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Major depressive disorder (MDD) is a common and highly debilitating condition that

threatens the health of millions of people. However, current diagnosis of depression

relies on questionnaires that are highly correlated with physician experience and hence

not completely objective. Electroencephalography (EEG) signals combined with deep

learning techniques may be an objective approach to effective diagnosis of MDD. This

study proposes an end-to-end deep learning framework for MDD diagnosis based

on EEG signals. We used EEG signals from 29 healthy subjects and 24 patients

with severe depression to calculate Accuracy, Precision, Recall, F1-Score, and Kappa

coefficient, which were 90.98%, 91.27%, 90.59%, and 81.68%, respectively. In addition,

we found that these values were highest when happy-neutral face pairs were used as

stimuli for detecting depression. Compared with exiting methods for EEG-based MDD

classification, ours can maintain stable model performance without re-calibration. The

present results suggest that the method is highly accurate for diagnosis of MDD and

can be used to develop an automatic plug-and-play EEG-based system for diagnosing

depression.

Keywords: depression recognition, electroencephalogram (EEG), convolutional neural network (CNN), end-to-end,

EEGNet

1. INTRODUCTION

Depression is one of the most prevalent mental disorders. Patients with depression experience
a severely impaired quality of life and are at increased risk of suicide (1–3). Patients infected
with COVID-19 experience sleep disorders and are at increased risk of anxiety or depression, all
of which are psychological complications (4–7). Yet depression is frequently undiagnosed and
untreated because of a lack of effective therapies and inadequate mental-health resources (8). The
onset of depression is usually gradual, but can be abrupt, and its progression throughout life
varies considerably. Symptoms of depression often occur along with emotional, neurovegetative,
and cognitive symptoms, and since they are commonly present in other psychiatric disorders and
medical conditions, detection of depressive syndrome is problematic.

Identification of effective biomarkers for major depression is of great importance for improving
the diagnosis and effective treatment of this common and debilitating neuropsychiatric disorder.
Several different treatments are currently available, including a wide variety of antidepressant drugs
(9–11), electroconvulsive therapy (ECT) (12), repetitive transcranial magnetic stimulation (rTMS)
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(13), and deep brain stimulation (DBS) (14). However, half of
patients with depressive disorder do not respond to current
treatments. Therefore, it is necessary to discover new brain
activity mechanisms and specific biomarkers for patients
who respond to treatment in order to predict the onset
and course of the disease, increase the therapeutic response,
and enable detection of those patients who are resistant to
individual therapies.

In recent years, use of non-invasive sensor-based methods,
such as electroencephalography (EEG), has been widely reported
in the literature (15, 16). One of the most remarkable research
efforts has been in the area of efficient neural network-
based approaches to analysis of EEG signals for automatic
assessment of mental disorders such as major depressive disorder
(MDD) and bipolar disorder (BD). Indeed, EEG is a non-
invasive, effective, and powerful tool for recording the brain’s
electrical activity and diagnosing various mental disorders such
as MDD, BD, anxiety (17), schizophrenia (18), and sleep
disorders (19). In the case of depression, the body releases
signals into the brain that affect neuronal production and
communication, which slows or otherwise changes some regions
of the brain. Variations in voltage resulting from changes in ionic
current within the brain’s neurons contribute to EEG signals

FIGURE 1 | An EEG End-to-End Depression Recognition Framework.

and might help to diagnose mental disorders like depression.
Development of robust approaches to analysis of brain signals is
challenging because of their complexity and significant variability
related to age and mental state. Moreover, EEG signals are
frequently affected by different types of noise due to eye
blinking and body motion (20). It is needed a deep learning
technique that can effectively learn brain activity patterns from
EEG signals.

To achieve the above requirements, we present a novel end-to-
end architecture, supervised EEG-based event-related potential
(ERP) classification. The EEG database used here is small and
does not require complex EEG pre-processing. This method not
only successfully extracts information across different subjects for
ERP decoding, but also accomplishes three tasks simultaneously.

The remainder of this article is structured as follows:We firstly
provide background and introduce the database, thenwe describe
the structure of the proposed method, finally, experimental
results are presented and discussed.

2. MATERIALS AND METHODS

This section introduces the EEG depression database, signal pre-
processing, evaluation metrics, and details of EEGNet and how it

Frontiers in Psychiatry | www.frontiersin.org 2 March 2022 | Volume 13 | Article 864393

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Liu et al. An End-to-End Depression Recognition Method

can be used to recognize depression. The end-to-end depression
recognition framework is shown in Figure 1.

2.1. Depression Database
For depression recognition, we chose the multi-modal open
dataset for mental-disorder analysis, i.e., the MODMA dataset.
The dataset included 128-channel ERP recordings in Figure 2,
from 24 subjects with MDD and 29 healthy controls (HCs) in
the age range of 16–52 years (21–23). The sampling frequency
was 250 Hz. The ERP experiment was a dot-probe task, and
its cue stimuli included three kinds of emotional-neutral face
pairs, namely happy-neutral (Hcue), sad-neutral (Scue), and fear-
neutral (Fcue). In the formal experiment, subjects sat 60 cm in
front of a monitor and were asked to focus on the emotion-
neutral face pairs randomly presented as targets at the left and
right positions. When these face dots appeared, the subjects
were asked to press buttons on the reaction box as quickly and
accurately as possible; they rested after completing each module.
The task consisted of three parts (Hcue, Fcue, and Scue), each
with 160 trials. At the beginning of each trial, a fixed white cross
appeared on the center of the screen, starting at 300 ms and
continuing throughout the experiment. Emotional-neutral pairs
of face stimuli were presented on the screen as 500 ms cues,
and the faces were arranged in a pseudo-random order. After a
short interval (about 100–300 ms), the point probes randomly
appeared at the left and right positions of the fixed cross for 150
ms. At the same time, participants were asked to identify the
location of the points and to record their responses by pressing
a button on the reaction box with their index finger. If the
system did not receive responses within 2 s, participants would
be directed to a subsequent trial and a black screen was then
displayed for 600 ms. This process proceeded gradually until a

FIGURE 2 | Topological structure map of 128-electrode channels mapped to

a two-dimensional picture. The circle represents the electrode, and the label

inside is the serial number and name of the electrode.

block was completed. Each block was repeated until the entire
task was complete. The entire experimental task was finished
in 25min.

2.2. Pre-processing Engineering
We used EEGLAB toolbox in MATLAB to preprocess the raw
data as follows Brunner et al. (24): (1) an EEG dataset was
converted to an average for reference; (2) the data were filtered

TABLE 1 | EEGNet model structure and parameters.

Layer (type) Size Output Shape Param #

input_1 (InputLayer) (None, 128, 125, 1) 0

conv2d (Conv2D) 8#(1,100) (None, 128, 125, 8) 800

batch_normalization

(BatchNormalization)

(None, 128, 125, 8) 32

depthwise_conv2d

(DepthwiseConv2D)

(128,1) (None, 1, 125, 16) 2048

batch_normalization_1

(BatchNormalization)

(None, 1, 125, 16) 64

activation (Activation) elu (None, 1, 125, 16) 0

average_pooling2d

(AveragePooling2D)

(1,4) (None, 1, 31, 16) 0

dropout (Dropout) 0.5 (None, 1, 31, 16) 0

separable_conv2d

(SeparableConv2D)

16#(1,16) (None, 1, 31, 16) 512

batch_normalization_2

(BatchNormalization)

(None, 1, 31, 16) 64

activation_1 (Activation) elu (None, 1, 31, 16) 0

average_pooling2d_1

(AveragePooling2D)

(1,8) (None, 1, 3, 16) 0

dropout_1 (Dropout) 0.5 (None, 1, 3, 16) 0

flatten (Flatten) (None, 48) 0

dense (Dense) 2 (None, 2) 98

softmax (Activation) (None, 2) 0

Total params: 3,618

Trainable params: 3,538

Non-trainable params: 80

FIGURE 3 | Leave-One-Subject-Out Cross-Validation.
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using a Hamming-windowed sinc FIR filter (0.3–100 Hz) to
remove the 50 Hz power interference; (3) the continuous EEG
dataset was converted to epoched data by extracting data epochs
that were time-locked [-100 500]to specified event types (Hcue,
Fcue and Scue); (4) channel baseline [-100 0] means were
removed from the epoched EEG dataset; (5) an independent
component analysis decomposition of the EEG dataset was run
and specified components were removed; and (6) their activities
were subtracted from the EEG dataset using the Adjust algorithm,
as shown in Figure 1. The format of the preprocessed data is
[trials, channels, samples, kernels], where trials = 480, channels =
128, samples = 125, kernels = 1.

2.3. EEGNet for Depression Recognition
EEGNet is a compact convolutional neural network (CNN)
architecture that can be trained with minimal data to extract

TABLE 2 | Confusion Matrix and Evaluation Index.

Confusion Matrix

Predicted Label

Normal Depression

T
ru
e
L
a
b
e
l

Normal True Positive (TP) False Negative (FN)

Depression False Positive (FP) True Negative (TN)

E
va
lu
a
tio

n
In
d
e
x

(1) Accuracy =
TP+ TN

TP+ TN+ FP+ FN
.

(2) Precision =
TP

TP+ FP
.

(3) Recall =
TP

TP+ FN
.

(4) F1-Score =
2× Precision× Recall

Precision+ Recall
.

(5) Kappa =
Pa − Pe

1− Pe
, Pa =

TP+ TN

TP+ TN + FP+ FN
,

Pe =
(TP+ FP)(TP+ FN)+ (FN + TN)(FP+ TN)

(TP+ TN + FP+ FN)2
.

neurophysiologically interpretable features. A visualization and
complete description of the EEGNetmodel are shown in Figure 1
and Table 1. It primarily included four blocks: convolution,
depthwise convolution, separable convolution, and classification.

In the convolution block, we fitted eight 2D convolutional
filters of size (1, 100), outputting eight feature maps containing
the EEG signal at different band-pass frequencies. Then we added
a layer for batch normalization tomake the training process more
stable and reduce overfitting (25).

As the convolutions in the depthwise convolution block

were not fully connected to all previous feature maps, we used
a depthwise convolution of size (128, 1) and depth = 2 to
learn a spatial filter, which reduced the number of trainable

parameters that required fitting. When this operation was used
for EEG depression recognition, it provided a direct way to

learn spatial filters for each temporal filter and enabled efficient
extraction of frequency-specific spatial features. We applied
batch normalization along the feature map dimension before

applying exponential linear unit (ELU) nonlinearity. Then, we
used a dropout layer of probability = 0.5 to help regularize and

an average pooling layer of size (1, 4) to reduce the sampling rate.
In the separable convolution block, we used a separable

convolution with a depthwise convolution of size (1, 16)
followed by a pointwise convolution. The main benefit of
separable convolutions is a reduction in the number of

parameters that require fitting and explicitly decoupling the
relationships within and between feature maps by first learning
a kernel that summarizes each feature map, which optimally
combines the outputs. When it was used for EEG-specific
applications, this operation guided the summarizing of individual
feature maps in time (depth convolution) and their optimal
combination (pointwise convolution). This operation was also
perfectly suited to EEG signals, since different feature maps
can represent informative data over different time scales. In
addition, average pooling layers of size (1, 8) were used for
dimensionality reduction.

FIGURE 4 | Recognition scores of end-to-end depression recognition.
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In the classification block, multi-dimensional features were
downsampled to one dimension and directly passed to a softmax
classification with 2 units to identify two categories, normal
and depression.

2.4. Evaluation Index and Experimental
Settings
We adopted the leave-one-subject-out cross-validation
(LOSOCV) method to separate the training set from the
validation set. Specifically, the training set was used to train

the model, and the validation set was used to evaluate its
generalization ability, as shown in Figure 3. The subject data was
divided into 53 folds, with each representing the complete dataset
of a subject. This protocol was suitable for small databases, could
be trained by almost all the data, and was tested using one
dataset. The experiment had no random factors, and the entire
process was repeatable.

After modeling, several indicators were needed to measure
the generalization ability of the model and further adjust the
parameters to gradually optimize themodel. As shown inTable 2,

FIGURE 5 | Scatter plot of four experimental results (Accuracy) for each subject.

FIGURE 6 | Confusion matrix for four experiments. (A) All trials, (B) Fcue trials, (C) Scue trials, and (D) Hcue trials.
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the first indicator was the confusion matrix. When the model
diagnosed a normal person as normal, it was a true positive (TP);
otherwise it was a false negative (FN). The model assigned a
true negative (TN) when it diagnosed a depressive patient with
depression; otherwise it was a false negative (FN). Five additional
indicators were used to evaluate model classification, including
(1) Accuracy: the proportion of correct to total samples, with each
category treated equally; (2) Precision: the correct proportion of
the positive samples predicted by the classifier; (3) Recall: the
proportion of correctly predicted positive samples to all positive
samples; (4) F1-Score: precision and recall affected each other, so
in order to balance the two indicators and take into account the
category imbalance, the weighted harmonic mean of precision
and recall was used; (5) Kappa coefficient: an index used to test
for consistency, usually to measure the effect of classification.
Consistency was a measure of whether the model’s predicted
result was consistent with the actual classification result. The
value range of all these indicators was [0, 1]. The larger the value,
the better the predictive ability of the model.

We fitted the Adam optimizer model, minimizing the
categorical cross-entropy loss function. We ran 50 training
iterations (epochs), performed validation stopping and saved the
model weights, which produced the lowest validation set loss.
During model training, the data was divided into training and
validation sets using the train_test_split() function in the Python
sklearn library, with the validation set assigned a proportion
of 0.3.

3. RESULTS AND DISCUSSION

Four types of experiment in which EEG signals were collected
were classified by the type of face-pair stimulus used.

Experiment 1 (All): Subjects were stimulated by all three types
of face pairs (480 trials for each subject);
Experiment 2 (Fcue): Subjects were only stimulated by fear-
neutral face pairs (160 trials for each subject);
Experiment 3 (Scue): Subjects were only stimulated by sad-
neutral face pairs (160 trials for each subject);
Experiment 4 (Hcue): Subjects were only stimulated by happy-
neutral face pairs (160 trials for each subject).

3.1. Recognition Scores for End-to-End
Recognition of Depression
Figure 4 lists the average values of the five metrics (accuracy,
F1 score, recall, precision, and kappa) for the four sets of
experiments. With the preprocessed signal used as input, the
highest average classification accuracy (90.98%) obtained by
LOSOCV was for Experiment 4. Similarly, the values of the
other four indicators (F1 score: 90.83%; recall: 91.27%; precision:
90.59%; kappa: 81.68%) were all highest in Experiment 4 (i.e.,
Hcue trials). The scores from the experiments using the fear-
neutral and sad-neutral face pairs were similar, with both being
significantly lower than for the Hcue trials. Therefore, happy-
neutral face pairs can be used as emotion-evoking materials
to effectively discriminate between MDD patients and HCs.
However, all the recognition scores in Experiment 1 were low,
indicating that brainwaves may depend on the type of stimulus,
misleading the network model and thus failing to distinguish
depression from normal.

3.2. Accuracy of Experimental Results for
Each Subject
In order to analyze the performance of the model, the accuracy
of the four types of experiment is shown for each subject

FIGURE 7 | Model optimization curve.
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in Figure 5. The first 24 subjects in the figure experienced
MDD, and subjects 25–53 were HCs. The scatter plot shows
the distribution of the four experimental results. Among the
MDD subjects, the correct rate for the first seven subjects
was relatively low and, except for one experiment, those
for subjects 8–24 were above 70%. The results show that
recognition was better for HCs than for MDD subjects, and that
Experiment 4 (Hcue) elicited results that were better than for the
other experiments.

3.3. Confusion Matrix
Figure 6 shows that the highest recognition rate for the confusion
matrix (95.37%) was that for HCs from Experiment 3. The
highest recognition rate for MDD patients was 86.48% from
Experiment 4. Differences in the number of MDD and HC
subjects in the database (depressed: 24; normal: 29) and
the small number of categories in this model may account
for poor learning in some experiments and slightly different
recognition rates.

3.4. Model Optimization
Themodel used the Adam optimizer, cross-entropy loss function,
and 30% of the training set as the validation set. The results of
50 iterations of training are shown in Figure 7. It can be seen
from the figure that the training loss dropped rapidly within 5
rounds, and nearly reached a minimum after 18 rounds. The
validation loss had the same downward trend as the training
loss, and it also quickly approached a minimum, indicating that
the model was optimizing quickly. The training and verification
accuracy rates rose to 100% in the tenth round, which shows that
the model had a strong learning ability. The model had a high
recognition rate when the epoch was very small, indicating that
it can learn the discriminative characteristics of depression very
well. This performance may have been related to the small size of
the database.

3.5. Comparison With Existing Methods
Due to differences in methodology, datasets, and data usage
strategies, it is difficult to fully assess the advantages and
disadvantages of various methods based entirely on classification
accuracy. However, by comparing indicators such as accuracy,
the advantages and disadvantages of various methods can at
least be partially evaluated. Table 3 compares the existing state-
of-the-art methods with our method in terms of the number
of subjects, type and number of channels, research method,
number of features, and classification accuracy. Compared to
other methods, our method has great advantages. Compared to
the other methods, ours has several advantages. First of all, it
should be recognized that feature-level fusion (26), multi-variate
pattern analysis (27), Case-Based Reasoning Model (29), KNN
(31) and our method all have class imbalances (i.e., the difference
in the number of subjects between MDD and HC is greater than
1), but nevertheless our method has the highest accuracy. Class
imbalances cause models to learn well for a large number of
categories but poorly for a small number of categories. Secondly,
since depression is classified according to the subject, LOSOCV is
more suitable than 10-fold cross-validation, and can ensure that
data from the same subject are clustered together. Ten-fold cross-
validation may cause data from the same subject to be part of
both the training and test sets, which will mislead the classifier to
identify the subject itself rather than depression. Therefore, based
on this analysis of data balance and test protocol, Brain function
networks (33) has the best recognition performance, but our
method is only 1.75% less accurate than multi-modal fusion (28).
Furthermore, our method need not extract handcrafted features
or ensure that the samples are balanced.

4. CONCLUSION

This article proposes an MDD deep learning diagnostic
framework for depression recognition. Based on the framework,
the EEG signals evoked by happy-neutral face pairs were

TABLE 3 | Comprehensive comparison of existing state-of-the-art methods with proposed method.

Method Subject Channel Feature Protocol Accuracy

(MDD,HC) (%)

Feature-level fusion (26) (86, 92) EEG (3)
60 linear and

Ten-fold CV 86.98
36 nonlinear features

Multivariate pattern analysis (27) (27, 28) EEG (128) 249 EEG features LOSOCV 92.73

Multimodal fusion (28) (81,89)
EEG (3) 6 EEG features

Nested CV 86.64
and voice(1) and 15 voice features

Case-Based Reasoning Model (29) (86, 92) EEG (3) 113 EEG features Ten-fold CV 91.25

SVM (30) (20, 19) EEG (64) 3 potential biomarker Ten-fold CV 89.7

KNN (31) (92, 121) EEG (3) 270 features Ten-fold CV 79.27

Independent component analysis (32) (13, 13) EEG (64) - - -

Brain Function Networks (33) (24, 24) EEG (64) LC-CC in theta band Ten-fold CV 93.31

Correlated Feature Selection (23) (17, 17) EEG (128) 10 EEG features LOSOCV 88.94

Ours (24, 29) EEG (128) - LOSOCV 90.98

CV, Cross-Validation; LOSOC, Leave-One-Subject-Out Cross-Validation;MDD, Major Depression Disorder; HC, Healthy Control.
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the most discriminative for accurate classification. The
method performs well in automatically diagnosing MDD
based on EEG signals. The proposed framework makes
it possible to directly feed EEG signals into EEGNet for
training to improve recognition of MDD in patients. In
addition, the method may be of value to the medical device
industry for developing diagnostic systems for MDD.
Future research will focus on EEG classification of different
degrees of depression, and development of a plug-and-play
deep learning network to automatic classify the severity
of depression.
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