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Induced by decreasing light, people affected by seasonal mood fluctuations may suffer

from low energy, have low interest in activities, experience changes in weight, insomnia,

difficulties in concentration, depression, and suicidal thoughts. Few studies have been

conducted in search for biological predictors of seasonal mood fluctuations in the brain,

such as EEG oscillations. A sample of 64 participants was examined with questionnaires

and electroencephalography in summer. In winter, a follow-up survey was recorded and

participants were grouped into those with at least mild (N = 18) and at least moderate (N =

11) mood decline and those without self-reported depressive symptoms both in summer

and in winter (N = 46). A support vector machine was trained to predict mood decline by

either EEG biomarkers alone, questionnaire data from baseline alone, or a combination of

the two. Leave-one-out-cross validation with lasso regularization was used with logistic

regression to fit a model. The accuracy for classification for at least mild/moderate mood

decline was 77/82% for questionnaire data, 72/82% for EEG alone, and 81/86% for

EEG combined with questionnaire data. Self-report data was more conclusive than EEG

biomarkers recorded in summer for prediction of worsening of depressive symptoms in

winter but it is advantageous to combine EEG with psychological assessment to boost

predictive performance.

Keywords: seasonal mood fluctuations, EEG biomarkers, cognitive vulnerabilities, prediction, machine learning,

seasonal affective disorder winter depression

1. INTRODUCTION

Winter depression is the most common form of seasonal affective disorder (SAD), characterized by
depressive symptoms in winter and remission in spring (1, 2). As compared to major depressive
disorder, patients with SAD exhibit atypical depression symptoms, especially hyperphagia and
hypersomnia, but scoring lower in interpersonal sensitivity and rejection avoidance (3). The
condition has been reported in many regions of the world, with 1–3% of adults being affected
in temperate climates (4), and being highly relevant in nordic countries with prevalence rates
over 12%, e.g., in Alaska, Denmark, Norway, and Siberia (5–8). The disorder was reported to
be occurring over many years for most patients, with full remission within about 9 years being
found in 14% of cases, only (9), although a later study suggests higher remission rates (10).
Several reports criticize the defined borders between SAD, major depression, and the DSM criteria
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(11, 12). However, SAD is usually not as severe as major
depression but still has socioeconomic implications as it
negatively impacts quality of life and was suggested to increase
the probability of unemployment (13). Because of the relatively
short period of SAD compared to the typical duration of
psychotherapy and the long time it takes for serotonine-selective
reuptake inhibitors to show an effect it might be wise to start
prevention at least two months before onset of symptoms.
In turn, this requires early identification of people at-risk to
develop SAD. Therefore, the search for characteristics and
biomarkers with a high predictive value as well as a better
understanding of vulnerabilities for SAD is highly warranted.
If we could identify cognitive vulnerabilities for SAD, specific
designs for psychotherapy could be developed. Both, the early
estimation of the risk for SAD, and suggestions toward an
effective psychotherapeutic intervention would be a tremendous
improvement of mental health care.

Several attempts have been undertaken to predict sad mood
in winter based on psychological examinations or biomarkers
measured in summer. The best indicator for a likely occurrence
of depression in winter is the individual’s report on prior
experience of seasonal symptoms, e.g., according to the seasonal
pattern assessment questionnaire (SPAQ, 14). The SPAQ is still
the most used instrument for estimating subjective experience
of seasonal occurrence of depression symptoms. Furthermore,
psychological research has considered cognitive vulnerabilities.
In patients with SAD, there is a bias toward remembering words
of negative valence more likely in the winter than in the summer
(15). In addition to remembering negative words more likely,
patients with depression also create more false memories than
healthy controls and perceive even positive items with a less
positive, i.e., more negative valence (16). Individuals with SAD
estimate future negative events as more likely to happen (17), and
demonstrate a high level of automatic thoughts and dysfunctional
assumptions (18) as well as negative attributions (19). Such
psychological features, i.e., cognitive-behavioral factors such as
increased rumination, automatic thoughts and dysfunctional
attitudes were shown to be not only indicative (20) but even
predictive for SAD (21, 22). A ruminative response style as
measured in fall predicts symptom severity in winter (21,
22) which indicates a predisposition for ruminative processes
being mediators for SAD symptomatology. When examining
rumination, it is crucial to distinguish between trait and state
rumination (23), as induced state rumination predicts negative
affect, independent of the extent of trait rumination (24). Recent
theoretical accounts (25) and empirical evidence also suggest
that increases in state negative affect may subsequently set of
increases in state ruminative thinking in an automatic and
habit-like way, and are associated with symptoms of depression
and depression status (26, 27). Emotional responses were also
combined with attention demands in an emotional Stroop task to
predict subsequent levels of symptomatology with tests in winter
and follow-up in summer (28). Performance in the Stroop task
relies on cognitive flexibility, and cognitive flexibility is impaired
in depression (29, 30).

Biomarkers have mainly been derived from major biological
hypotheses regarding circadian rhythms, neurotransmitters, and

molecular genetics (31). Circadian rhythms were suggested to
play a role in SAD, where according to the phase-delay hypothesis
the patient’s circadian rhythm is delayed relative to the daily
routine of sleeping/resting and waking/activity (4). Well in line
with this hypothesis, SAD is especially common in younger
subsamples who are often evening chronotypes, and in general
in people with evening chronotype (32). Moreover, in patients
with SAD, depressive symptoms are typically worse in the
morning (33).

Another approach to identify vulnerability to SAD and, thus,
find predictive biomarkers is based on neuroimaging. Since
the brainstem is affected by photoperiodic changes, a large
study used magnetic resonance imaging to determine a relation
between brainstem volume and low mood (34). In this study, a
relationship between photoperiod, volume of whole brainstem,
pons and medulla, and low mood and anhedonia was found
only in women, but not in men. Women with the short 5-
HTTLPR genotype who suffered from SAD showed higher 5-
HTT levels compared to those who did not suffer from SAD in
the ventral striatum, right orbitofrontal cortex, middle frontal
gyrus, left supramarginal gyrus, left precentral gyrus, and left
postcentral gyrus and this difference was most pronounced
during winter (35).

However, as neuroimaging and genetic testing is not widely
available, the most convenient approach to predict SAD is
a psychological examination. In order to boost accuracy of
prediction a physiological marker could be added that is easily
obtained at low cost. The electroencephalogram (EEG) is a
method that is traditionally used in clinical and research settings,
but commercial products for brain computer interfacing, e.g.,
in the gaming industry raise the hope that soon there will be
easy-to-use systems available that can combine the lightweight
design of devices used in non-professional settings with the
accuracy needed for clinical and research questions. Indeed,
it was demonstrated by a limited number of EEG studies
in northern countries that EEG-biomarkers correlate with the
absence of daylight and with midnight sun, and factors such as
responsiveness of the brain to lighting conditions but also sleep
were discussed to be the source of this variance (36, 37). The
EEG is also indicative for depression and variants of it (38, 39).
The earliermentioned valence effects ofmemorized visual stimuli
are detectable in the EEG (40), further suggesting top-down
attentional modulation of emotional memory bias. Broadband
lower absolute EEG-power was found in patients with major
depression disorder (41), but especially in the theta (42, 43) and
alpha frequency band and especially in the frontal cortex (41, 44–
47). The prefrontal cortex is also involved in rumination (48–50).
Interestingly, beta and alpha power varies with seasons (51, 52),
and so does frontal alpha asymmetry (53). Abnormalities in beta
and alpha power as well as frontal alpha asymmetry are also
specific for SAD (54–58).

In this study, we aim to identify biomarkers in the EEG
which, when measured in summer, allow prediction of increased
depressive symptoms in winter. We aim to combine these
biomarkers with personal characteristics, depressive symptoms,
emotional reactivity (mood induction in an experimental task),
and cognitive vulnerabilities such as rumination tendencies,
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thoughts and beliefs, and habitual characteristics of negative
thinking to answer the question whether it is beneficial to
add EEG biomarkers to prediction models for depressive mood
in winter.

2. METHODS

2.1. Ethics
We obtained prior approval from the Icelandic National
Bioethics Committee on May 28th 2019 (study number 19-
090-V1). All investigators signed a non-disclosure contract and
written informed consent was obtained prior to inclusion from
all participants.

2.2. Research Setting
The study was carried out as a collaboration between the
University of Akureyri and the University of Iceland. The
baseline assessment was performed between July and September
2019 in the EEG laboratory of the Faculty of Psychology at the
University of Akureyri. Follow-up assessments were conducted
in October, January, and April 2020 via online questionnaires
and telephonic reminders conducted by the team at the Faculty
of Psychology, University of Iceland. For the purpose of the
present manuscript, only data from the follow-up in January
was analyzed.

2.3. Recruitment
Participants were recruited via email to students at the University
of Akureyri, as well as via advertisement in social media, directing
interested individuals to a webform. Inclusion criteria were the
minimum age of 18 years, proficiency in Icelandic, and the ability
to give informed consent for participation. For completion of
all follow-ups participants were remunerated with a voucher of
4,000 ISK for a local shop.

2.4. Procedure
Baseline assessment took about 120 min. After participants
completed informed consent, a digital questionnaire, consisting
of 72 custom made questions and the questionnaires as listed in
Section 2.5 were answered by the participants. While participants
answered the questions, the EEG was mounted with electrolyte
containing a mild abrasive in order to achieve impedances
below 10 k�. Before recordings began participants were shown
the effect of muscle movement on the EEG and consequently
instructed to keepmovements to aminimum and asked to refrain
from talking during the recordings.

The first two conditions were resting state measurements
which lasted for 3 min, with eyes open and eyes closed
respectively, and with the computer screen turned off. The other
tasks were presented on a screen based on the Psychtoolbox in
Matlab. First, in the emotional picture learning task participants
were shown 60 pictures from the OASIS database (59), balanced
for negative, neutral, and positive valence and low, medium, and
high arousal. Participants were informed that in the subsequent
task they would be asked to recall the pictures shown. The task
required to indicate whether each picture represented spring,
summer, fall, or winter by pressing a corresponding key on

the keyboard with the right hand to ensure attention and to
prime seasonal concepts. Pictures were shown with an inter-trial
interval of 1 s and a variance of 0–10 screen flip intervals during
which a fixation cross was presented. All pictures were shown for
at least 2 s and otherwise until participants responded via key
press. In the following the picture recall task participants were
asked to freely recall and name pictures seen in the previous task.
Their answers were noted by the experimenter. Subsequently,
a recognition condition involved presentation of the pictures
from the picture learning task but randomly intermixed with 60
new images, again balanced for valence and arousal. Participants
were asked to indicate via keys on the keyboard whether each
picture was new or previously seen. Timing of the presentation
was the same as in the learning condition. The next condition
was a Stroop task where participants were asked to indicate
the font color of words displayed on the stimulus computer by
pressing a correspondingly colored key on a keyboard. There
were 105 congruent trials and 210 incongruent trials, presented
in a randomized order, with an inter-trial interval of 1 s and
a variance of 0–10 screen flip intervals during which a central
fixation cross was presented.

In the final condition, the rumination task, participants
received a printed three part form containing questions about
their current emotional state and the brief state of rumination
inventory (BSRI, 23). All instructions were given verbally
through headphones and partly additionally on a screen. Firstly,
participants completed part A on the form containing one
question on their current emotional state and the 8-item BSRI.
Next, an 8 min musical piece was played in order to evoke
temporary sadness or dysphoria, and participants asked to freely
experience any emotions they might feel. We used a musical
excerpt from Prokofiev’s “Russia Under the Mongolian Yoke,”
remastered at half speed. Prior research has shown that this
approach can effectively cause a transient dysphoric mood
(60–62).

Immediately after the song had finished, participants
answered the forms’ part B containing one question on their
current emotional state. They were then instructed to wait in
silence for 5 min for a challenging cognitive task. However, no
cognitive task followed but the waiting period served as a free
contemplation time in anticipation of a task. In the third and
final part of the rumination task participants answered an 8-item
BRSI and one question on their current emotional state.

On the day following the EEG recording, participants began
the baseline measurement of the studies follow-up phase which
consisted of a 4 day long measurement period using the
mobile application ExperienceSampler (63) with which mood
fluctuations over the course of a day along with activity level,
fatigue, and rumination was assessed in questionnaire form. Five
measurements were taken at random times each day between 9:00
a.m. and 21:00 p.m.

The three subsequent follow-up intervals, conducted in
October, January, and April, had the same form as the baseline
measurement with the addition of a 48 question internet survey.
The internet survey consisted of the following questionnaires:
Patients Health Questionnaire, Rumination Responses Scale-
short form, Perceived Stress Scale, and Depression Anxiety
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Stress Scales (see Section 2.5 for more details). In addition, the
survey included questions on recent traveling and use of any
depression treatments.

2.5. Questionnaires
We assessed subjective perception of mood and behavioral
change with seasons with the seasonal pattern assessment
questionnaire (SPAQ, 1). It includes 8-items regarding seasonal
change in mood and behavior, pattern of seasonal change,
reactivity to different climatic and atmospheric conditions and
whether and to what extent those changes affect the individual
(64). We used the Icelandic version, which performed compared
to a diagnostic clinical interview with a sensitivity of 94%, a
specificity of 73%, and a combined positive predictive value of
45% for SAD and subsyndromal SAD (65). The questionnaire
is acknowledged as an effective screening tool for SAD, with an
internal consistency of α=0.74–0.81 and a test-retest reliability of
0.76 at an interval of 2 months.

As mentioned in Section 2.4, we examined state rumination
before and after mood induction with the 8-item BSRI (23). The
Ruminative Responses Scale-short form (RRS, 66) was used to
measure the degree of trait rumination.

The habit index of negative thinking (HINT, 67) measures
in 12 items habitual characteristics of negative thoughts
(i.e., automaticity, lack of intent and awareness, difficult to
control). In addition, we measured mood with the Patient
Health Questionnaire (PHQ, 68), sleep problems with the
Bergen Insomnia Scale (BIS, 69), depression, anxiety, and
stress with the Depression Anxiety Stress Scale (DASS, 70),
positive attitudes toward ruminative thinking with the Positive
Beliefs in Rumination Scale (PBRS, 71), chronotype by using
the Morningness Eveningness Questionnaire—Revised (MEQ-
R, 72), and to what extent people were following habits with
the Creature of Habit Scale (COHS, 73). Participants were also
asked about their age, gender, handedness, first language, body
weight, and height from which we calculated the body mass
index (BMI).

Furthermore, we asked about optimism, nutrition, mental
or neurological diseases, regularly taken medication, current
tiredness, bed- and waketime the night before the experiment,
exercise, phase of menstrual cycle in women, and weather, but we
did not include the respective data into the present manuscript.

All questionnaires and written materials used in this study
were in Icelandic, therefore, only participants who were fluent
in Icelandic were recruited for the study. This was ensured by
having all recruitment material in Icelandic. In Iceland, 96% of
the population speaks Icelandic, with 12.4% of the population
being foreign citizens in 2019 according to Statistics Iceland
(www.statice.is).

2.6. EEG Recording and Preprocessing
EEG data was recorded with software and hardware from Brain
Products GmbH (Gilching, Germany) at a sampling rate of 1,000
Hz with an EasyCap in an extended 10-20 system, including
32 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7,
F8, T7, T8, P7, P8, Fz, Cz, Pz, FC1, FC2, CP1, CP2, FC5,
FC6, CP5, CP6, FT9, FT10, TP9, TP10) referenced to FCz and

grounded at AFz. In addition, lower vertical electrooculogram
was recorded.

EEG-data was pre-processed with BrainVision Analyzer
(Brain Products GmbH, Gilching, Germany). First, band-pass
filters from 0.5 to 48 Hz with zero-phase shift Butterworth
filters were applied. Then, data was re-referenced to common
average. Next, an independent component analysis (ICA)
was used such that in the backtransform the signals that
include eye-blink artifacts would be removed (infomax restricted
algorithm). Finally, remaining artifacts were identified and
excluded automatically by the following standard thresholds:
check gradient (maximal allowed voltage step: 50 microvolt/ms),
check difference (maximal allowed difference of values in
intervals of 200 ms: 200 microvolt), lowest activity allowed in 100
ms intervals: 0.5 microvolts. The artifacts that were identified in
this way were excluded with a time-range of±200 ms.

The EEG recorded during 3 min of rest with eyes open, 3
min rest with eyes closed, the whole recall session, and the last
3 min out of 5 min of sad mood induction was segmented into
equal-sized epochs of 2 s. From the learning and recall conditions
1 s starting at stimulus presentation were extracted, and they
were processed separately for negative, neutral, and positive
pictures for learning, and in addition for old and new pictures
for recognition. From the Stroop task 500 ms from stimulus
onset, and congruent and incongruent conditions were processed
separately. Thus, in total, there were 15 conditions extracted from
the EEG experiment that were submitted to feature extraction.

2.7. Feature Extraction
For all of these conditions and each segment we extracted
features based on the multivariate autoregressive model with
the functions mvfreqz.m and mvar.m from the BioSig toolbox
(74) with model order 10, and partial correlation estimation
with unbiased covariance estimates (75), which is an accurate
estimation method (76). The multivariate parameters in the
frequency domain that can be derived from these transfer
functions were computed for 1 Hz frequency steps between 1 and
48 Hz. Only data from electrodes F3, F4, C3, C4, P3, P4, O1, O2,
F7, F8, T7, T8, P7, P8, Fz, Cz, Pz was used. The measures that
were extracted were the following:

• Spectrum: The auto- and the cross-spectrum, which is the
Fourier transform of the cross-covariance function (77).

• Direct causality: Direct causality as developed by (78); this
measure is not computed for each frequency.

• Transfer function: Related to the non-normalized directed
transfer function (79).

• Transfer function polynomial: Frequency transform of a
polynomial describing the transfer function. It is related to
coherence as the absolute of the squared transfer function
polynomial represents the non-normalized partial directed
coherence (79).

• Real valued coherence: The real part of the complex-valued
coherence (80) is an ordinary coherence (74).

• Complex coherence: The imaginary part of the complex-
valued coherence (80).
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• Partial coherence: Designed by (81) it’s concept is that one
channel drives the other channels if the first channel explains
or accounts for the linear relation between the other two.

• Partial directed coherence: An extended concept of
partialized coherence, measuring the relative strength of the
direct interaction between pairs of signals (82).

• Partial directed coherence factor: An intermediate step
between partial coherence and partial directed coherence
by adding directionality to partial coherence and including
instantaneous causality (82).

• Generalized partial directed coherence: In contrast to partial
directed coherence, generalized partial directed coherence is
invariant against scaling differences between signals (83, 84).

• Directed transfer function:Represents information that flows
from one region to another over many possible alternative
pathways (85).

• Direct directed transfer function: Extends directed transfer
function by separating direct from indirect causal relations of
signals (86).

• Full frequency directed transfer function: In contrast to
directed transfer function, the full frequency directed transfer
function is normalized with respect to all the frequencies in the
predefined frequency interval (86).

• Geweke’s Granger Causality: A bivariate version (87) of
Geweke’s Granger Causality (88).

Finally, we also included the power-spectral density as a feature,
representing band-pass power in 1 Hz frequency steps from 1
to 48Hz.

2.8. Features and Feature Combinations
for Machine Learning
For classification, we considered three situations:

• EEG features only; each EEG feature was used individually, i.e.,
we conducted for each of the 15 conditions classification with
each of the 16 feature vectors as described in Section 2.7.

• Questionnaire data only;We classified participants by a feature
vector including their total scores in PBRS, the three mood
measurements in the mood induction task individually and
also the difference between the first two and the latter two,
and the two rumination measurements with the BSRS in the
mood induction task, SPAQ global seasonality score, HINT,
DASS stress and anxiety, RSS brooding and reflection, sex,
age, education, body mass index (BMI) calculated by the
participants indication of height and weight, MEQ, BIS, and
COHS.

• A combination of each of the EEG features and conditions
with the questionnaire feature vector.

2.9. Grouping for Prediction Modeling
For machine learning we divided the sample into the group
experiencing depressive symptoms in winter and a control group.
For defining the borders between these groups we used the
diagnostic criteria according to the DASS-21 subscale for no
depression, mild depression, and moderate depression (70). The
control group included participants which were not depressed at

baseline in summer as well as at winter follow up in January,
i.e., showing <10 points on the DASS-21 depression scale at
both timepoints. For prediction we did two analyses, for mild
and moderate decline of mood, i.e., increase of depressive
symptoms. Both groups showed no depression at baseline
(DASS-21 depression scale <10). The group with at least mild
increase of depressive symptoms comprised those participants
who would show a depression score on the DASS-21 of at least
10 points at follow up in January. The group with moderate
increase of depressive symptoms comprised those participants
who would show a depression score on the DASS-21 of at least
14 points at follow up. Thus, the group with at least mild increase
of depressive symptoms overlapped with the group of at least
moderate increase of depressive symptoms.

2.10. Machine Learning and Statistical
Analysis
We used leave-one-out cross-validation, thus, a model was
fitted for each participant to all participants but the left-out
participant using the Matlab function fitclinear using a logistic
regression as learner. The fitting procedure was performed
with a regularization term strength λ of 10−11.We used lasso
(L1) penalty for the composition of the objective function for
minimization from the sum of the average loss function, with
sparse reconstruction by Separable Approximation (SpaRSA) as
objective function minimization technique and 10−8 as gradient
tolerance. The initial linear coefficient estimates were set to zeros
as initial values and the learning rate was constant.

Lasso regularization reduces the number of predictors,
identifies important predictors and selects among redundant
predictors, which is important in the high-dimensional feature
space of EEG biomarkers extracted with the multivariate
autoregressive model. As λ increases, the number of nonzero
components of β increases. Intuitively, the predictor coefficients
β are therefore indicative for each feature’s importance to the
model and were therefore reported graphically with the results
to demonstrate which brain regions/frequency range contributed
most to the prediction of worsening of depressive symptoms
in winter.

Machine learning results were gathered overall as accuracy
(% of correctly classified individuals overall), specificity (% of
correctly classified individuals who did not show depressive
symptoms in winter, i.e., correctly classified controls), sensitivity
(% of correctly classified individuals with depressive symptoms
in winter), positive predictive value (PPV; % of predicted cases
actually developing depressive symptoms in winter), and negative
predictive value (NPV, % of not predicted actually not developing
depressive symptoms in winter).

For psychological self-report questionnaires we calculated
means and standard deviations separately for controls and the
overall group of people experiencing mild or moderate decline
of mood in winter, as well as Mann–Whitney U-tests comparing
these two groups at baseline. A non-parametric test was chosen
because the questionnaire data is ordinal, so parametric tests
should not be used.
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TABLE 1 | Self-reported characteristics of the control group and group with worsening of depressive symptoms in winter at baseline.

Controls Depressive symptoms U-test

Scale Mean SD Mean SD z p

Age 33.61 18.21 31.61 16.92 0.11 0.91

BIS −20.13 25.52 −10.03 34.37 −1.43 0.15

BMI 26.06 6.79 24.82 11.37 −0.01 0.99

BSRI t1 219.52 154.05 287.25 182.97 −1.32 0.19

BSRI t3 228.56 191.93 285.8 221.62 −0.72 0.47

COHS 78.46 21.26 75.06 42.92 −1.33 0.18

DASS anxiety 2.87 4.23 8.56 6.78 −3.59 <0.001

DASS depression 2.87 2.72 3.67 3.01 −0.93 0.35

DASS stress 8.3 6.42 15 8.35 −2.88 <0.001

Education 2.8 1.36 2.78 1.31 −0.14 0.89

GSS 5.57 4.75 9.94 4.45 −3.26 <0.001

HINT 29.67 17.22 54.5 17.02 −4.22 <0.001

MEQ 35.24 36.08 21.04 41.98 1.16 0.25

Mood t1 109.95 34.35 103.98 23.21 1.46 0.14

Mood t2 77.24 38.6 82.94 41.38 −0.49 0.63

Mood t3 95.08 35.22 92.97 27.78 0.43 0.67

PBRS 23.11 6.27 24.33 3.94 −0.84 0.4

PHQ 4.11 3.09 7.83 3.55 -3.63 <0.001

RRS brooding 8.04 2.62 9.78 3.84 −2.08 0.04

RRS reflection 8.2 3.11 9.89 2.93 −2.01 0.04

BIS, Bergen insomnia scale; BMI, body mass index; BSRI, brief state rumination inventory; t1, before mood induction; t3, after mood induction; COHS, creature of habit scale; DASS,
depression, anxiety, stress scales; GSS, global seasonality score; HINT, habit index for negative thinking; MEQ, morningness-eveningness questionnaire; mood, emotional state; t2,
after sad music; PBRS, positive believes in rumination scale; PHQ, patient health questionnaire; RRS, ruminative response scale; SYM, group with at least mild depressive symptoms
in winter.

3. RESULTS

3.1. Sample
A total of 119 participants were recruited for this study and
participated in the baseline assessment in summer 2019. Among
them, 89 participated in the second follow-up in winter (January
2020). After exclusion of missing data in four participants,
18 participants showed no depression at baseline and mild
worsening from baseline to follow up, and 11 among those
showed moderate worsening of depression from baseline to
follow-up. The control group of 46 participants was free of
depression at baseline as well as at follow up.

The control group sample consisted of 40 women and 6 men,
while the group of participants with at least mild increase of
depressive symptoms consisted of 16 women and 2 men. The
odds ratio for gender to suffer from SAD is 1.8 according to (89)
justifying an overall overrepresentation of female participants in
our sample.

In the sample of controls/participants with at least mild
worsening of depressive symptoms in winter, 8.70/0% had
completed primary education, only 47.83/50% had higher
education entrance qualification, 2.17/11.11% had learned a
trade, 28.26/22.22% had completed undergraduate education at
a university, and 10.87/11.11% had completed master or doctoral
level education at a university. The native language was Icelandic
in 95% of the sample, however, all participants were fluent
in Icelandic.

Descriptive statistics for the self-report questionnaires,
separately for the two groups as well as results from Mann-
Whitney U-tests comparing the two samples are shown in
Table 1. For some measures there is evidence that the groups are
very inhomogenous. For chronotype, as measured by the MEQ,
in the group experiencing at least mild depressive symptoms, the
standard deviation is twice the mean, whereas for symptoms of
insomnia, as measured by the BIS, the standard deviation is even
three times as large as the mean.

3.2. Classification Results
For questionnaire data, only, accuracy was 76.56 for prediction
of mild and 82.46 for moderate depressive symptoms in winter,
with a specificity (accuracy to classify control group participants
correctly) of 78.26 and 84.78 and sensitivity (accuracy to identify
participants who experience depressive symptoms in winter)
of 72.22 and 72.73. Positive predictive value (PPV) for at
least mild depressive symptoms in winter was 56.52 and for
moderate depressive symptoms it was 53.33. Negative predictive
value (NPV) for at least mild depressive symptoms in winter
was 87.80 and 92.86 for moderate depressive symptoms in
winter. Figure 1 shows the predictor coefficients β for each
feature’s importance to the model for the prediction of worsening
of depressive symptoms in winter for the two classifications.
Relative importance of features were highly consistent for the
two prediction models. Predictive for worsening of depressive
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FIGURE 1 | Predictor coefficients β for each questionnaires’ importance to the model for the prediction of worsening of depressive symptoms in winter to at least mild

(DASS depression score ≥10; blue) and moderate (DASS depression score ≥14; red) extent.

symptoms in winter were low quality of sleep, low BMI,
anxiety, stress, habits of negative thinking, eveningness, and
a low degree of positive believes in rumination, measured
in summer.

When using EEG data, this resulted in 15 times 16
classifications for each condition and each feature used.
EEG alone for prediction of mild depressive symptoms
in winter yielded best classification accuracy for partial
directed coherence factor extracted during the Stroop task’s
matching condition (accuracy: 71.88, specificity: 80.43,
sensitivity: 50). Because sensitivity was at guessing level
it is safe to not interpret these results any further. PPV
for at least mild depressive symptoms in winter was 50,
NPV was 80.43.

EEG alone for prediction of moderate depressive symptoms
in winter yielded best classification accuracy for directed transfer
function during recognition of previously seen positive pictures
(accuracy: 82.46, specificity: 97.83, sensitivity: 73.33%), PPV for
at least moderate depressive symptoms in winter was 88.99,
NPV was 93.88. Predictor coefficients β shown in Figure 2,
showing which frequencies and brain connections were most
predictive. The directed transfer function showed a broader
network with interhemispheric frontal connections in the delta
to theta range, frontocentral connections in the alpha-gamma
range, and temporo- and fronto-occipital connections in the
alpha-gamma range. Autocorrelations were also identified to be
predictive right frontal, central, bilateral temporal, and right
occipital in the alpha-gamma range.

EEG combined with questionnaire data yielded best
classification accuracy for prediction of at least mild depressive
symptoms in winter with an accuracy of 81.25 (specificity:
82.61; sensitivity: 77.78; PPV: 63.64; NPV: 90.48). This result was
obtained by most biomarkers (i.e., partial directed coherence,
coherence, directed transfer function, direct directed transfer
function, full frequency directed transfer function, partial
coherence, partial directed coherence factor, generalized partial

directed coherence, and power spectral density) and most
conditions (i.e., EEG data recorded during eyes closed or open,
learning of neutral or positive images, recognition of recognition
of new positive pictures, recognition of previously seen neutral
or positive pictures, rumination, Stroop match and non-match
condition). Predictor coefficients β for directed transfer function
are given in Figure 3 extracted during rest with eyes open.
Again, frontal and central regions were strongly involved,
across all frequency ranges. Most of the frontal involvement
was autocorrelative, except for a frontocentral correlation in
the higher beta and gamma range. Central correlation was
highly pronounced for central-left area to all other areas in all
frequency bands.

EEG combined with questionnaire data yielded best
classification accuracy for prediction of at least moderate
depressive symptoms in winter with an accuracy of 85.96
(specificity: 86.96; sensitivity: 81.82; PPV: 60.01; NPV: 95.24).
This result was obtained by several biomarkers (i.e., spectrum,
partial directed coherence, directed transfer function, partial
coherence, generalized partial directed coherence) and most
conditions (i.e., EEG data recorded during eyes open, learning of
negative, neutral or positive images, recognition of new positive
pictures, rumination, Stroop match, and non-match condition).
Predictor coefficients β for directed transfer function are given
in Figure 4, showing where in the brain oscillatory activity
in a certain frequency band was most predictive for directed
transfer function during rumination. Most areas were highly
involved in this prediction, but fronto-occipital and temporo
occipital connections on the left hemisphere dominated the
higher beta-gamma range.

4. DISCUSSION

In this study we aimed to identify biomarkers in the EEG
and self-reported characteristics which, when measured in
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FIGURE 2 | Predictor coefficients β for directed transfer function (DTF) extracted during recognition of positive pictures. Coefficients indicate importance of the feature

to the model for prediction of at least moderate depressive symptoms in winter. (A) Delta 1–4 Hz, (B) Theta 5–7 Hz, (C) Alpha 8–12 Hz, (D) Beta 13–20 Hz, (E) Beta 2

21–30 Hz, (F) Gamma 31–48 Hz.

summer, can be used for accurate prediction of whether
an individual will suffer from worsening of depressive
symptoms in winter. We found that indeed, a combination
of cognitive aspects and EEG biomarkers allows for a better
prediction than the cognitive aspects or EEG biomarkers
alone. Prediction accuracy was better for prediction of at
least moderate depressive symptoms as compared to mild
depressive symptoms, which could be due to the clearer
distinction of the group with at least moderate depressive
symptoms from the control group. However, since these two
groups overlap, and since the statistical power is limited for the
group with at least moderate depressive symptoms we limit the
discussion to the sample of at least mild depressive symptoms
in winter.

4.1. Self-Reported Characteristics and
Cognitive Vulnerabilities
We found that low quality of sleep, low BMI, anxiety,
stress, habits of negative thinking, eveningness, and a
low degree of positive believes in rumination, measured
in summer predicted worsening of depressive symptoms
in winter.

Insomnia or, more generally, sleep problems were related
to SAD in earlier studies (5, 32, 90–96). In our sample,
the variance of symptoms of insomnia was very high in the
group who would develop at least mild depressive symptoms
in winter, suggesting that there might be different subgroups,
reflecting different paths of vulnerability that is based on the
different factors causing insomnia, being either physiological

or cognitive-behavioral in nature. On the one hand, increased
rumination is linked to insomnia (97), but on the other hand,
insomnia might be the symptom of a physiological vulnerability.
It has been suggested that in some cases, insomnia could be
treated by administration of melatonin (98), and there have
also been attempts to treat SAD by melatonin (99, 100).
Further evidence links melatonin to the serotonergic system,
which in turn, is linked to depression, anxiety, and stress
(101). Melatonin treatment alters the expression of genes of
serotonergic neurotransmission in a mouse model of SAD (102).
More evidence points to involvement of major monoamine
neurotransmitters serotonin, norepinephrine, and dopamine in
SAD (103). Therefore, biochemical markers such as cortisol
awakening response as a marker for hypothalamic-pituitary-
adrenal axis function (104) and serotonin-transporter binding
(105) have been suggested. In line with the daily rhythm
of cortisol, eveningness was found previously to be strongly
related to seasonality and SAD (32, 95, 96). Being a serotonin-
transporter-linked polymorphic region (5-HTTLPR) short allele
carrier was found to be a risk factor for developing SAD (1). A
genotype-dependent increase in winter of serotonin transporter
binding was found to be specific for patients with winter
depression (105). However, although the level of serotonin
transporter binding is comparable between healthy controls and
patients with winter depression during summer, the patient
group shows a lower increase from summer to winter as
compared to controls (105). The link to the serotonergic system
is supported by predictability of relapse during winter based on
depressive symptoms during tryptophan depletion in summer
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FIGURE 3 | Predictor coefficients β for questionnaire data combined with directed transfer function (DTF) extracted during rest with eyes open. Coefficients indicate

importance of the feature to the model for prediction of at least mild depressive symptoms in winter. (A) Delta 1–4 Hz, (B) Theta 5–7 Hz, (C) Alpha 8–12 Hz, (D) Beta

13–20 Hz, (E) Beta 2 21–30 Hz, (F) Gamma 31–48 Hz.

(106). Possibly related to neurotransmitter systems, low vitamin
D3 levels where also suggested to predict depressive symptoms
increase from fall to winter (107).

The fact that melatonin was suggested as a treatment for SAD
(99, 100) is closely linked to the finding that melatonin levels
underly a strict circadian rhythm. Administrating melatonin at a
specific time of the day triggers a change in sleeping time, which
can help to ameliorate the so-called social jetlag of the evening
chronotype (108). As chronotype changes with age toward more
morningness, the vulnerability for anxiety and depression also
decreases (109). Also in our sample, the late chronotype was
predictive for depressive symptoms in winter, although the
group showed a large variance in the respective score. This
detail could point toward considerable inhomogeneity of the
group in terms of their chronotype. Although being an evening
chronotype is a risk factor for developing depressive symptoms
in winter, also individuals reporting to be morning or neutral
chronotypes in summer might suffer from mood decline during
the dark season. Conclusions to be drawn on this end are limited,
but it was also reported that chronotype self-reports do vary
with the season especially in individuals with winter depression
more morningness was measured in the summer than in the
winter (110).

Although controls and individuals who would develop at least
mild depressive symptoms in winter did not differ significantly
by BMI in summer, the highly negative beta values as indicated
in Figure 1 suggest that a low BMI in summer can serve as a

predictor for worsening of depressive symptoms in winter. The
similarity in BMI between the two groups in summer indicates
that the relationship between BMI and vulnerability to seasonal
mood fluctuations is not too large. The relation between body
weight and SAD has been investigated previously. A higher BMI
at baseline was found to predict treatment outcome of 6 weeks
light treatment (111). As emotional eating and weight gain are
associated with SAD (112), our finding seems to be unexpected.
However, it was shown recently that the self reported seasonal
changes in weight is related to lower plasma adiponectin levels, an
indicator for metabolic dysregulation (113). Therefore, it might
be that the difference in weight between summer and winter is
more relevant, and a lower BMI in summer might be indicative
for a larger weight gain. However, this is pure speculation and
needs to be addressed in future studies.

Habits of negative thinking were assessed with the HINT,
where negative thoughts are characterized by automaticity, lack
of intent and awareness, and difficulty to control them (67).
HINT scores predicted mood worsening in winter, whereas
trait ruminative brooding and reflective pondering did not.
This may suggest that people experiencing their self-focused
negative thoughts as being triggered more automatically and
without intent, awareness, or control, are specifically vulnerable
to experience upward shifts in symptoms of depression
during winter.

Individuals with SAD also seem to estimate future negative
events as more likely to happen (17), which is a concept
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FIGURE 4 | Predictor coefficients β for questionnaire data combined with directed transfer function (DTF) extracted during rumination. Coefficients indicate

importance of the feature to the model for the prediction of at least moderate worsening of depressive symptoms in winter. (A) Delta 1–4 Hz, (B) Theta 5–7 Hz, (C)

Alpha 8–12 Hz, (D) Beta 13–20 Hz, (E) Beta 2 21–30 Hz, (F) Gamma 31–48 Hz.

closely related to the habit of negative thinking as well as
the optimism-pessimism as assessed in our study. Endorsement
of emotional adjectives and a negative attributional style are
elevated in patients with SAD (114). However, in contrast to
our data it was previously reported that these cognitive aspects
could not be used to predict later symptom levels (114). Also,
countering our expectations, a lower score in summer on
the PBRS indicated a higher risk for worsening of depressive
symptoms in winter. Prior research showed that rumination
is linked to depression (115) and that positive beliefs about
rumination are associated with ruminative thinking, mediating
further a negative association with positive affect (116). While
prior research suggests that increased rumination are predictive
for SAD (21), we could not confirm this relationship. In our
data, a negative predictor coefficient for the PBRS suggested
that positive beliefs in rumination would rather protect from
worsening of depressive symptoms in winter. This finding is
difficult to explain but warrants further investigation. The first
four items of the Icelandic translation (e.g., “I need to consider
things to realize how I feel.”) of the scale could have been rather
interpreted as being indicative for a positive attitude toward being
considerate, which might indeed be a protective factor instead of
a risk factor.

Furthermore, patients with prior experience of SAD show
depressive affect in response to low light intensity stimuli (21),
another indicator for emotional responses to darkness. However,
as this result is based on prior experience of SAD, it might
rather be due to reactivated memories of sad mood during the

dark period rather than an indicator for emotional response
style. In line with the potential role of memory mechanisms,
autobiographical memory style was examined in winter in
individuals with SAD (117). It was found that the number of
overly general memories that were generated in response to
positive cues was related to symptom levels measured during
remission in summer (117).

4.2. EEG Biomarkers
Best results for EEG alone were of guessing level for sensitivity
for the prediction of mild depressive symptoms in winter, which
might indicate that a mild increase of depressive symptoms can
not be predicted by EEG features.

EEG alone yielded sensitivity at guessing level for prediction
of mild depressive symptoms in winter, which should, therefore,
not be interpreted any further.

The frontal involvement and EEG-results in general were
more reliable when EEG was combined with self-report
questionnaires, emphasizing further the superiority of self-
report data over EEG biomarkers. Specifically, the high
stability across biomarkers and conditions indicates that EEG
combined with self-report data can contribute reliable additional
information, but the consideration of the self-report data
is crucial.

EEG studies have identified some likely structural and
activational irregularities being candidates for the neurological
mechanisms involved in depressive tendencies and depressive
mechanisms such as rumination. For example, lowered alpha
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activity in the prefrontal cortex is thought to predict higher
tendency to ruminate (50). Inefficient information transfer from
the left dorsolateral prefrontal cortex to the temporal lobe
structures might be critical for trait rumination (48). The
involvement of the frontal cortex as well as the alpha frequency
range points to the role of cognitive control over negative
thoughts. High alpha power is acknowledged to reflect active
inhibition (118). Therefore, the involvement of alpha activity
in the left hemisphere can be interpreted as reduced cortical
activity. It was theorized that hypoactivation of the left frontal
area leads to ruminative tendencies and consequently to negative
emotional interpretation (119). The frontal cortex is also involved
in cognitive flexibility (120), which has been reported to be
impaired in individuals with depression (29). Specifically, in
negative emotional contexts individuals with major depressive
disorders were suggested to exhibit ruminative and negative
automatic thoughts because they lack cognitive flexibility (30).

An abnormal activation in the lower left frontal cortex
has been found to be critical regarding depressed individuals’
tendency to pay greater attention to adverse stimuli (41, 47).
Abnormalities in the activation or structure of the circuitry of
emotion, which includes the prefrontal cortex, anterior cingulate
cortex, hippocampus and amygdala have been suggested to
underlie depressive disorders (121). In addition to the alpha
abnormalities, abnormal synchronization of theta and beta
oscillations was suggested to reflect unstable states of cognitive
processing, specifically of working memory in individuals with
depression (122). Analysing EEG band power beyond the alpha
frequency range provided evidence which suggests that decreased
theta power might be important during rumination (42), and
lower power in the theta range, as well as alpha frequency band
has been noted during mind wandering (43). Moreover, increases
in the delta band are generally related to pathology such asmental
slowing in dementia (123), as well as psychopathology (124).

4.3. Limitations
It was recently shown that machine learning performance
in neuroimaging studies of depression overestimate the
classification accuracy in small sample sizes (125). This is a well-
known phenomenon when the number of features describing
the samples exceeds the size of the sample and is not limited
to neuroimaging but any modality where the feature vector is
long. Certainly, our sample size is very small, as well, especially
for the prediction or moderate depressive symptoms in winter.
Therefore, we have chosen lasso regularization as an approach
to address those problems of high-dimensional feature spaces.
The prediction of moderate depressive symptoms might lead
to better results because the distinction of the sample is clearer,
but it might also be related to the small sample size. Therefore,
we chose to not interpret those results any further. However,
we also have to question whether the sample composition is
representative as women outnumbered men. Although SAD
is also more common among women, we had an even higher
proportion of women participating in the study, which limits
generalizability of the results to men. Future studies need to
recruit a significant proportion of men in order to allow for
interpretation of gender-specific results.

Another restriction of the study is that it was performed in
Iceland, where lighting conditions might not be representative
for regions with a lower latitude.

We also need to re-emphasize that this study included the
GSS score as a measure for seasonality and other self-assessment
questionnaires to measure depressive symptoms, while a clinical
interview was not part of the study to ascertain diagnosis of SAD.
Therefore, we limit our conclusions to results from a non-clinical
sample with mild or moderate depressive symptoms in winter.

4.4. Future Directions
The use of psychological characteristics to predict seasonal
affective occurrence can be extended to prediction of treatment
response. Negative attributional style predicted poor response to
pharmacotherapy in nonseasonal depression but not in seasonal
affective disorder (19). It was also reported that psychic anxiety
was related to response to light therapy while somatic anxiety
was rather related to a negative outcome (126), and that atypical
symptoms of depression predict responsiveness to light therapy
(127). There have also been attempts to predict treatment
outcome in order to determine which patients might respond
to light therapy (128), or which patients respond better to light
therapy, cognitive-behavioral therapy (129), or a combination of
the two (130). When patients exhibit cognitive vulnerabilities,
the use of cognitive behavior therapy might be crucial (130).
In a later study cognitive vulnerability could not be replicated
as prognostic or prescriptive predictor of outcome of light-
vs. cognitive behavior therapy, but greater morningness was
associated with less severe post-treatment depression in both
treatment approaches (129). It is possible that EEG-biomarkers
could add to the planning of personalized treatment of patients
with SAD, both by helping to select the most appropriate therapy
alongside with the consideration of cognitive vulnerabilities, as
well as by identifying individuals at risk in order to initiate
preventative treatment in a timely manner.

5. CONCLUSIONS

Depressive symptoms in winter may be predicted by self-
report questionnaire data better than by EEG measures
collected in summer, but the combination of features
from both domains is advantageous and leads to higher
prediction accuracy.

Our findings on relevant EEG biomarkers emphasize the
importance of frontal brain regions in the vulnerability
for depressive symptoms in winter as well as a broad
frequency range.
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