HAM-D-17 3.98(4.04) –

HAM-A 4.98(6.35) –

Y-BOCS total 24.50(5.51) –

Y-BOCS obsessions 12.06(3.57) –

Y-BOCS compulsions 12.44(2.72) –

Onset, years 20.96(8.28) –

Illness duration, years 11.83(10.41) –

Stanford Sleepiness Scale 3.42(1.59) 3.31(1.43) −0.26 102 0.793

IGT total net score 4.00(27.53) 11.09(23.43) 2.31 103 0.023*

HAM-A, Hamilton Anxiety Scale; HAM-D, Hamilton Depression Scale; Y-BOCS, Yale-Brown Obsessive Compulsive Scale; IGT, Iowa Gambling Task.

*p < 0.05.
aVerbal IQ was estimated by the Japanese version of National Adult Reading Test (JART).
bOne participant did not complete JART.

participant. A total of 240 real scans were obtained, which
involved a 10-min real scan after an initial 10-s dummy scan.
The participants were instructed to relax with their eyes open and
to keep watching a presented gray cross during scanning. After
MRI, the arousal level during the scan was evaluated using the
Stanford-Sleepiness Scale.

Resting-state functional MRI data were analyzed using the
CONN toolbox 20.b (64) with MATLAB R2020a. The first
four functional volumes were removed, and the remaining 236
functional images were used for analysis. The images underwent
slice-timing correction, realignment, and normalization in
accordance with the standard Montreal Neurological Institute
template. Six rigid body parameters were estimated for each
subject. We applied the ART scrubbing procedure (https://www.
nitrc.org/projects/artifact_detect/) to exclude image artifacts
caused by head movement using the 97th percentile as the
standard threshold of a normative sample (with thresholds for
motion of 0.9mm or global bold signal changes more than 5
standard deviations). There was no significant difference in the
mean motion of the OCD and CTL groups (t = −1.226; p
= 0.223). Functional images were smoothed using a Gaussian
kernel with 6-mm full-width at half-maximum. Using the
anatomical image of each participant, we created white matter
and cerebrospinal fluid masks during the spatial processing steps.
Signal noises from the white matter and cerebrospinal fluid were
discerned by applying linear regression as a confounding effect
(64). Then, fALFFs were computed using the preprocessed data.
fALFFs were defined as the ratio of power in the low-frequency
range to the total power in the entire frequency range for each
individual voxel time series (35). The ratios of the power in the
slow-5 (0.01–0.027Hz) and slow-4 (0.027–0.073Hz) ranges were
calculated relative to the full frequency range (0–0.25Hz), as
previously described (36).

Data Analysis
After calculating fALFFs of slow-4 and slow-5, we examined
group differences in slow-4 and 5 fALFFs associated with
the IGT total net score by using an analysis of covariance
interaction model [statistical significance was set at a voxel
height threshold of p < 0.001 and cluster-size threshold of p
< 0.05; family-wise error (FWE) corrected (two-sided), with
the Gaussian random field theory approach] while controlling
for age, sex, and IQ, which have been reported to affect IGT
performance (65–69). Additionally, we examined differences in
fALFFs in whole brain voxels of the OCD and CTL groups
while controlling for age, sex, and IQ [significance threshold
set at a voxel height threshold of p < 0.001 and cluster size
threshold of p < 0.05; FWE corrected (two-sided), with the
Gaussian random field theory approach]. Furthermore, to strictly
control the false-positive risk, we conducted a supplemental
analysis of covariance by using a non-parametric permutation
approach (5,000 times iterations), with a voxel height threshold
of p < 0.001 and cluster-size threshold of p < 0.05 FWE
corrected (70).

RESULTS

Clinical Characteristics
The groups did not significantly differ in age, sex, handedness, or
estimated verbal IQ (Table 1). All participants were medication-
free for at least 4 weeks, and 16 patients with OCD were drug-
naïve. The mean Y-BOCS score of the OCD group was 24.5
(standard deviation, ±5.51) (Table 1). During the acquisition of
MRI data, no participant fell asleep, and there was no significant
difference between the OCD and CTL groups in terms of the
arousal level (Table 1).
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FIGURE 1 | In the left putamen, higher slow-4 fALFFs were correlated with lower IGT scores in patients with OCD and higher IGT scores in CTL. Coordinates are

given in MNI space. The color bar presents t-score. fALFFs, fractional amplitude of low-frequency fluctuations; IGT, Iowa Gambling Task; OCD, obsessive-compulsive

disorder; CTL, control subjects.

IGT Performance
The groups showed a significant difference in IGT performance
(Table 1). The IGT total net score was significantly lower for
patients with OCD than for CTL. After controlling for age, sex,
and verbal IQ, this result remained unchanged.

To evaluate the effects of symptom severity on task
performance of the OCD group, we also analyzed the association
between IGT total net scores and Y-BOCS scores (total,
obsessions, and compulsions), HAM-D scores, and HAM-
A scores. We found no significant association between IGT
performance and clinical scores.

fALFF Results
Associations Between IGT Performance and Slow-4

ALFFs

The groups showed a significant difference in the association
between the IGT total net score and fALFFs in the left putamen
(voxel height threshold of p < 0.001 and cluster size threshold
of p < 0.05; FWE corrected) (Figures 1, 2 and Table 2). In
the OCD group, greater fALFF values in the left putamen were
correlated with lower IGT total net scores (r = −0.485; p <

0.0005). The CTL group showed an inverse pattern, however,
with greater putamen fALFFs being correlated with higher IGT
total net scores (r = 0.402; p < 0.005). In the OCD group, there
were no significant associations between the clinical assessment
(Y-BOCS, HAM-D, HAM-A) scores and putamen fALFFs.

In the supplemental analysis of covariance using a
permutation-based cluster level correction, these results
did not survive statistical significance.

Between-Group Differences in Slow-4 ALFFs

There were no significant differences between the slow-4 fALFFs
in any brain region in the OCD and CTL groups.

Associations Between IGT Performance and Slow-5

ALFFs

There were no significant group differences in the association
between slow-5 fALFFs and IGT performance.

Between-Group Differences in Slow-5 ALFFs

There were no significant differences between the slow-5 fALFFs
in any brain region in the OCD and CTL groups.

DISCUSSION

We conducted a neuroimaging study using fALFFs to identify
traits associated with poor IGT performance in patients
with OCD. IGT performance was significantly worse in
the OCD patient group than in the control group. There
were no significant associations between IGT performance
and the severity of psychiatric symptoms in patients
with OCD.

Our main finding was the inverse correlation between
putamen slow-4 fALFFs and IGT performance in patients with
OCD and CTL. This intriguing phenomenon can be attributed to
the aberrant putamen function during the reinforcement learning
process. After examining the brain activity of patients with
OCD during a probabilistic reversal learning task, Hauser et al.
(71) reported that the patients showed significantly increased
reward prediction error (RPE) responses in the ACC and
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FIGURE 2 | IGT total net score and putamen slow-4 fALFF value in OCD and CTL. IGT, Iowa Gambling Task; fALFFs, fractional amplitude of low-frequency

fluctuations; OCD, obsessive-compulsive disorder; CTL, control subjects; r, Spearman’s rank-order correlation coefficient.

TABLE 2 | Brain region where the association between IGT performance and

slow-4 fALFFs was significantly different in OCD compared to CTL.

Region Ke x y z p-FWEa

L. putamen 72 −24 6 0 0.020839

aCluster-level corrected p< 0.05 FWE after applying a voxel height threshold of p< 0.001.

Peak coordinates are given in MNI space.

L, left; R, right; Ke, Cluster extent; fALFFs, fractional amplitude of low-frequency

fluctuations; IGT, Iowa Gambling Task.

putamen compared to CTL. RPEs, which have a crucial role
in reinforcement learning, have been shown to be encoded
by the mesolimbic dopamine system including the striatum
and ACC (72–77). The findings of Hauser et al. (71) suggest
that the hypersensitization of this RPE encoding is responsible
for impaired decision-making in patients with OCD. Moreira
et al. (78) examined the brain activity of patients with OCD
during a gambling task and found results similar to those of
Hauser et al. (71): when patients with OCD perceived unexpected
losses, they demonstrated larger deactivation in the ACC and
putamen than CTL. Because negative RPEs generally cause

deactivation of mesolimbic dopamine neurons (79), the findings
of Moreira et al. (78) suggest hypersensitization of the RPE
response with OCD.

Our data showed that among patients with OCD, higher
putamen fALFFs at rest were correlated with worse IGT
performances. In general, high putamen fALFFs at rest are
predictive of large phasic reactions during a learning task; studies
of healthy subjects have demonstrated that for each brain region,
there is a fixed correlation pattern for spontaneous activity
at rest and task-evoked activation (80–84), and that resting-
state striatal fALFFs reflect dopamine release levels in the area
(85, 86). Therefore, with OCD, higher putamen fALFFs may
result in larger hypersensitive responses to RPE. Because IGT
performance depends on the sensitivity to RPEs (especially
the sensitivity to negative RPEs) (28), OCD patients with
higher putamen fALFFs will perform poorly. In contrast, among
control subjects without such hypersensitivity, higher putamen
activity will contribute to appropriate learning through RPEs and
improve IGT performance.

Nevertheless, it is possible that the putamen function itself
is intact in patients with OCD and that abnormalities exist
elsewhere. Although a rostral part of the putamen was detected
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during our study, the posterior putamen, caudate, and nucleus
accumbens are primarily involved in RPE processing (77, 87,
88). The OFC, vmPFC, and dlPFC have important roles in
the valuation of action outcomes and guidance of goal-directed
behavior (28, 89, 90). The putamen receives the results of
information processing in these regions and automates learned
action sequences as a habit (91–94). Habit refers to the automatic
and outcome-insensitive repetition of certain action sequences
(95–97). Previous studies on decision-making deficits with
OCD have inferred that aberrant information processing in the
OFC and dlPFC, implicated in shaping goal-directed behavior,
leads patients to make choices that do not produce valuable
outcomes (98–102). Although our data showed no significant
difference between the CTL and OCD groups in terms of
resting-state fALFF values, the possibility of aberrations in the
OFC or dlPFC cannot be ruled out. If information processing
in these regions is altered, then disadvantageous behaviors
will be learned and fixed as habits through putamen activity.
Therefore, in patients with OCD, higher putamen activity may
facilitate fixation of disadvantageous behaviors, which results
in poorer IGT performance. On the contrary, among control
subjects, information processing in the OFC and dlPFC is intact
and leads to the appropriate selection of beneficial behaviors.
Consequently, the higher putamen activity of CTL facilitates
the fixation of beneficial behaviors, which results in better IGT
performance. However, the present results could not confirm
this. Future research using seed-based analysis to investigate the
association between functional connectivity from the PFC to the
putamen and decision-making ability should be conducted to
verify this second explanation.

To our knowledge, the correlation between putamen fALFFs
and IGT performance in healthy individuals has not been
reported previously. Nevertheless, Kambeitz et al. (103) reported
that healthy individuals with higher striatal dopamine levels at
rest had higher net IGT scores. Because putamen fALFF values
are thought to reflect the actual dopamine level in the region
(85, 86, 104), our results are consistent with those reported by
Kambeitz et al. (103). Additionally, according to Kayser et al. (56)
and Smith et al. (53), healthy individuals with lower putamen
activity and those with lower dopamine synthesis capacity in
the putamen showed higher choice impulsivity and preferred
immediate rewards to long-term rewards. Therefore, our CTL
group findings are supported by these studies.

In the present study, we hypothesized that the abnormalities
responsible for poor IGT performance with OCDwould be found
in the dorsal CSTC loop with projections from the dlPFC to
the thalamus via the dorsal striatum. However, contrary to our
hypothesis, there were no significant differences in fALFFs in
any brain region of the OCD and CTL groups. Previous studies
that recruited a large number of unmedicated patients with OCD
(45, 49) showed higher fALFFs in the dlPFC and putamen in
the patient group than in the control group. This inconsistency
might be attributable to differences in the various profiles of
the examined OCD patient groups. Functional neuroimaging
studies of patients with OCD showed that aberrant activation
of the dlPFC and putamen observed in patient groups was
associated with the duration of illness (105, 106). Increased

putamen activation was also related to greater comorbidity
with mood and anxiety disorders (105). Furthermore, Mataix-
Cols et al. (107) suggested that abnormal activation of the
dlPFC and putamen with OCD is specifically associated with
the aggressive/checking symptom dimension. By considering and
comparing these factors in the present study and in the studies
by Yang et al. (49) and Gao et al. (45), it is apparent that the
illness duration was longer in our patient group (11.83 ± 10.41
years) than in the patient group studied by Yang et al. (6.4 ±

5.2 years; Gao et al. did not report this information). Regarding
comorbidity with mood and anxiety disorders, our patients had
even lower HAM-D and HAM-A scores (3.98 ± 4.04 and 4.98
± 6.35, respectively) than the patients studied by Gao et al.
(45) (6.7 ± 4.2 and 7.8 ± 5.4, respectively) and Yang et al.
(49) (7.56 ± 3.76 and 7.6 ± 3.5, respectively), thus indicating
that our patients more accurately represent the core OCD group
without comorbidities. Although we cannot compare symptom
dimensions because of the lack of information, it is possible
that the studies by Gao et al. (45) and Yang et al. (49) included
more patients with aggressive/checking symptoms than our study
included. All these differences in the profiles of patients with
OCD might be responsible for the inconsistent results.

The aforementioned factors are also associated with the
limitations of this study. First, the different symptom dimensions
of OCD may have distinct neural correlates (106–108). For a
more precise understanding of decision-making deficits with
OCD, a large number of patients with each symptom dimension
should be enrolled in a study to compare IGT performance
between the groups.

Second, the present study was not free from medication
effects. Although we recruited 50 patients with OCD who were
medication-free for at least 4 weeks, only 16 of them were drug-
naïve. For the remaining patients, the possible residual effects of
previous medications could not be ruled out. Therefore, more
drug-naïve patients should be recruited in future analyses.

Third, we recruited only patients who were diagnosed with
OCD without any other Axis I disorder. However, OCD is
highly comorbid with anxiety and depressive disorders (109).
It is unclear whether our findings are valid for patients with
such comorbidities. Future work should include OCD patients
with comorbidities and compare their results with the results of
a core OCD group and a group of CTL to evaluate decision-
making deficits.

Fourth, it is also unclear to what extent our findings are
specific to OCD. Poor IGT performance has been reported
in several psychiatric disorders (32–34). To confirm that our
findings are strictly specific to OCD, we should recruit patients
with these psychiatric disorders and examine group differences
in fALFFs associated with the IGT scores.

Fifth, as control subjects, we recruited individuals
who had no past and current DSM disorder. However,
according to Kessler et al. (108), about half of the general
population will meet the criteria for a DSM disorder at
some point in life. Given such a high potential risk, it would
be desirable to perform detailed clinical assessments of
control subjects and compare the results with those of the
patient group.
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Lastly, it is possible that our results may be affected by
false-positive risk (70). When we applied the most conservative
statistical threshold to control for multiple comparisons (using
a non-parametric permutation approach, with a voxel height
threshold of p < 0.001 and cluster-size threshold of p < 0.05
FWE corrected) (70, 109), our results could not survive statistical
significance. We consider that the presently applied threshold
(using the typical SPM based approach with Gaussian random
field theory, with cluster defined threshold with a voxel height
threshold of p < 0.001 and cluster-level threshold of p < 0.05
FWE corrected) is strict enough to control FWE, even when
we take into account the problem raised by Eklund et al. (70).
Many recent neuroimaging studies (110, 111) also used a similar
threshold for multiple comparison correction. Nevertheless, the
possibility of false-positive risk cannot be completely ruled out.

CONCLUSIONS

We confirmed that unmedicated patients with OCD exhibited
worse IGT performance than CTL. This poor performance was
not correlated with the severity of clinical manifestations as
assessed by the Y-BOCS or HAM-D. Furthermore, we examined
group differences in fALFFs associated with the IGT scores of
OCD patients and CTL.We found an inverse correlation between
putamen slow-4 fALFFs and IGT performance in patients with
OCD and CTL. Higher putamen fALFFs were correlated with
lower IGT scores in patients with OCD and higher IGT scores
in CTL. These findings highlight the importance of resting-state
putamen activity for the processes of learning and decision-
making as assessed by IGT. The inverse association detected
in the present study is consistent with previously reported
hypersensitive responses of the putamen to RPEs. Such abnormal
functioning of the putamen may comprise a biological feature
underlying aberrations in the CSTC loops that were observed
during previous studies using task-related MRI to evaluate IGT
performance in patients with OCD. If the perseveration tendency
in OCD as assessed by IGT is related to the putamen function,

the putamen as well as the network between the putamen and
the prefrontal cortices may be targets for neuromodulatory
treatments in OCD.
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