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Background: Transcriptome-wide analysis of peripheral blood in post-

traumatic stress disorder (PTSD) indicates widespread changes in immune-

related pathways and function. Ferroptosis, an iron-dependent regulated cell

death, is closely related to oxidative stress. However, little is known as to

whether ferroptosis plays a role in PTSD.

Methods: We conducted a comprehensive analysis of combined data from six

independent peripheral blood transcriptional studies in the Gene Expression

Omnibus (GEO) database, covering PTSD and control individuals. Differentially

expressed genes (DEGs) were extracted by comparing PTSD patients with

control individuals, from which 29 ferroptosis-related genes (FRGs) were

cross-matched and obtained. The weighted gene co-expression network

analysis (WGCNA), the Extreme Gradient Boosting (XGBoost) model with

Bayesian Optimization, and the least absolute shrinkage and selection

operator (LASSO) Cox regression were utilized to construct a PTSD prediction

model. Single-sample Gene Set Enrichment Analysis (ssGSEA) and CIBERSORT

revealed the disturbed immunologic state in PTSD high-risk patients.

Results: Three crucial FRGs (ACSL4, ACO1, and GSS) were identified and

used to establish a predictive model of PTSD. The receiver operating

characteristic (ROC) curve verifies its risk prediction ability. Remarkably,

ssGSEA and CIBERSORT demonstrated changes in cellular immunity and

antigen presentation depending on the FRGs model.

Conclusion: These findings collectively provide evidence that ferroptosis

may change immune status in PTSD and be related to the occurrence

of PTSD, which may help delineate mechanisms and discover treatment

biomarkers for PTSD.
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Introduction

Post-traumatic stress disorder (PTSD) is a psychiatric
syndrome involving the interaction of environments
and genes. PTSD occurs after a traumatic experience
and is followed by flashbacks, hallucinations, nightmares,
constant alertness, and enhanced arousal (1). By definition,
PTSD is associated with a traumatic event. However,
data also suggest that the development of PTSD requires
a genetic tendency that alters, to varying degrees, an
individual’s response to, or recovery from, traumatic
exposure (2).

The development of high-throughput sequencing
technology has enabled unbiased identification of genes,
pathways, and proteins related to PTSD pathophysiology.
Data from five PTSD peripheral blood studies indicated
that transcriptional disruption affects multiple immune-
related pathways and molecules (3). In a review of
similar studies, Heinzlemann and Gill concluded
that PTSD develops as a result of altered epigenetic
regulation and inflammatory genes that are highly
active (4).

Despite the widespread observation of immune fluctuations,
it remains unclear how specific mechanisms are activated or
how key processes are regulated. On the other hand, the
nervous system is particularly vulnerable to oxidative stress
due to its high metabolic demands and dense composition
of oxidation-sensitive lipid cells (5, 6). PTSD patients showed
elevated serum lipid peroxidation and depleted antioxidant
enzymes (7). Down-regulated expression of the antioxidant
protease, superoxide dismutase (SOD), also was observed in
PTSD patients (8).

Oxidative stress is a cellular state that occurs when
the pro-oxidant molecules, such as reactive oxygen species
(ROS), exceed the elimination power of the antioxidants (9).
Antioxidant depletion leads to cell degeneration and apoptosis,
making oxidative stress a primary molecular aging mechanism
widely involved in multiple diseases.

In the presence of excess iron, or more precisely, the
divalent ferrous ion Fe2+, can produce abundant ROS such
as soluble hydroxyl radicals or lipid alkoxy radicals (10).
Known as the Fenton reaction, this is the main source of
ROS in the cell produced by Fe2+. By generating ROS,
mitochondrial respiration is reduced, lipids are peroxidized,
enzymes are oxidized, and neuronal damage is possible (11).
Moreover, ROS and mitochondrial function seem to be
closely related to the innate immune system. Mitochondria-
derived ROS can trigger some inflammasomes such as
nucleotide-binding and oligomerization domain (NOD)-like
receptors (NLRs), and Melanoma (AIM) 2-like receptors (ALRs)
(12, 13).

Another process closely related to iron metabolism and
ROS is ferroptosis. Ferroptosis is a form of iron-dependent

cell death induced by oxidative stress, and that involves
molecular pathways common to oxidative stress, such as
lipid peroxidation and glutathione (GSH) depletion (14). The
Fenton reaction is the critical step of ferroptosis. A high
level of iron produces excessive ROS and leads to liposome
peroxidation, which leads to cell death. Although first found in
cancer cells, ferroptosis has been linked to several neurological
illnesses, such as Alzheimer’s, Parkinson’s, and stroke (15–
17). Stefanovic et al. found lower GSH transferase levels in
PTSD (18), suggesting that ferroptosis may be involved in
the pathophysiological process of PTSD. These studies suggest
that ferroptosis may be a key influence in the pathological
processes of PTSD.

The main aim of the current study is to synthesize
available data from transcriptional studies of PTSD and to
elucidate the association of ferroptosis-related genes (FRGs)
with the pathophysiology of PTSD. Six independent studies
from the Gene Expression Omnibus (GEO) database were
included. Multiple algorithms were used in this study to
establish a risk prediction model for PTSD, including the
weighted gene co-expression network analysis (WGCNA),
the Extreme Gradient Boosting (XGBoost) model with
Bayesian Optimization, and the least absolute shrinkage
and selection operator (LASSO) Cox regression (Figure 1).
Furthermore, immune cell and function analyses were
conducted to reveal the possible underlying mechanism of
PTSD assessments.

Materials and methods

Data availability

The RNA sequencing (RNA-seq) data of PTSD patients
were obtained from the GEO database (accession numbers:
GSE97356, GSE81761, GSE63878, GSE64813, GSE67663, and
GSE109409) (Table 1). GSE97356 contains 324 World Trade
Center responders, of which 123 individuals are in the PTSD
group, and 201 individuals are controls. GSE81761 includes
military service members with PTSD (n = 39) and controls
without PTSD (n = 27) at baseline. GSE63878 contains
96 samples from U.S. Marines deployed to conflict zones,
half of whom returned with PTSD. GSE64813 involved 188
samples of service members, and half with PTSD. GSE67663
summarizes the gene expression profiles of 112 PTSD cases
and 72 controls. GSE109409 contains 85 Canadian infantry
soldiers, of whom 27 were positive for PTSD. All research
projects used peripheral blood to obtain transcriptome-wide
RNA-Seq data, and both are publicly available. Thus, the
present study was exempt from requiring approval from local
ethics committees. The GSE97356 and GSE81761 datasets
were used as training sets, while the others were used as
independent validation datasets. The ferroptosis-related genes
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FIGURE 1

Workflow of the study.

(FRGs) list was derived from previously published research
(19–23).

Combined transcriptional
data-processing and batch effect
control

All statistical analyses were conducted using the R
program version 3.6.2 and GraphPad software (Prism 8).

Each individual’s gene expression profiles were summarized
after the microarray probes were mapped with gene symbols
according to the chips and platforms. If multiple microarray
probes were mapped to one single gene, the expression
level was expressed as the mean value. The analysis did
not include missing data or samples with low coverage.
The gene expression values were log2-transformed, namely
log2 Fold Change (log2FC), before normalization. The batch
correction was conducted using the R package ComBat and
sva functions to reduce cohort effects and remove system
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TABLE 1 Baseline of included datasets.

GSE97356 PTSD group
(N = 123)

Control group
(N = 201)

Age (mean) 52.5 51.4

Race (n%)

Caucasian 102 (82.9%) 181(90.0%)

Other 21(17.1%) 20(9.9%)

Sex (n%) Not applicable Not applicable

GSE81761 PTSD group
(N = 39)

Control group
(N = 27)

Age (mean) 31.1 35.9

Race (n%)

White 25 (64.1%) 20 (74.1%)

Non-white 14 (35.9%) 7 (25.9%)

Sex (n%)

Male 37 (94.9%) 26 (96.3%)

Female 2 (5.1%) 1 (3.7%)

GSE63878 PTSD group
(N = 48)

Control group
(N = 48)

Age (mean) 22.2 22.4

Race (n%)

Caucasian 26 (54.2%) 26 (54.2%)

African American 4 (8.3%) 4 (8.3%)

Native American Mexican 13 (27.1%) 13 (27.1%)

Asian and Other 5 (10.4%) 5 (10.4%)

Sex (n%)

Male 48 (100%) 48 (100%)

Female 0 (0%) 0 (0%)

GSE64813 PTSD group
(N = 94)

Control group
(N = 94)

Age (mean) 23.1 23.4

Race (n%)

Caucasian 52 (55.3%) 52 (55.3%)

African American 8 (8.5%) 8 (8.5%)

Native American Mexican 26 (27.7%) 26 (27.7%)

Asian and Other 10 (10.6%) 10 (10.6%)

Sex (n%)

Male 94 (100%) 94 (100%)

Female 0 (0%) 0 (0%)

GSE67663 PTSD group
(N = 112)

Control group
(N = 72)

Age (mean) 41.9 43.3

Race (n%)

African American 102 (91.1%) 71 (98.6%)

Others 10 (8.9%) 1 (1.4%)

Sex (n%)

Male 25 (22.3%) 21 (29.2%)

Female 87(77.7%) 51 (70.8%)

(Continued)

TABLE 1 (Continued)

GSE109409 PTSD group
(N = 27)

Control group
(N = 58)

Age (mean) 28.7 30.3

Race (n%) Not applicable Not applicable

Sex (n%) Not applicable Not applicable

variability from technical, clinical, or demographic factors
(3, 24). Subsequently, combined and normalized cohorts
contained gene expression data from two GEO cohorts
that included PTSD and control individuals. We performed
a principal component analysis (PCA) to verify whether
the batch effect was eliminated. Continuous variables were
compared between groups using the equal-variance T-test.
Unless otherwise noted, the significance threshold for the
P-value was set to 0.05.

Weighted correlation network analysis

The Wilcoxon test for non-parametric distributions
was performed to detect differential gene expressions
(DGEs) between PTSD and controls samples by the
limma package. The weighted gene co-expression network
analysis (WGCNA) is a common method to transform
gene expression data into a co-expression network and
identify disease-related gene modules and key genes
affecting phenotypic traits (25, 26). The R program’s
WGCNA package was utilized on DGEs data to identify
highly connected modules, which summarized specific gene
expression patterns related to PTSD. Under the proper
soft threshold power, clustering analysis can successfully
establish a standard scale-free network, and then overlapping
WGCNA function was used to get a Topological Overlap
Matrix (TOM). Similar modules were merged by the
hierarchical clustering method with a height cut-off of
0.25. Module eigengenes (MEs) were principal components and
summarized all gene expression patterns into a specific
module. Subsequently, module-trait associations were
estimated using spearman’s correlation analysis (in our
study, clinical trait refers to PTSD). The module with the
highest spearman’s correlation coefficient was extracted.
Genes clustered in the module genes were then cross-matched
with FRGs, thus identifying FRGs potentially crucial in
PTSD development.

Hyperparameter optimization and
feature importance ranking

In order to further refine the screening of key genes,
we employed the Extreme Gradient Boosting (XGBoost)
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algorithm. The XGBoost algorithm excels as a method
for combining multiple learning algorithms into one
superior predictive algorithm. It consists primarily of two
parts: a decision tree algorithm and a gradient boosting
algorithm (27). Boosting is accomplished by setting up
weak evaluators individually and integrating multiple weak
evaluators iteratively. Because hyperparameters can greatly
impact the classification performance of the XGBoost
model, the Bayesian parameter optimization based on
Gaussian processes was applied as a way to adjust them
(28). Four main hyperparameters were associated with
the Bayesian optimization in this article: Eta (Learning
rate), Max depth (Maximum depth of a tree), Min child
weight (Minimum sum of instance weight needed in a
child), and Subsample (Subsample ratio of the training
instances). We used the area under the curve (AUC) as
the objective function. Ranks of features were determined
by the average gain of each feature across all trees. High-
value features can be considered more significant for
prediction than low-value features. An analysis of the
model’s performance was compared according to the learning
curve. As a result, the classification model’s generalization
ability (overfitting or underfitting) could be effectively
evaluated (29).

Functional annotation and
protein-protein interaction networks

Gene Ontology (GO) enrichment and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses were
conducted to better understand the biologic function
of DGEs and FRGs. GO analysis utilized the Biological
Process term, which provides current scientific information
about the functions of encoding and non-coding genes
and allows exploring how individual genes contribute
to an organism’s biology at the molecular, cellular, and
organism levels. KEGG database provides information for
biological system functions such as cells, organisms, and
ecosystems, mainly generated from large-scale datasets
produced by genome sequencing and other high-throughput
technologies. The intersection of DGEs and FRGs was
assessed via the R VennDiagram package. The GO
Biological Process and KEGG pathway analyses identified
major biological terms via the R "clusterProfiler" package.
The R “GOplot” package was employed to visualize the
enrichment terms.

The Search Tool for the Retrieval of Interacting
Genes database1 provides protein interaction information
from large-scale sequencing sources (30). Using this

1 http://string-db.org/

tool, the physical and functional associations among
specific gene clusters (based on user requirements) can be
computationally predicted. A protein–protein interaction
(PPI) network among intersection genes of DGEs and FRGs
was calculated by topology analysis using Maximal Clique
Centrality (MCC).

Establishment of the risk prediction
model

Genome-wide analysis of gene expression levels and high
throughput technology produces a large amount of data
that allows statistical analyses of complex diseases’ genetic
causes. Regularization via the least absolute shrinkage and
selection operator (LASSO) is often used to reduce the selected
set of explanatory variables in examining the associations
between all biomarkers and a given phenotype (31). The
LASSO model construction was accomplished using the R
package "glmnet." After tenfold cross-validation with minimum
standards to determine the penalty parameters (λ), the Lasso
model was established. The Receiver Operating Characteristic
(ROC) curve verified the prediction ability for the risk of
illness.

Gene set enrichment derived from
immune cell markers and CIBERSORT
analysis

Single-sample Gene Set Enrichment Analysis (ssGSEA)
classified gene sets with immune biological roles by identified
immune markers (32, 33). The immune markers comprised
782 immune-related genes representing diverse immunologic
cells and functions (34). The expression data were changed
into ssGSEA scores to predict the abundance of each gene
set type in individual samples. The gene expression profile of
two combined PTSD studies was transformed into a gene set
enrichment profile.

Cell-type identification by estimating relative subsets of
RNA transcript, also named CIBERSORT, is a computational
algorithm that distinguishes 22 immune cell types retrieved
from RNA-sequencing gene expression profiles (35). Cell
types including B cells naïve, B cells memory, Plasma
cells, T cells CD8, T cells CD4 naïve, T cells CD4 memory
resting, T cells CD4 memory activated, T cells follicular
helper, T cells regulatory (Tregs), T cells gamma delta, NK
cells resting, NK cells activated, Monocytes, Macrophages
M0, Macrophages M1, Macrophages M2, Dendritic cells
resting, Dendritic cells activated, Mast cells resting,
Mast cells activated, Eosinophils, and Neutrophils were
estimated in each sample. And in that way, the gene
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FIGURE 2

Principal component analysis (PCA) of the six GEO datasets. (A) Scatter plots present the samples based on two principal components (PC1 and
PC2) without removing the batch effect. (B) Scatter plots to present the samples with the removal of batch effect. (C) Volcano plot of DGEs in
the combined GEO cohort. The orange spots represented the up-regulated genes, and the blue spots represented the down-regulated genes
between PTSD and controls. (D) Venn diagram of DGEs and FRGs showed the cross-match gene set contained 29 crucial FRGs.

expression profile was transformed into an immune cell
profile.

Results

Differentially expressed genes and
ferroptosis-related genes in the
combined gene expression omnibus
cohort

The samples based on the unnormalized expression values
showed a distribution bias by batch (Figure 2A). After

normalization, the PCA plot indicated that the batch effect
was removed from the different platforms (Figure 2B), and
185 PTSD subjects and 248 controls were included in the
training datasets. The batch correction had a significant
impact on the log2FC value of the differential genes. The
absolute value of average log2FC decreased from 89 to less
than 1. Therefore, instead of utilizing log2FC, we used a
stronger P-value criterion, namely the P-value after FDR
(false discovery rate) correction. A total of 5362 DGEs were
screened from 19,281 genes at baseline using an FDR value
less than 0.05, of which 369 were up-regulated, and 4993
were down-regulated (Figure 2C). After matching with 60
FRGs reported in previous studies, we obtained 29 differential
FRGs (Figure 2D): ACACA, ACO1, ACSF2, ACSL3, ACSL4,
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FIGURE 3

Gene Ontology enrichment of 29 differential FRGs. The count shows the number of genes enriched in the pathway. Gene ratio: the ratio of the
FRGs number in this term to the total number of FRGs.

FIGURE 4

Kyoto encyclopedia of genes and genomes enrichment of 29 differential FRGs. The count shows the number of genes enriched in the pathway.
Gene ratio: the ratio of the FRGs number in this term to the total number of FRGs.

AIFM2, AKR1C3, ALOX5, ALOX12, ALOX15, CBS, CD44,
CHAC1, CISD1, CRYAB, CS, DPP4, EMC2, FADS2, FANCD2,
FDFT1, FTH1, G6PD, GCLC, GCLM, GLS2, GOT1, GPX4, and
GSS.

Functional annotation of the
differential ferroptosis-related genes

Gene Ontology enrichment analysis related to biological
processes (BP) found that the 29 differential FRGs were enriched
in several metabolic pathways, including carboxylic acid
biosynthesis, organic acid biosynthesis, long-chain fatty acid
metabolism, and glutathione metabolism. Cellular components
(CC) genes were concentrated in various organelle membranes,
e.g., organelle outer membrane, mitochondrial outer membrane,

and microbody membrane. Molecular function (MF) genes
were mainly enriched in terms of the activity of multiple
enzymes, including acyl-CoA ligase activity, acid-amino acid
ligase activity, and acid-thiol ligase activity (Figure 3).
Not surprisingly, in the KEGG pathway analyses, the 29
differential FRGs were notably associated with ferroptosis and
some metabolic pathways similar to those revealed by GO
enrichment, such as fatty acid biosynthesis, 2-Oxocarboxylic
acid metabolism, and glutathione metabolism (Figure 4).

Construction and analysis of
protein–protein interaction network

The PPI network was constructed with the 29
differential FRGs using the STRING database (Figure 5A).
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FIGURE 5

(A) Protein–protein interaction network generated by STRING database analysis indicating direct and indirect associations among 29 crucial
FRGs. (B) Fifteen significant nodes of the PPI network were screened using an interaction score > 0.4; these were the most widely connected
and are sorted by the number of connected nodes.

Subsequently, 15 significant network nodes (GCLC,
G6PD, ACACA, GCLM, GPX4, GOT1, CS, GSS,
ACSL4, FADS2, GLS2, ACSL3, ALOX15, FTH1, ACO1)
were identified with a PPI combined score > 0.4,
which indicated a medium to high confidence network
(Figure 5B).

Co-expression network construction

We used WGCNA to assess highly connected modules
by integrating DGEs of PTSD cases compared to all control
individuals. The gene hierarchy clustering plots showed two
clusters in PTSD patients and controls by the WGCNA
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FIGURE 6

(A) The gene hierarchy clustering plots showed that all samples were divided into two clusters (in the red and white plot) with the WGCNA
algorithm method. (B) A scale-free network distribution was with stable average connectivity when the soft threshold power β was set to 7.

algorithm method (Figure 6A). Outliers in height above 20,000
were removed. When the soft threshold power β was set to 7,
the scale-free Topology fitting index Rˆ2 was greater than 0.9
and the mean connectivity was stabilized, indicating a good
network connection (Figure 6B). After removing highly similar

modules (Figure 7A), 12 gene cluster modules (Figure 7B)
were generated as MEcyan (96 genes), MEblack (258 genes),
MEblue (1550 genes), MEpurple (173 genes), MEbrown (989
genes), MEsalmon (135 genes), MEgreenyellow (149 genes),
MEred (274 genes), MEtan (149 genes), MEmagenta (434
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FIGURE 7

(A) Through the hierarchical clustering method, similar modules were clustered in 12 module eigengenes (MEs), which summarized all gene
expression patterns into a specific module. (B) Spearman’s correlation analysis between the MEs and PTSD indicated that the most relevant
object module was MEgreenyellow (correlation coefficient = −0.54, P = 5e-09).

genes), MEyellow (385 genes), and MEgray (770 genes).
The spearman’s correlation analysis revealed each module’s
correlation coefficient with PTSD. We chose the module with

the largest correlation coefficient, MEgreenyellow (correlation
coefficient = -0.54, P = 5e-09), as the critical module for further
analysis.
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FIGURE 8

Gene Ontology enrichment of 149 MEgreenyellow genes. The count shows the number of genes enriched in the pathway. Gene ratio: the ratio
of the gene number in this term to the total number of the MEgreenyellow module.

Functional annotation of the
MEgreenyellow module genes

The GO enrichment and KEGG pathway analyses
were performed again for the 149 MEgreenyellow genes
(Figures 8, 9). For GO analysis, these genes aggregated in
multiple immune-related responses, such as cellular response
to interferon-gamma, negative regulation of T cell receptor
signaling pathway, and IgG binding. It is worth noting that
the 149 MEgreenyellow genes were also enriched in ferroptosis
in the KEGG pathway and were involved in some similar
metabolic pathways, including long-chain fatty acid-CoA ligase
activity and fatty acid biosynthesis.

Key genes assessed by XGBoost

Table 2 shows parameter ranges and optimized values for
the XGBoost model. Accordingly, we obtained the optimal
feature subset and the hyperparameter combination that
provided the highest AUC. In the learning curve, the optimal

model satisfied both the accuracy of the training set and the
validation set at the same time (Figure 10B). Based on the rank
order of each feature in the XGBoost model, the top 20 key genes
were retained (Figure 10A).

The least absolute shrinkage and
selection operator model construction

After cross-matching 60 FRGs and 20 key genes, we
identified three crucial FRGs related to PTSD development:
ACSL4, ACO1, and GSS (Figure 10C). They were also
significant nodes of our PPI network. t-Tests showed
that all three genes were down-expressed in the training
datasets and the validation datasets (Figures 11A–F)
compared with control individuals. The LASSO model
of PTSD was constructed using the three intersecting
genes. As shown in Figure 10D, the optimal value of λ

was set when a 3-FRG signature was generated as follows:
estimation score = ACSL4 × 0.000296 + ACO1 × –
0.001032 + GSS × 0.001216. The PTSD group received a
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FIGURE 9

Kyoto encyclopedia of genes and genomes enrichment of 149 MEgreenyellow genes. The count shows the number of genes enriched in the
pathway. Gene ratio: the ratio of the gene number in this term to the total number of the MEgreenyellow module.

TABLE 2 Main hyper-parameter range and optimized value.

Hyperparameter Range Optimized value

Eta (0.01, 0.046) 0.03577263

Max depth (6, 8) 8

Min child weight (1, 9) 2

Subsample (0.5, 0.8) 0.6688349

higher score than the control group (P < 0.001). ROC curves
evaluated the estimation score’s predictive performance for
PTSD, and the AUC reached 0.769 in the training datasets and
0.922 in the validation datasets (Figures 11G,H).

Relationship between immune status
and estimation risk of post-traumatic
stress disorder

We quantified the ssGSEA enrichment scores of each
sample and took the median value of the estimation score
as the threshold to divide the high and low-risk groups. As
shown in Figure 12A, elements related to antigen presentation
process contents such as aDCs (activated dendritic cells),
B cells, and DCs (dendritic cells) were significantly up-
regulated in the high-risk group. Elements related to cellular
immunity, such as neutrophils, T helper cells, NK cells, Tfh
(follicular helper T cells), Th2 Cells, TIL (tumor-infiltrating

lymphocytes), and Tregs (regulatory T cells), were up-regulated
in the high-risk group. The antigen presentation process
includes APC (antigen-presenting cell) co-inhibition, CCR (CC
chemokine receptor), Check-point, Cytolytic activity, HLA
(human leukocyte antigen), T cell co-inhibition, T cell co-
stimulation, and Type II IFN Response were also up-regulated in
the high-risk group (Figure 12B). The high-risk group showed
elevated levels in cellular immunity and antigen presentation
function, which may be associated with disturbances in
ferroptosis.

The abundance of 22 immune cells in each sample was
compared between the high- and low-risk groups. Pearson
correlation coefficient was used to calculate the correlation
between components. T cells follicular helper, NK cells activated,
Macrophages M1, Dendritic cells resting, and Mast cells
activated were excluded because they were present in zero
amounts in each sample. Figure 13A displayed the correlation
among the above 17 immune cell types. A total of four immune
cell types were obviously correlated. Neutrophils negatively
related to T cells CD4 memory resting (r = –0.46), Monocytes
(r = –0.56), and NK cells resting (r = –0.40), suggesting that there
may be an antagonistic relationship between neutrophils, T cells
CD4 memory resting, Monocytes, and NK cells resting.

The differential expression of immune cells assessed by
CIBERSORT was shown in Figure 13B. B cells naïve, B
cells memory, T cells CD8, T cells CD4 naïve, T cells CD4
memory resting, T cells CD4 memory activated, NK cells resting,
Monocytes, and Mast cells resting were up-regulated in the
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FIGURE 10

(A) Feature importance rankings for the top 20 genes identified by the XGBoost model. (B) Accuracy rates in the training and validating
processes upon the learning curve. (C) Venn diagram of the top 20 genes and FRGs. After cross-matching 20 XGBoost genes and 60 FRGs, we
identified three crucial FRGs related to PTSD development, which were ACSL4, ACO1, and GSS. (D) LASSO coefficient profile plot of the three
crucial FRGs plotted against the log (lambda) sequence.

high-risk group, taking P < 0.05 as the threshold. These results
also confirmed the ssGSEA enrichment result, indicating that
ferroptosis is involved in the disorder of the immune state in
PTSD patients. FRGs are potential indicators to evaluate the
PTSD risk and underlying immune status.

Discussion

We conducted a comprehensive transcriptome-wide
analysis covering PTSD cases and control individuals by
combining six independent research datasets, intending to
reveal the potential involvement of FRGs in the pathophysiology
of PTSD. As the first step of the study, we applied batch

normalization to reduce the batch effect, allowing us to improve
statistical capabilities and explicitly validate different molecular
pathways in PTSD. The enrichment analysis of GO and KEGG
suggested a direct relationship with glutathione metabolism,
which is a critical process in ferroptosis (36). GSH is an
essential intracellular antioxidant against oxidative stress (19,
37) synthesized from glutamate, cysteine, and glycine (19).
Glutamate accumulation in oxidative stress inhibits the import
of cysteine, resulting in GSH depletion and lipid peroxide
accumulation (38, 39).

Dixon et al. first described ferroptosis (40), which was
subsequently defined as iron-dependent regulated necrosis
accompanied by lipid peroxidation (19). The main biochemical
mechanism of ferroptosis is the catalysis of polyunsaturated
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FIGURE 11

(A,B) t-Tests found that ACSL4 was down-expressed in the training datasets and the validation datasets. (C,D) ACO1 was down-expressed in the
training datasets and the validation datasets. (E,F) GSS was down-expressed in the training datasets and the validation datasets. (G,H) The AUC
of ROC curves reached 0.769 and 0.922 in the training datasets and the validation datasets, indicating the LASSO model has good diagnostic
accuracy.
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FIGURE 12

(A) Elements related to antigen presentation process contents such as aDCs, B cells, and DCs were significantly up-regulated in the high-risk
group (all P < 0.05). Elements related to cellular immunity, such as neutrophils, NK cells, T helper cells, Tfh, Th2 Cells, TIL, and Tregs, were also
up-regulated in the high-risk group. *P < 0.05; **P < 0.01; ***P < 0.001. (B) The contents of the antigen presentation process, including APC
co-inhibition, CCR, Check-point, Cytolytic activity, HLA, T cell co-inhibition, T cell co-stimulation, and Type II IFN Response were significantly
up-regulated in the high-risk group. *P < 0.05; **P < 0.01; ***P < 0.001.

fatty acids (PUFAs) that causes lipid peroxidation under the
action of catalytic Fe (II) (41). Animal models of PTSD
suggest increased iron in cognition-related brain regions,
resulting in neuronal injury (42). Hence, high catalytic Fe

(II) abundance indicates high levels of oxidative stress. PUFAs
are frequently oxidized by lipoxygenases and reduced by the
enzyme glutathione peroxidase 4 (GPX4) and its cofactor, GSH
(20, 43). Intracellular GSH is synthesized from cysteine. Thus
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FIGURE 13

(A) Pearson correlation coefficient revealed the correlation between 17 immune cells. (B) The differential expression of immune cells in the
high- and low-risk groups.

cysteine depletion leads to intracellular GSH exhaustion and
triggers ferroptosis (40), indicating that maintaining certain
cysteine levels is critical for protecting cells from ferroptosis.
The requirement for cysteine for protection from ferroptosis

is related to the activity of GPX4 (38, 44). Therefore, the
inhibition of GPX4 and depletion of GSH results in elevated
lipid peroxides and cell death induced by ferroptosis (19,
40, 43). Our study identified three crucial genes predictive
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for the risk of developing PTSD, which are also important
components of ferroptosis. ACSL4, ACO1, and GSS regulate
lipid, iron, cysteine, and glutathione metabolic processes,
which participate in the complex biological interplay of
ferroptosis (45).

ACSL4 (Acyl-CoA ligase 4) encodes an isozyme of the
long-chain fatty-acid-coenzyme A ligase family, thereby
exerting significant effects in lipid biosynthesis (46).
ACSL4 helps produce arachidonic acid (AA) or adrenic
acid (AdA) containing phosphatidylethanolamine, which
is involved in lipid peroxidation for ferroptosis (47, 48).
ACSL4 activation contributes to ferroptosis-induced brain
injury and neuroinflammation in ischemic stroke (49).
ACO1 (Aconitase 1) encodes an essential enzyme that
can regulate iron levels inside cells, and knockdown
of ACO1 can suppress ferroptosis induced by amino
acid/cysteine deprivation (20, 50). Intracellular iron and
ACO1 expression were found to engage in a directional
cross-talk relationship in adipose tissue, simultaneously
affecting its adipogenic capacity and connecting iron
metabolism and adipogenesis (51). GSS (Glutathione
Synthetase) is the core gene that affects glutathione synthesis
and metabolism (52). Mutations in GSS cause glutathione
synthetase deficiency and result in various metabolic diseases
(53–55).

The enrichment analysis of highly connected module genes
in WGCNA revealed immune response pathways, including
the cellular response to interferon-gamma, negative regulation
of T cell receptor signaling pathway, and IgG binding.
Meanwhile, the ssGSEA and CIBERSORT analysis based on
the FRGs model revealed specific immune status differences
between risk groups, particularly in cellular immunity and
antigen presentation, which primarily were up-regulated
in the high-risk group. Our result is consistent with recent
research that reported direct or indirect relationships between
the immune response and PTSD. For example, combined
data analysis extracted from five transcriptome studies
found perturbed gene expression in aggregated inflammatory
pathways, including cytokine, innate immune, and type I
interferon (3). Immune responses are up-regulated in PTSD
at baseline and down-regulated after symptom improvement
(1). The pro-inflammatory cytokines in peripheral blood cells
were examined, revealing that increased CRP, IL-6, TNF-α,
IL-1β, and IFN-γ were related to PTSD symptoms (56).
Transcriptional sequencing of peripheral blood from PTSD
patients also supported roles for innate immune and interferon
signaling genes in developing the pathophysiology underlying
PTSD (57).

Recent work indicates that ferroptosis-related cell death is
a potent activator of the innate immune system (36). Ruptured
ferroptosis cells may release pro-inflammatory factors, such
as damage-associated molecular patterns (DAMPs) (36), an
immunogenic process that can increase the secretion of

numerous proinflammation cytokines (58, 59). Moreover,
ROS and oxidized lipoproteins are also key components of
DAMPs. DAMPs stimulate inflammation by binding to pattern
recognition receptors (PPRs), such as Toll-like receptors (TLRs),
NLR families and the ALR families (12, 60). Activating these
receptors further increase inflammatory responses by recruiting
immune cells. Some ferroptosis cells release signals, such as
PGE2, which could impact the local immune environment (44).
Immunotherapy-activated CD8 + T cells have been found to
promote ferroptosis-specific lipid peroxidation, which increased
the efficacy of antitumor therapy in tumor diseases (61).
It is thus reasonable to assume that ferroptosis could be a
potential regulatory pathway in the immune changes associated
with PTSD, making it a potential marker that could aid in
recognizing the development of PTSD and treatment target
for the disorder.

Limitations

There are some limitations to our study. First, our
model was established with a public database with a limited
scale. Research across multiple centers will be required to
verify our findings and assess their clinical utility. Second, a
single hallmark to estimate the risk of PTSD development is
insufficient because, as we know, the occurrence of PTSD is
also related to a variety of environmental factors. The lack of
time complexity is another limitation of our study. Due to
the nature of the original data, cross-sectional studies were
used to analyze the results. Further research is required to
determine the validity of our conclusions in prospective studies.
Our study suggests a potential role of ferroptosis in PTSD,
even suggesting that it may serve as a therapeutic target for
the treatment of PTSD. However, it should be emphasized
that the link between ferroptosis and PTSD needs to be
experimentally determined.

Conclusion

In summary, our study defined a novel model associated
with PTSD. The present work also indicated the potential
immunological effect of ferroptosis in PTSD occurrence.
Further investigation is needed to understand the mechanisms
linking ferroptosis and the development of PTSD.
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