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Current pharmacological therapy has limited effects on the cognitive impairments
and negative symptoms associated with schizophrenia. Therefore, understanding the
molecular underpinnings of this disorder is essential for the development of effective
treatments. It appears that a reduction in calcium/calmodulin-dependent protein kinase
II (α-CaMKII) activity is a common mechanism underlying the abnormal social behavior
and cognitive deficits associated with schizophrenia. In addition, in a previous study
social interaction with a partner of the same sex and weight increased the activity of
α-CaMKII in rats. Here, we propose that boosting of CaMKII signaling, in a manner that
counteracts this neuropsychiatric disease without disrupting the normal brain function,
might ameliorate the abnormalities in social cognition and the negative symptoms
of schizophrenia.
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INTRODUCTION

Schizophrenia is a complex, chronic, and polygenic neuropsychiatric disorder that affects more
than one percent of the world adult population. Typical clinical manifestations are positive
symptoms (e.g., hallucinations, delusions, disordered thoughts, and speech), negative symptoms
(e.g., deficits in social interaction, diminished expression and motivation, anhedonia, apathy),
and deficits in both neurocognition (processing speed, attention/vigilance, working memory,
verbal learning and memory, visual learning and memory, reasoning and problem solving, verbal
comprehension, and verbal fluency) and social cognition (emotional processing, social perception
and knowledge, theory of mind, and attributional bias). Notably, negative and cognitive symptoms
have a larger impact on patients’ functioning than positive symptoms (1) and correlate with the
degree of disability (2, 3).

Around 20–35% of the people affected by schizophrenia fail to respond to antipsychotics (4)
and current pharmacological therapy has limited effects on cognitive impairments and negative
symptoms (5). Moreover, existing treatments reduce the severity of symptoms rather than
providing a cure. Therefore, understanding the molecular mechanisms underlying schizophrenia is
essential for the development of effective treatments.

For many years, the essential role of dopamine in the pathogenesis of schizophrenia has been
proposed for the reasons that all currently available antipsychotic agents target hyperdopaminergia
in the brain via postsynaptic dopamine receptor blockade (6) and that in humans, dopamine-like
agents such as amphetamine mimic the positive symptoms of schizophrenia (7). On the other
hand, phencyclidine (PCP) and ketamine, both non-competitive N-methyl-D-aspartate (NMDA)
receptor antagonists, induce schizophrenia-like psychosis (8), thereby supporting a “glutamatergic”
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implication in the pathophysiology of schizophrenia. Since then,
many researchers have suggested that insufficient glutamate
neurotransmission is involved in this disorder (9). Particularly,
it has been proposed that dysfunction in calcium/calmodulin-
dependent protein kinase II (CaMKII) expression and activity
is a common mechanism underlying changes in glutamatergic
structural and functional synaptic plasticity that may directly
contribute to neuropsychiatric diseases (10).

Calcium/calmodulin-dependent protein kinase II is a
serine/threonine kinase found throughout the brain (11, 12)
and is activated upon Ca2+/calmodulin (CaM) binding. This
kinase has a key role in synaptic signaling and consequently
in learning and memory, not only due to its cellular and
subcellular location, but also due to the time-course of its
activity and autophosphorylation properties (10, 12, 13). In
mammals, CaMKII subunits are encoded by closely related gene
products—α, β, γ, and δ. Of note, CaMKII α and β isoforms are
predominant in the brain (11).

Each CaMKII isoform comprises (1) an N-terminal catalytic
domain that contains the ATP- and the substrate-binding (S)
sites, (2) an auto-inhibitory regulatory domain that includes a
pseudo-substrate segment and a threonine residue 286 (Thr286)
segment (or Thr287, depending on the CaMKII isoform), and
(3) a C-terminal association domain. The auto-inhibitory and
catalytic domains form a gate that regulates activity in a way that
when these domains bind to each other at the S site (binding to
the pseudo-substrate region) and at a site known as T (binding to
the region around Thr286) of the catalytic domain, the enzyme
is inhibited and the gate is closed (12). The association domain
is required for oligomerization (13, 14). This region is linked
to the catalytic and regulatory domains by a variable region
that is responsible for most of the structural differences between
isoforms (12).

In the presence of Ca2+, the Ca2+/CaM complex can bind
to CaMKII on a region that overlaps with the pseudo-substrate
region, opening the gate and inducing a conformational change
that will expose the catalytic domain and thus activate CaMKII
(14). A site on the NMDA receptor NR2B subunit can bind to the
T side, keeping the gate open and the enzyme active even after the
dissociation of calmodulin (12). In the presence of Ca2+/CaM,
the Thr286 residue on the auto-inhibitory domain of α-CaMKII
(or Thr287 on βCaMKII) can become autophosphorylated by
a neighboring, activated subunit (14). Even when intracellular
Ca2+ levels decrease and CaM dissociates from its complex,
the inter-subunit autophosphorylation prevents CaMKII from
reverting back to its inactive state (12), acquiring autonomous
and Ca2+-independent activity. De-phosphorylation returns
the enzyme to an inactive state and is catalyzed by protein
phosphatase types 1 and 2A (14).

CAMKII: A BIOMARKER FOR
SCHIZOPHRENIA?

To model the pathophysiology of schizophrenia, many transgenic
mouse lines have been generated. In addition, other animal
models based on pharmacological manipulations of the

glutamatergic or the dopaminergic system have been explored.
It is perceived that reduced CaMKII function (Figure 1) could
be a common mechanism for various symptoms observed in
schizophrenia (10).

The most prominent behavioral phenotypes were those
carrying a heterozygous null mutation for α-calcium/calmodulin
kinase II or α-CaMKII +/− mice. These mice showed features

FIGURE 1 | Reduced α-CaMKII induces on the cellular level an abnormal
signal transduction reflected in different brain regions. In the hippocampus: a
dysregulated adult neurogenesis leading to an immature dentate gyrus in the
hippocampus. In the pre-frontal cortex (PFc): a malfunction of NMDA receptor
signaling in the associated with dopaminergic hypo-function. In the striatum:
dopamine (DA) D2 receptors in a state with a high affinity for DA leading to a
hyperdopaminergic state. These mechanisms might underlie behavioral
abnormalities such as the social interaction impairments and cognitive deficits
seen in schizophrenia.
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analogous to the ones found in schizophrenia. Most notably, they
showed increased locomotor activity, a severe working memory
deficit, disrupted circadian activity, and social withdrawal
in addition to high levels of aggression toward cage mates
(15–17). Moreover, transcriptome analysis and comprehensive
autoradiography studies indicated that the mice had marked
abnormalities in gene expression and receptor binding in the
hippocampus, specifically in the dentate gyrus (DG) (16) where
adult neurogenesis partially occurs (18). Whereas the number of
newborn neurons in the mutant DG mice was increased by more
than 50%, the number of mature neurons was intensely decreased
in a way that the DG neurons in the α-CaMKII +/− mice were
mostly containing immature neurons leading to an “immature
DG” (16).

It has been suggested that adult neurogenesis has a potential
role in psychiatric disorders including schizophrenia (19).
Indeed, dysregulated adult neurogenesis has been associated with
neurocognitive impairments in forms of learning and memory
(20), and abnormal hippocampal function (17). In line with
these facts, α-CaMKII +/− mice exhibited specific learning
impairments, in particular in regards of spatial learning (21).

On the other hand, the levels of dopamine (DA) D2 receptors
in a state with a high affinity for DA (D2 high receptors) were
found to be elevated in the striatum of α-CaMKII +/− mice,
thereby reflecting the hyperdopaminergic state seen in patients
with schizophrenia. This high affinity state of DA D2 receptors
might possibly be a consequence of elevated β-CaMKII mRNA
levels observed in the striatum of these mice with reduced α-
CaMKII expression (22), which is probably a compensatory
effect. Elevated β-CaMKII subunit mRNA expression in rats’
striatum was also found in the amphetamine sensitization animal
model of psychosis (23). In addition, these hyperactive animals
show elevated levels of D2 high receptors (22). Remarkably, the
CaMKII inhibitor, KN-93, markedly reduced the D2 high states in
the rat striatum (22), suggesting that β-CaMKII may increase the
D2 high receptors state in the striatum of animals and possibly in
schizophrenia (22).

Phencyclidine, a non-competitive NMDA antagonist,
reproduces a schizophrenia-like psychosis including positive
and negative symptoms as well as cognitive deficits. PCP treated
mice have been shown to exhibit hyperlocomotion as an index of
positive symptoms, negative symptoms reflected by an enhanced
immobility in a forced swimming test, and reduced social
interaction and cognitive deficits revealed by impairments of
latent learning in a water finding test and recognition memory
(24–26). In these mice, α-CaMKII phosphorylation (Thr286) was
reduced in the prefrontal cortex (PFc) in comparison to control
mice (24, 25, 27, 28). As behavioral impairments and abnormal
intracellular signaling were alleviated after potentiation of
NMDA receptor function, it has been suggested that repeated
PCP treatment induces dysfunction of NMDA-CaMKII signaling
in the PFc (24, 28). Moreover, the animals treated repeatedly
with PCP failed to release DA in response to high potassium
stimulation or a challenge of PCP in the PFc (28). Thus, it is
possible that repeated PCP treatment induces a malfunction of
NMDA-CaMKII signaling in the PFc, which is associated with
dopaminergic hypo-function (28).

This uniquely well situated substrate, predominantly located
in the postsynaptic density of excitatory glutamatergic neurons
(29), appears to be a common actor in schizophrenia. In other
animal models of this disorder, in particular ketamine-treated
mice were shown to exhibit deficiencies in sociability and
social novelty behavior associated with a significant decrease
in hippocampal α-CaMKII expression (30). Previous studies
indicate that post-pubertal neonatal ventral hippocampal
lesioned rats exhibit impairments in prepulse inhibition
(PPI), spontaneous locomotion, social interaction behavior,
and working memory (31, 32). In these animals, CaMKII
autophosphorylation is significantly reduced, especially in the
medial PFc, the striatum, and the hippocampal CA1 region
relative to control animals (31, 32). In a model of early life
stress, α-CaMKII was found to be downregulated in the PFc
(33). Furthermore, late adolescent stress in combination with
disrupted-in-Schizophrenia 1 (DISC1) genetic risk impaired
activation of NMDA-Ca2+/calmodulin kinase II signaling
in the PFc (34), resulting in impaired social interaction and
novelty preference for object recognition memory (34). In
dysbindin-1-deficient mice, reduced levels of CaMKII were
reported in the medial PFc (35). Notably, dysbindin-1 in the PFc
has also been shown to be reduced in schizophrenia patients
(36, 37). This reduction is thought to promote NMDA receptor
hypo-function, thereby leading to the cognitive deficits observed
in schizophrenia (37).

Altogether, these findings indicate that the α-
CaMKII +/− mouse and others like it may provide genetic
biomarkers that can be used to improve treatments for
schizophrenia (10). In Table 1, we summarize the findings
reporting that dysregulated CaMKII signaling causes impaired
social interaction and cognitive deficits.

WHICH BEHAVIOR TO FOCUS ON?

As is the case with many psychiatric disorders and as
mentioned above, schizophrenia is characterized by different
symptoms: positive symptoms, negative symptoms, and
cognitive impairments. Evidently, some of these symptoms
are uniquely human and impossible to model in an animal
(17). Importantly, the vast majority of the animal models
commonly share the profile of impaired social interaction.
This behavioral abnormality seems to be tightly linked
to CaMKII. Indeed, autophosphorylation-deficient (α-
CaMKII-Thr286A) mutant female mice show abnormal
social behaviors characterized by decreased social preference
and interest in conspecifics of the same sex, as compared to
controls (38). Moreover, these mutant mice show decreased
levels of social interactions in a social group, as compared
to control mice (38). Whereas, control mice increase the
frequency of close social interactions during a learning task,
α-CaMKII-T286A mutant mice do not (38). In line with these
findings, mice with a mutation in the CaMKII-α catalytic
domain having lower total forebrain CaMKII-α levels, display
aberrant behavioral phenotypes, in particular social interaction
deficits (39).
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TABLE 1 | Summary of the findings reporting that dysregulated CaMKII signaling causes impaired social interaction and cognitive deficits.

Treatment/model Molecular Behavior References

α-CaMKII +/− mice ↓hippocampus α-CaMKII, ↓frontal
cortex α-CaMKII mRNA, ↑striatum
β-CaMKII mRNA, ↑striatum D2 high

receptors

Social withdrawal, Severe working memory deficits,
Profound impairment in learning tasks,

Hyperactivity, Exagerated infradian rythm

(15, 16, 21, 22)

PCP-treated mice ↓ PFc p (Thr 286) α-CaMKII Social deficits, Memory impairments, Impairment of
latent learning, Increased imobility in forced swim

test

(24, 25)

Ketamine-treated mice ↓hippocampus α-CaMKII Decrease in sociability and social novelty behavior (30)

Neonatal lesion of ventral hippocampus ↓mPFc, striatum, and Hippocampus
CA1 region CaMKII
autophosphorylation

Impairments in prepulse inhibition (PPI),
Spontaneous locomotion, Social interaction

behavior and working memory

(31, 32)

Late adolescent stress in combination
with DISC1 genetic risk

Impaired activation of
NMDA-Ca2+/calmodulin kinase II

signaling in the PFc

Deficits in locomotor activity, Forced swim, Social
interaction, and Novelty preference tests

(34)

Autophosphorylation deficient
(α-CaMKII-Thr286A) mice

Decreased social preference and interest in
conspecifics of the same sex, Decreased levels of

social interactions in a social group

(38)

de novo Glu183 to Val (E183V)
mutation in the CaMKIIα catalytic
domain (CaMKIIα-E183V) mice

↓ forebrain α-CaMKII Hyperactivity, Social interaction deficits, and
Increased repetitive behaviors

(39)

↑ increase; ↓ decrease; PFc, prefrontal cortex.

FIGURE 2 | Boosting CaMKII signaling could improve both social and cognitive deficits in schizophrenia. Animal models of schizophrenia share the same behavioral
profile, in particular social withdrawal. Impaired social interaction is associated with reduced α-CaMKII activity. If CaMKII activity was potentiated via the
administration of cognitive enhancers such as (ST101), CaMKII activity in the pre-frontal cortex (PFc) and the hippocampus is increased and the social impairment is
rescued. In parallel, social interaction reward increases α-CaMKII activity in the nucleus accumbens (NAc).

In a recent study, a conditioned place preference (CPP) to a
social interaction partner of the same sex, age, and weight was
shown to increase α-CaMKII activity in the nucleus accumbens
(NAc) (40). In the CPP paradigm, the animal learns to associate
a stimulus with a specific context during conditioning, and if
this stimulus is appetitive, the animal will prefer to spend more
time in the context associated with this stimulus when the choice
to “prefer” between a stimulus or a neutral-associated context is

given. This study also demonstrated that inhibition of CaMKII
in the NAc shell decreases the preference for social interaction
(40). These results suggest that social interaction reward is
associated with an increased α-CaMKII phosphorylation in this
region (Figure 2).

Rats with a neonatal ventral hippocampus lesion exhibit
impaired social interaction and reduced CaMKII signaling in
memory-related brain regions, resistant to second generation
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antipsychotics such as risperidone (32, 41). Notably, the
administration of the cognitive enhancer spiro[imi-dazo[1,2-
a]pyridine-3,2-indan]-2(3H)-one (ST101), an enhancer of T-type
calcium channels (42, 43), stimulates CaMKII activity in the
hippocampus and the medial PFc and significantly improves
deficits in social interaction and cognitive function in these
rats (43). It has therefore been proposed that ST101 may
improve social interaction and cognitive deficits in neonatal
ventral hippocampal lesioned rats by indirectly restoring
CaMKII signaling (43) at the opposite of the specific ways to
potentially enhance CaMKII activity through gain of function-
mutations (44).

Since a reduction in CaMKII activity may underly abnormal
social behavior and the cognitive deficits associated with
schizophrenia, we hypothesize that an the enhancement of
CaMKII signaling could improve both social cognition and
negative symptomatology in those living with this disorder
(43) (Figure 2).

CONCLUSION

Studies performed in patients with schizophrenia focused on the
expression of CaMKII in post-mortem cerebral frontal cortex.
Whereas α-and β-CaMKII protein expression were reported to
be significantly reduced in this brain region (45), the expression
of β-CaMKII mRNA has been shown to be significantly elevated
(46). Additionally, it was reported that the prefrontal cortical
expression of α-CaMKII mRNA is comparable in patients with
schizophrenia and healthy control subjects (47). Recently, six
mutations were found in the α-isoform of CaMKII in patients
suffering from schizophrenia (48). Of these mutations, two
CaMKII variants show impaired biochemical functions (48).
Thus, CaMKII mutations causing impairments in CaMKII
function can be a driver for schizophrenia in humans (48). In
line with these findings and given that CaMKII is essential for
learning and memory formation, several studies reported about
new variants in the CaMKII genes that are linked to intellectual
disability [for review: (44)]. Specifically, one de novo missense

mutation in α-CaMKII was found in patients with autism (44),
a disorder comprising social interaction and communication
deficits (39). Interestingly, mice carrying the same mutation in α-
CaMKII display reduced α-CaMKII protein forebrain levels and
deficits in social interactions (39).

These assumptions are in agreement with studies performed
in rodents. Indeed, the heterozygous CaMKII knockout,
the neonatal ventral hippocampus lesion, and the NMDA-
antagonism based models of schizophrenia show decreased
CaMKII activity associated to a schizophrenia-like profile,
thereby suggesting CaMKII as a potential therapeutic target in
schizophrenia. Moreover, preclinical rodent studies enhancing
CaMKII activity have demonstrated a potential for the treatment
of social and cognitive impairments in schizophrenia (43),
previously showing resistance to antipsychotics. This resistance
to antipsychotics might be due to the fact that repeated treatment
with antipsychotics decreases α-CaMKII protein levels in the
striatum (49). Therefore, it is plausible that boosting CaMKII
activity in a manner that counteracts this neuropsychiatric
disease without disrupting the normal functioning of the brain,
might restore this unmet need in the treatment of schizophrenia-
like symptoms.
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