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Depression is a common and often recurrent illness with significant negative impact
on a global scale. Current antidepressants are ineffective for up to one third of people
with depression, many of whom experience persistent symptomatology. 5-HT4 receptor
agonists show promise in both animal models of depression and cognitive deficit.
We therefore studied the effect of the 5-HT4 partial agonist prucalopride (1 mg daily
for 6 days) on the neural processing of emotional faces in 43 healthy participants
using a randomised placebo-controlled design. Participants receiving prucalopride were
more accurate at identifying the gender of emotional faces. In whole brain analyses,
prucalopride was also associated with reduced activation in a network of regions
corresponding to the default mode network. However, there was no evidence that
prucalopride treatment produced a positive bias in the neural processing of emotional
faces. Our study provides further support for a pro-cognitive effect of 5-HT4 receptor
agonism in humans. While our current behavioural and neural investigations do not
suggest an antidepressant-like profile of prucalopride in humans, it will be important
to study a wider dose range in future studies.

Keywords: serotonin receptor 4, functional neuroimaging (fMRI), emotional processing, cognition, antidepressant

INTRODUCTION

Globally, more than 300 million people are affected by depression at any one time (1), and up
to one in five people experience at least one lifetime episode (2). Approximately two thirds of
patients respond to first-line antidepressant treatments (3), although it is typical to experience a
delay before therapeutic benefit (4). However, up to one third of patients do not achieve remission
with antidepressants, but rather develop a treatment-resistant illness, with significant impact on
their occupational and social functioning (2). Within this context, there is a pressing need to
develop new treatments for depression that target novel mechanisms and have a faster onset of
therapeutic action.
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Prucalopride acts selectively on 5-HT4 receptors as a partial
agonist. These post-synaptic receptors are located in regions of
the brain linked with both cognition and emotional processing,
including the limbic system (including the anterior cingulate
cortex), basal ganglia (including the putamen), and neocortex
(5–7). Evidence from animal studies suggests that 5-HT4 receptor
agonism may be a promising new target for rapid acting
antidepressant action (4). In contrast to the delayed action of
conventional antidepressants, 5-HT4 receptor agonists acutely
increase the firing rate of midbrain serotonergic cells, via their
action on medial prefrontal cortical pyramidal cells (8–10). In
addition, 5-HT4 receptor agonism rapidly induces the production
of neurotrophic proteins required for neuroplasticity, such as
brain derived neurotrophic factor, an outcome typically only seen
with chronic antidepressant treatment (11).

Consistent with this, animal behavioural studies have
demonstrated that 5-HT4 receptor agonists are rapidly active in
animal models of depression, ameliorating the anhedonia-like
behaviours produced by chronic mild stress and corticosteroids
(11–13). In addition, 5-HT4 receptor agonists have been
shown to have pro-cognitive effects, and in particular facilitate
hippocampal dependent learning and memory processes (14–16),
which may indicate clinical uses across a variety of mental illness
diagnoses, including anxiety and schizophrenia. Consistent
with this, 5-HT4 receptor agonists have been shown to
lead to rapid anxiolysis in rodents (8, 11, 17), which may
relate to direct activation of medial prefrontal cortex 5-HT4
receptors (8). They also have been suggested as potential
neuroprotective agents in schizophrenia as subfield volumetric
reduction in the hippocampus in patients with first episode
psychosis appears to correlate with 5-HT4 receptor density
(18).

Investigating the neuropsychological effects of 5-HT4 receptor
agonism in humans has been challenging due to the side-effect
profile of early agents. However, the 5-HT4 agonist prucalopride,
which is licenced for the treatment of constipation, has recently
been successfully used as a probe of human 5-HT4 function
(19, 20). Prucalopride is a selective high-affinity 5-HT4 partial
agonist with good brain penetration (21) and a pro-cognitive
and antidepressant-like profile in animal models (12, 22). We
have previously shown that prucalopride (1 mg, for one and
6 days) has a pro-cognitive effect on memory tasks in healthy
volunteers (19, 20), and increases hippocampal and angular gyrus
function during memory processing (20). However, it is currently
not known whether prucalopride also has an antidepressant-like
profile in humans.

Conventional antidepressants work rapidly both behaviourally
and neurally to decrease processing of negative information, and
increase responses to positive stimuli (23–27). Selective serotonin
reuptake inhibitors (SSRIs) have been shown to decrease
amygdala responses to fearful faces in healthy participants (28,
29), and also in people with depression (27). Experimental
medicine studies based on this model can provide a rapid
and reliable detection of drugs with clinical antidepressant
activity (30–32), and therefore provides a useful translational
approach to screen novel compounds in humans for potential
antidepressant activity.

Here, we examine whether short-term (6–7 days)
administration of prucalopride, affects neural and behavioural
emotional processing in healthy human volunteers. We
hypothesised that prucalopride would decrease the neural
response to negative emotional information similar to that
previously observed with serotonergic antidepressants (i.e.)
decreased response to negative vs. positive emotional stimuli in
a network including the medial prefrontal cortex (including the
anterior cingulate cortex), orbitofrontal cortex, amygdala, and
hippocampus in an fMRI paradigm.

MATERIALS AND METHODS

Participants
Right-handed healthy participants (N = 50, aged 18–40) were
recruited and randomised to either prucalopride [7 days × 1 mg
(imaging taking place on day 6)] or placebo, in a double-
blind randomised design. Participants were all fluent in English
and had no contraindications to prucalopride. Participants were
young adults of any gender, healthy, right-handed, not pregnant
or breast feeding, and with a BMI between 18 and 30 (full
inclusion and exclusion criteria are included in Supplementary
Material). We excluded any potential participant who may be
more at risk of side effects with prucalopride (e.g., chronic bowel
disease). The study was approved by the University of Oxford
Central University Research Ethics Committee (MSD-IDREC
reference R57219/RE001) and the protocol was pre-registered
with clinicaltrials.gov (NCT03572790). This is a separate part
of the study as reported in Ref. (20) and involves the same
participants. No changes to methods occurred after start of
the study and the flow of participants is outlined in Figure 1.
Participants gave written informed consent.

Design and Randomisation
The study had a between-subject, double-blind, placebo-
controlled design. Participants were assigned in a random
manner to 7 days of prucalopride (Resolor) 1 mg daily
or placebo (lactose tablets, Rayonex Biomedical) in a 1:1
allocation. Randomisation was blocked in design (block
size = 4), stratified for sex and undertaken with an online tool
(sealedenvelope.com on June 1, 2018). Group allocation was
concealed from participants, investigators and assessors using
sequential numbered containers, and the encapsulation process
ensured that both capsules appeared identical. All capsules were
consumed by participants at home.

Participants underwent a 3T scan including fMRI tasks on
day 6 (Research Visit 1): a structural T1 scan, a faces emotion
recognition test task, a memory encoding task, an arterial spin
labelling (ASL) scan, and a resting state scan (further details of
the scanning protocol can be found here: doi: 10.5281/zenodo.
6107724). By day 6 when imaging was carried out, prucalopride
would be expected to be at a steady state (terminal half-life
approximately 24 h) (33). Testing occurred at the Department
of Psychiatry and the Oxford Centre for Human Brain Activity
(OHBA), part of the Wellcome Integrative Neuroimaging Centre
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FIGURE 1 | CONSORT diagram to show flow of participants through the study. CONSORT diagram to show flow of participants through the study.
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(WIN). For female participants testing/scanning did not occur
during the premenstrual week.

Questionnaire Measures
To obtain baseline measures of mood, anxiety, and personality,
self-report questionnaires were completed: Beck Depression
Inventory-II (34); Snaith-Hamilton Pleasure Scale (SHAPS) (35);
Spielberger State-Trait Anxiety Inventory, Trait Version (STAI-
T) (36); and Eysenck Personality Questionnaire (37). Affect and
anxiety were measured three times [baseline (screening), pre-
imaging (day 6), and post-imaging (day 6)] using: the Positive
and Negative Affect Scale (PANAS) (38); visual analogue scales
(VAS) (39); and the Spielberger State-Trait Anxiety Inventory,
State Version (STAI-S) (36). Commonly reported side effects
were also measured at these three time-points using a scale where
participants rated the extent to which they were experiencing any
of these (40). At the end of the study, participants were asked to
guess their group allocation with a forced-choice question.

Functional Magnetic Resonance Imaging
Faces Task
In the fMRI emotional processing task (41) (see Supplementary
Figure 1), participants were told that the aim of the task was to
correctly identify the gender of each face shown in the images
(male or female), with no reference made to the face emotion.
This task was modified from previous versions used within our
laboratory (27, 32) with block lengths and orders optimised for
fMRI [see Ref. (42), full details are in Supplementary Material].
Briefly, faces were presented rapidly for 100 ms in isolation and
participants had to respond to indicate the assumed gender of the
face as quickly as possible using a button press. The task followed
an A-B-Rest design, where a block of condition A (fearful faces,
18 s) was followed by a block of condition B (happy faces, 18 s)
then a block of rest (12 s). There was an additional rest block at
the start of the experimental run. There were seven repeats of
each block, generating a total 126 s of each emotion condition
and 96 s of rest. Each block consisted of six trials: three male and
three female images presented in a randomised order. Each image
was shown once over the length of the experiment. Previous
versions of this task have been shown to be sensitive to the
acute effects of antidepressants on neural processing (32). Face
images for the task were modified from the Karolinska Directed
Emotional Faces (KDEF) set.1 The task software was written using
Psychopy version 1.84.2.

Demographic and Behavioural Data
Analysis
Analysis of these data occurred as previously described in
Ref. (20). Demographic characteristics and baseline clinical
measures were analysed using independent sample t-tests
(continuous variables), Fisher’s exact tests (native language
and sex) and logistic regression (education). To assess
changes in subjective mood and side effects before and
after prucalopride/placebo administration, repeated measure

1http://kdef.se/index.html

analyses of variance (ANOVAs) were performed with time as
a within-subject factor (baseline, pre-testing Research Visit 1).
Repeated measures analyses of variance (ANOVAs) were used
to analyse fMRI behavioural task data with a between-subjects
factor of the treatment group (prucalopride or placebo) and
within-subjects factor of gender accuracy with face emotion (fear
or happy). Post hoc analyses using independent samples t-tests
were performed to follow-up interactions observed. Levene’s test
(t-tests) and the Greenhouse-Geisser procedure (ANOVAs) were
used as appropriate, correcting degrees of freedom where equal
variances between groups could not be assumed. A p-value less
than 0.05 was used to denote statistical significance. Partial eta
squared are reported as a measure of effect size. Behavioural data
were analysed in SPSS (version 25, IBM). Graphs were produced
using GraphPad Prism (version 9.3.1) and Excel (version 2016).
Management of outliers on behavioural tasks is discussed in
Supplementary Material.

Magnetic Resonance Imaging Data
Acquisition and Analysis
Blood-oxygenation-level-dependent (BOLD) fMRI and T1-
weighted anatomical images were acquired using a 3-Tesla
Siemens Prisma scanner, equipped with a 32-channel head matrix
coil (Siemens, Erlangen, Germany). Here we report results from
the faces task. Participants also completed an encoding memory
task and an arterial spin labelling (ASL) during the scan, the
details of which have been published previously (20) with cerebral
blood flow data also included here as a covariate. Results from the
resting state scan will be reported elsewhere. Foam padding and
a head restraint were used to control head movement. Further
details of fMRI and structural Magnetic Resonance Imaging
(MRI) acquisition can be found in the Supplementary Material.
The full acquisition protocol, along with radiographic procedure
is available from the Open WIN MR Protocols database here:
doi: 10.5281/zenodo.6107724.

Faces imaging data were analysed with FSL.2 fMRI data were
pre-processed and analysed using FEAT (FMRI Expert Analysis
Tool), version 6.0.4, part of FSL (FMRIB’s Software Library; see
text footnote 2). For further information on the pre-processing,
first-level and second-level analyses, and confirmatory analyses,
please refer to the Supplementary Material.

Pre-processing involved various steps designed to reduce
noise-related variability in the data and to improve the validity of
the statistical analysis. Each participant’s imaging data underwent
the following steps: (1) Removal of non-brain structures
using BET, (2) motion correction using MCFLIRT, (3) spatial
smoothing using a Gaussian kernel of FWHM 5 mm, (4) grand-
mean intensity normalisation of the entire 4D dataset by a
single multiplicative factor and high-pass temporal filtering cut-
off = 90 s (Gaussian-weighted least-squares straight-line fitting,
with sigma = 45 s), and (5) B0 unwarping using fieldmap rads
and magnitude images for distortion correction.

In the first-level analysis, individual activation maps
were computed using the general linear model with local
autocorrelation correction. Three explanatory variables were

2www.fmrib.ox.ac.uk/fsl
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modelled: “happy” and “fear” images and explicit fixation cross.
Temporal derivatives were included in the model. Variables
were modelled by convolving each block with a haemodynamic
response function, using a variant of a gamma function (i.e.,
a normalisation of the probability density function of the
gamma function) with a standard deviation of 3 s and a mean
lag of 6 s. No included participant demonstrated significant
movement: absolute displacements were less than 1 voxel and
relative displacements less than 1/2 voxel. At the whole-brain
level, fearful images were contrasted with happy and fixation
cross, resulting in the following model: (1) fear > fixation; (2)
fear < fixation; (3) happy > fixation; (4) happy < fixation; (5)
fear > happy; (6) happy < fear; (7) mean (of happy and fearful
faces) > fixation; (8) mean < fixation.

In the second-level analysis, whole-brain individual data
were combined at a group level (placebo vs. prucalopride)
using a mixed-effects group cluster analysis across the whole
brain corrected for multiple comparisons, and cerebral blood
flow and grey matter maps as covariates of no interest. The
potential effect of sex was considered as a covariate of interest
in sensitivity analyses. Groups were contrasted with each other
using the following comparisons: (1) placebo > prucalopride;
(2) prucalopride > placebo; (3) placebo mean; (4) prucalopride
mean; (5) mean of all participants. Brain activations showing
significant group differences were identified using cluster-
based thresholding (Z > 3.1, p < 0.05 corrected). Significant
interactions from whole-brain analyses were further explored
by extracting percentage BOLD signal change for each type
of contrast. As the amygdala and prefrontal cortex were a
particular focus of our hypothesis, the amygdala, anterior
cingulate cortex (ACC), medial frontal cortex (MFC), and
orbitofrontal cortex (OFC) were pre-specified as regions of
interest (ROI). A structural small volume correction analysis
was run using the Harvard-Oxford subcortical atlas at a 90%
threshold. A functional ROI mask was also created for the left and
right of each ROI for the mean effect of task by multiplying mean
activation for all participants by the Harvard-Oxford subcortical
atlas anatomical mask at a 50% threshold, and percentage BOLD
signal change for each contrast in each hemisphere was extracted
in order to identify the profile of drug effect. All activations are
reported using MNI co-ordinates.

FSLVBM and Oxford ASL was conducted as detailed in
Ref. (20). ACC and amygdala perfusion between groups was
compared using fslmeants: parameter estimates of perfusion were
extracted from resting perfusion maps (previously computed
using Oxford_ASL in units of ml/100 g/min) using anatomical
Harvard–Oxford masks of the ACC and the left and right
amygdala (amygdala at a 50% threshold).

RESULTS

Participants
50 (100% of target) participants were recruited between June
11, 2018 and May 17, 2019. One participant was excluded from
all analyses for data quality concerns raised at the time of data
collection. Two other participants were excluded from fMRI

analyses for persistent sleepiness and acute anxiety during the
scan. A further four participants were excluded from fMRI
analyses for (i) a structural brain variant that affected registration
to standard space, (ii) a poor quality structural scan according
to MRIQC assessment, (iii) significant motion during the scan,
and (iv) lack of engagement with the faces task determined from
behavioural responses.

Analysis occurred in originally assigned groups. The final
groups for behavioural analysis (N = 43, 21:22 = placebo:
prucalopride, aged 18–36) were well matched for age, BMI,
level of education, use of substances, and NART scores (see
Supplementary Table 1). However, compared to those with
English as a first language, for non-native English speakers the
odds of being in the prucalopride group were 0.11 (95% CI 0.02–
0.59, p < 0.001). Randomisation guesses (data missing for one
participant) suggested that participants were better than chance
at guessing group allocation, particularly in the placebo group
(correct guess: placebo 80.0%, prucalopride 69.6%; data missing
for one participant in the placebo group). As previously reported
(20), there were no adverse events in the prucalopride group; one
person discontinued placebo due to abdominal discomfort.

Questionnaire Results
As reported previously in the full sample (20), there were no
significant differences in state anxiety or affect between the
prucalopride and placebo group (all ps > 0.5, see Supplementary
Table 2 for updated results specific to this sample). There were
also no significant differences in reported side effects at baseline
or during the study visits and only minimal side effects were
present for headache, decreased appetite, flatulence, fatigue and
gastrointestinal sounds (all ps > 0.3).

Behavioural Results of Functional MRI
Behavioural Faces Task
There was a significant main effect of group [F(1,41) = 7.47,
p = 0.009, np2 = 0.15], reflecting improved accuracy in the
prucalopride group compared with the placebo group [accuracy
(%): prucalopride M = 88.85, SEM = 0.80; placebo M = 84.58,
SEM = 1.36]. There was also a significant emotion × group
interaction [F(1,41) = 4.48, p = 0.04, np2 = 0.10]. This
interaction was driven by significantly increased accuracy
for fearful faces in the prucalopride group compared with
the placebo group [t(1,31.41) = −2.955, p = 0.006] but no
significant group differences in the accuracy for happy faces
[t(1,41) = −1.702, p = 0.096], see Figure 2. These results
were unchanged by adjusting for non-responses [main effect of
group: F(1,41) = 8.91, p = 0.005, np2 = 0.18; emotion × group
interaction: F(1,41) = 6.91, p = 0.012, np2 = 0.14]. There was
no difference in average reaction speed between the groups
(p = 0.39).

Faces Task Functional MRI
Main Effect of Task
In order to determine if the functional MRI (fMRI) task engaged
brain regions previously associated with fearful and happy
facial stimuli, blood-oxygen-level-dependent (BOLD) activation
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FIGURE 2 | Behavioural results of fMRI faces task. Accuracy (%; unadjusted) to gender discrimination task as part of fMRI faces paradigm in placebo vs.
prucalopride group. Error bars show standard error of the mean. Black circle = placebo; blue square = prucalopride. ∗ = p < 0.05 (T test; N = 43; 21:22 = placebo:
prucalopride).

in response to fearful faces and happy faces and the mean
of both valences was compared to the baseline (i.e., fixation
cross) across both groups (see Supplementary Figure 2). As
per previous data, significant brain activations were observed
in a network of regions (43–45), including the superior, middle
and inferior frontal gyrus, paracingulate gyrus, frontal pole, pre-
central gyrus, left and right putamen, left insular cortex, and left
thalamus. These findings confirm that the task engaged brain
areas implicated in the processing of both fear and happiness,
similar to previous work with this version of the task (42).
Unexpectedly, we did not see differential whole-brain activation
related to face emotion (see Supplementary Figure 2), and there
was a similar level of amygdala activation to both fearful and
happy faces bilaterally (see Figure 3). For this reason, we present
the mean effect of task [mean (of fear + happy) > fixation] as our
primary analysis, with reference to results relating to emotional
valence as appropriate.

Effect of Treatment–Whole Brain Analysis
When averaging the two emotions (vs. baseline), there was altered
activation in the prucalopride group in 6 clusters (i) right pre-
central/post-central gyrus, (ii) left supramarginal/post-central
gyrus, (iii) right superior frontal gyrus, (iv) anterior cingulate
cortex (ACC), (v) left putamen/insula, (vi) left pre-central/post-
central gyrus (see Figure 4A and Table 1 for details of clusters).
Figure 4B represents the group-level extracted BOLD signal
change for these clusters. Across all clusters, the prucalopride
group showed reduced activation in this network of areas.

More specifically, as shown in Figure 4B, the left and
right pre-central/post-central gyrus and right superior frontal
gyrus clusters showed deactivation in the prucalopride group
versus no or little activation in the placebo group; the left
putamen/insula cluster showed activation in the placebo group
versus no activation in the prucalopride group; the ACC and left
supramarginal cluster showed activation in the placebo group
versus deactivation in the prucalopride group.

Effect of Treatment–Region of Interest Analysis
There were no significant group differences in response to fear
vs. happy facial expressions, or the mean effect of task, in
the medial frontal cortex, orbitofrontal cortex, or left or right

amygdala. Examining the effect of prucalopride versus placebo
on the left and right amygdala to fearful faces demonstrated
that prucalopride did not reduce activation in the amygdala as
is typically seen with serotonergic antidepressants (28); instead
there was no difference in amygdala activation between the
placebo and prucalopride groups (see Figure 3).

However, in the ACC, consistent with whole-brain results,
the prucalopride group showed deactivation compared with little
activation in the placebo group in response to the mean effect of
task (mean faces) [placebo > prucalopride, Z = 4.39, p < 0.0002,
peak voxel location: x = 6, y = 0, z = 50, cluster size = 164
voxels] (see Figure 5A for cluster and Figure 5B for group-
level extracted BOLD signal change). This pattern of reduced
activation in the prucalopride group compared to the placebo
group was unchanged when we performed a region of interest
small volume correction analysis using a functional mask [using
the same method as Ref. (20)] (Figure 5C).

Analyses Controlling for Potential
Confounds
As previously reported in Ref. (20), there were no group-
related differences in grey matter between groups (FSLVBM:
placebo > prucalopride, p = 0.91; prucalopride > placebo,
p = 0.44). There was also no difference between groups in either
global blood flow [Oxford_ASL: p = 0.64 (grey matter), p = 0.60
(white matter)] or regional blood flow (placebo > prucalopride
p = 0.71; prucalopride > placebo p = 0.38). Whole brain and
ROI results were similar with and without correction for cerebral
perfusion and grey matter maps, and sex (see Supplementary
Figure 3). Left and right amygdala and ACC perfusion did not
differ between groups: L&R amygdala smoothed data p = 0.65 (L),
p = 0.87 (R); ACC smoothed data p = 0.68 (see Table 2). Native
language and overall accuracy to gender discrimination during
the scan were not correlated using linear regression (R2 = 0.012).

DISCUSSION

The main finding of our study is that after 6 days of prucalopride
treatment, healthy young adults were more accurate at identifying

Frontiers in Psychiatry | www.frontiersin.org 6 April 2022 | Volume 13 | Article 859123

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-859123 April 7, 2022 Time: 14:37 # 7

de Cates et al. 5-HT4 and Human fMRI Faces

FIGURE 3 | Blood-oxygenation-level-dependent percentage signal change (SC) extracted from left amygdala (A) and right amygdala (B). Group mean of BOLD
percentage signal change extracted from L amygdala (A) and R amygdala (B) in response to fearful and happy images (fear > fixation; happy > fixation;
fear > happy). Error bars show standard error of the mean. The anatomical mask used was the Harvard-Oxford atlas at 90% threshold.

the gender of faces in a rapidly presented faces task compared
to the placebo group, particularly in the context of fearful
faces. In addition to this improved behavioural performance,
we saw a reduction in brain activity in the prucalopride group,
relative to the placebo group, in response to fearful and happy
faces in a network of regions, including the medial prefrontal
cortex (mPFC) [anterior cingulate cortex (ACC), superior
frontal gyrus], and inferior parietal lobule (supramarginal
gyrus). This reduction in activation in the ACC during the
task was reproduced at both the whole-brain and region of
interest level.

The improvement in accuracy of gender discrimination seen
in the prucalopride group is consistent with our previous
work demonstrating a pro-cognitive effect of acute and 6 day
prucalopride administration in healthy volunteers (19, 20).
Whilst previously we have reported that prucalopride acts to
increase learning and memory in recall and recognition tasks,
here we see this prucalopride-related improved performance
extends to a simple perceptual discrimination task. Interestingly,

this improved accuracy in the prucalopride group specifically
related to fearful faces rather than happy, suggesting that
prucalopride may have allowed participants not only to focus
better on the task but also be less distracted by fearful faces
compared to participants in the placebo group.

The rapid, specific, and potentially chronic improvements
seen in learning and memory with 5-HT4 receptor agonists in
rodents (12, 14, 46, 47) have been suggested to occur secondary
to an increase in neurotransmitters and neurotrophic proteins,
perhaps particularly acetylcholine release (48, 49), which result in
downstream effects including neuroplasticity (17, 46). A recent
study has also shown that prucalopride reduces bursts of
AMPA receptor-mediated currents in the hippocampus, altering
glutamatergic transmission (50) and making it a particularly
interesting candidate for enhancing cognition. However, there
is less understanding from the animal literature in terms of
the impact of 5-HT4 receptor agonism on cognitive processes
involved in the discrimination task used here, which could
include effects on attention, amongst others.
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FIGURE 4 | Whole brain fMRI Faces Task results. (A) Whole-brain activation in response to mean effect of task (mean > fixation) in placebo vs. prucalopride group.
Sagittal, coronal, and axial images (shown at MNI location 45,61,62) depicting significantly increased activation in the placebo group for the mean contrast in
significant clusters (Clusters: 1 = L post-central/pre-central gyrus; 2 = L putamen/insula; 3 = anterior cingulate cortex; 4 = R superior frontal gyrus; 5 = L
supramarginal/post-central gyrus; 6 = R pre-central/post-central gyrus); cluster 1 and 5 not visible in figure. Images thresholded at z > 3.1 p < 0.05 corrected. Red
to yellow colours identify increases in brain activation (scale Z = 3.1–4.3). (B) Group mean of BOLD percentage signal change (SC) extracted from the 6 clusters
(mean > fixation). Error bars show standard error of the mean. White = placebo; blue = prucalopride. Clusters: 1 = L post-central/pre-central gyrus; 2 = L
putamen/insula; 3 = anterior cingulate cortex; 4 = R superior frontal gyrus; 5 = L supramarginal/post-central gyrus; 6 = R pre-central/post-central gyrus.

TABLE 1 | Details of activation clusters (placebo > prucalopride) from whole brain analysis for the mean effect of task.

Cluster number Size (voxels) Z-max p-value Z-max location (MNI) Main regions involved in cluster

6 408 4.56 <0.001 62,−2,32 R pre-central/post-central gyrus

5 299 4.6 <0.001 −62,−30,38 L supramarginal/post-central gyrus

4 242 3.65 <0.001 12,2,68 R superior frontal gyrus

3 178 2.71 0.002 6,0,50 Anterior cingulate cortex

2 116 1.68 0.021 −28,−6,12 L putamen/insula

1 106 1.5 0.032 −48,−18,42 L post-central/pre-central gyrus

This improved behavioural performance was accompanied
by reduced activation in a network of regions, including the
mPFC and inferior parietal lobule. Interestingly, this network

overlaps with regions that form the default mode network
(DMN). The default mode network (DMN), also known as the
medial frontoparietal network (M-FPN) is a connected network
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FIGURE 5 | Anterior cingulate cortex region of interest fMRI faces task results. A region of interest activation for the anterior cingulate cortex (ACC) in response to
mean effect of task in placebo vs. prucalopride group. Sagittal, coronal, and axial images (shown at MNI location 45,63,62) depicting significantly increased activation
in the placebo group for the mean > fixation contrast [placebo > prucalopride, Z = 4.39, p < 0.0002, peak voxel location: x = 6, y = 0, z = 50, cluster size = 164
voxels]. Images thresholded at z > 3.1, p < 0.05 corrected. Red to yellow colours identify increases in brain activation (scale Z = 3.1–4.3). ACC Mask = Harvard
Oxford atlas. (B) Group mean of BOLD percentage signal change (SC) extracted from the cluster in (A). White = placebo, blue = prucalopride. (C) Group mean of
BOLD percentage signal change (SC) extracted from functional anterior cingulate cortex (ACC) mask in response to mean effect of task. A functional ROI (SVC) mask
was created for the ACC for mean > fixation by multiplying mean activation for all participants by the anatomical mask. White = placebo, blue = prucalopride.

of brain regions that experience greater activity at rest than
during performance of externally orientated active cognitive
tasks (51). Abnormalities of the DMN are present in cognitive
impairment–both in Alzheimer’s (52) and those at high risk of
dementia [i.e., mild cognitive impairment (MCI) (53)]–but also
in depression, where abnormalities may pose a cognitive risk
factor for recurrent illness (54). Abnormal activity within the
DMN is classically linked to increased rumination, but is also
associated with impaired control of attention (54). Failing to
reduce activation within the DMN whilst actively undertaking a
cognitive task appears to directly relate to poor task performance,
whereas appropriate “switching off” of the DMN during tasks
is linked with improved cognitive performance (55). In this
way, improving appropriate deactivation of the DMN during

cognitive tasks has been proposed as a transdiagnostic marker to
assess for pro-cognitive effects of interventions (55). Therefore,
the decreased activation of DMN-related regions during task
performance in this fMRI faces task may reflect enhanced
attention and cognitive control, which is consistent with the
improvement in performance accuracy seen behaviourally.

Contrary to our hypothesis, we did not see a clear
antidepressant-like profile of prucalopride on the emotional
processing task. In humans, in both healthy participants and
depressed patients, antidepressants work rapidly to decrease
brain regional activity involved in processing of negative
information, and increase activity arising from positive
stimuli (23–26). These effects occur prior to any significant
mood change in patients with depression. This emotional
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TABLE 2 | Left and right amygdala and anterior cingulate cortex (ACC) perfusion (ml/100 g/min).

Left amygdala Right amygdala Anterior cingulate cortex

Smoothed (2.12) Placebo 41.7 42.1 51.0

Prucalopride 42.6 41.8 51.9

Unsmoothed Placebo 41.7 42.0 52.0

Prucalopride 42.7 41.8 52.9

processing model has been shown to provide a rapid and reliable
detection of drugs with clinical antidepressant activity (30, 31),
and thus provides a feasible methods to screen 5-HT4 agonists
in humans for potential antidepressant activity. Results from
this study are not consistent with prucalopride demonstrating
an antidepressant effect. That is, we saw a general decrease in
activity in response to faces rather than an emotion specific
effect (i.e.) there was no reduction in amygdala activation to
fearful faces with prucalopride as seen with SSRIs (28, 56). This
is a similar finding to an earlier behavioural study in healthy
participants in our laboratory where we found no evidence of
an antidepressant profile of prucalopride on behavioural tasks of
emotional processing following a single 1 mg dose (19).

Given the consistency of evidence from animal studies
demonstrating an antidepressant-like profile of 5-HT4 receptor
agonism on a number of models of depression, it is important to
consider why this effect has not yet translated to human models.
Although animal models are vital in drug discovery, they are
frequently poorly predictive of clinical efficacy in humans (57).
However, we also need to consider possible other explanations for
the lack of antidepressant-like profile seen in the current study.
Importantly, the version of the fMRI faces task used in this study
did not elicit differential activity in the amygdala in response
to “happy” and “fearful” faces in this sample, unlike previous
versions of the task. We believe that this may have related to
enhanced standardisation of the face images between emotion
conditions, which was intended to minimise the confounding
differences such as hair position, face size and image luminance,
and provide a more constrained contrast between the emotions.
In this sample it may have led to a perception that happy faces
were more threatening, and it also appears to have made the task
more cognitive challenging (participants had generally reduced
accuracy than seen with previous versions of this task; see
Supplementary Material). Within this context it is necessary to
be cautious in interpreting the apparent lack of an antidepressant
effect, a finding which needs to be replicated using a task that
is more successful in probing emotion-specific responses to face
stimuli. Furthermore, a low dose of prucalopride (1 mg is half
the licenced dose of 2 mg) was used in the current study to
minimise gastrointestinal side effects. It is possible that this dose
is insufficient to produce positive effects on emotional processing,
and we currently lack information about the appropriate dose
of prucalopride needed for optimal occupancy of brain 5-HT4
receptors. We calculated the sample size needed (17 per group
to give 90% power with α = 5%) on the basis of a conservative
estimated effect size of 0.5–0.7, but we aimed for oversampling
of 25 per group to account for fMRI analyses. Unfortunately,
three participants were excluded prior to fMRI analysis for

technical reasons, and a further four were excluded during
analysis for fMRI-related concerns or a lack of engagement
with the task (determined from behavioural responses), which
likely reduced the statistical power of the study. Due to chance,
most participants whose first language was not English received
placebo, but the task was not verbal in nature, and there was
no evidence that first language and task performance were
correlated. We also note that our findings relate to prucalopride
specifically, and there may be subtle variations in the effects
of other 5-HT4 receptor agonists (58). However, there is no
evidence that there are marked variations between different 5-
HT4 receptor agonists in the brain regions of interest in this
study.

In conclusion, the behavioural results from this fMRI faces
task provide further evidence that prucalopride can enhance
cognition in healthy participants. This is consistent with,
and extends, our previous findings of pro-cognitive effects of
prucalopride on learning and memory tasks. In addition, the
present findings suggest that prucalopride may reduce activation
in the default mode network during task performance, which may
be one mechanism by which prucalopride improves cognition.
Future work should include a more detailed exploration of the
breadth of cognitive changes produced by prucalopride and other
5-HT4 agonists, as well as of the duration of any effect considering
the potential for desensitisation of 5-HT4 receptors. The effect of
prucalopride on emotional processing in humans also requires
further exploration with a higher dose to determine if the
promising findings from animal studies may indeed translate into
human investigations.
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