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Currently, the assessment of the neurobehavioral consequences of repeated cannabis
use is restricted to studies in which brain function of chronic cannabis users is
compared to that of non-cannabis using controls. The assumption of such studies is
that changes in brain function of chronic users are caused by repeated and prolonged
exposure to acute cannabis intoxication. However, differences in brain function
between chronic cannabis users and non-users might also arise from confounding
factors such as polydrug use, alcohol use, withdrawal, economic status, or lifestyle
conditions. We propose a methodology that highlights the relevance of acute
19-tetrahydrocannabinol (THC) dosing studies for a direct assessment of
neuroadaptations in chronic cannabis users. The approach includes quantification
of neurochemical, receptor, and functional brain network changes in response to an
acute cannabis challenge, as well as stratification of cannabis using groups ranging
from occasional to cannabis-dependent individuals. The methodology allows for an
evaluation of THC induced neuroadaptive and neurocognitive changes across cannabis
use history, that can inform neurobiological models on reward driven, compulsive
cannabis use.
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INTRODUCTION

Cannabis is the most commonly used illicit drug, with 4% of the global population reportedly using
the substance (1). The prevalence of cannabis use is expected to increase following recent trends to
legalize or decriminalize its use for recreational and therapeutic purposes (2, 3). Thus, as cannabis
use increases and the perception of risk of use decreases (4), a pertinent question is how prolonged
cannabis use affects the neurocognitive state, and whether there are long-term neurobiological
consequences (5). Furthermore, as 10% of those who recreationally consume cannabis develop
daily use patterns (6), it is prudent to understand neuroadaptations in the neuro-circuitry which
may underlie this increase and persistence of use.

Neuroadaptation in chronic cannabis users has traditionally been evaluated with brain imaging
measures in comparison to non-cannabis using controls. Many of these cross-sectional fMRI
studies have revealed changes in functional connectivity (7–11), task-related brain activation
(12–18) and neurotransmission (19–23) in various brain regions of chronic cannabis users,
sometimes in association with cognitive deficits (24–29). However, findings have also been mixed
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as these studies suffer from the methodological problem that
confounding factors (e.g., pre-existing differences, polydrug use,
and differences in lifestyle) cannot adequately be controlled
and therefore, in addition to cannabis use, might explain
observed differences in brain function (30). Cross-sectional
studies between chronic cannabis users and non-cannabis users
therefore cannot be taken as the sole approach for studying
the effects of repeated cannabis use on brain function and its
associated neurocognitive state.

Alternatively, we propose that neuroadaptive changes in
cannabis users can more selectively be studied in response to an
acute challenge with 19 -tetrahydrocannabinol (THC). Ideally,
such studies would follow a multimodal imaging approach that
includes resting state fMRI to assess functional connectivity,
PET imaging to profile CB1 receptor densities, and magnetic
resonance spectroscopy to quantify neurometabolites in neural
circuits in which neuroadaptions are prominent, such as the
mesocorticolimbic circuit (31) (Figure 1). Neural changes to
an acute THC challenge should be assessed as a function
of cannabis use frequency as there is a notion that neural
mechanisms underlying acute and long-term cognitive deficits
are interrelated and that the latter can be explained as a
neuroadaptive response to the former (32). For example, an
acute dose of THC has been found to increase glutamate (33–
35) and dopamine (36–39) in the striatum of occasional users,
whereas sober chronic cannabis users demonstrate a decrease of
glutamate and glutamate-related metabolites (19–22), and lower
levels of dopamine release (40, 41). Likewise, fMRI studies have
repeatedly shown hypoactivation in the mesocorticolimbic circuit
during acute THC intoxication (32, 33, 35) in occasional users but
hyperactivation in sober, chronic cannabis users (12, 15–17, 26,
42). The intermediate mechanism might be CB1 receptor density
that is known to fluctuate with cannabis frequency and represents
a neuroadaptive response of the brain to regain homeostasis
following sustained and repeated THC exposure (31). It can
be hypothesized that this neuroadaptive response in chronic
cannabis users is aimed to normalize cognitive function during
THC intoxication, but causes underactivation of brain function
when sober (32). The dynamics of this antipodal neural response
underlying acute and long-term effects of cannabis can typically
be studied in placebo-controlled THC studies as a function of
cannabis use frequency as shown in Figure 2. This approach
could be applied to a number of research issues that are closely
associated with cannabis use disorder, as discussed below. These
include assessments of neural mechanisms that underlie the
progression to compulsive cannabis use, the development of
tolerance, and their association to neurocognitive key-elements
of addiction such as reward, craving, and cognitive control (43).

TRANSITION TO COMPULSIVE
CANNABIS USE

Acute THC studies can be employed to increase or confirm
our understanding of the neural and psychological basis of
the transition from initial cannabis use to compulsive use.
Compulsive cannabis use occurs in parallel to the development

of cannabis tolerance but their underlying neural mechanisms
may differ. Preclinical studies have suggested that THC-induced
dopamine release shifts from the ventral striatum to the dorsal
striatum after repeated administration (44), a transition that
has been associated with the development of dependence in
humans (45). In addiction research, dorsal striatal activation
dominance in drug use disorders has been associated with
habitual, drug-seeking behavior (43, 46–49), while increased
ventral striatal activation has been associated with increased
responsiveness to drug-related cues and reward (50–52). Indeed,
dependent and non-dependent cannabis users have shown
increased responsiveness of the ventral striatum in response to
cannabis-related cues (8, 45, 53–56) and increased striatal frontal
coupling (45). Dependent users also exhibit increased dorsal
striatal reactivity and decreased striatal limbic coupling during
cannabis cue exposure (45). Shifts in ventral and dorsal activation
as observed in cannabis users are thus intrinsically related to the
frequency of acute cannabis intoxications. The development of
the striatal response to cannabis cues should therefore also be
studied and understood in the context of acute THC challenge
studies in groups with varying cannabis use frequencies. Such
studies could potentially monitor directly how acute THC
intoxication affects ventral-dorsal striatal activation as a function
of cannabis use history and further clarify the contributory roles
of striatal dopaminergic and glutamatergic neurotransmission
to excessive cannabis use and habit formation. The latter is of
particular relevance, as a number of acute THC studies have
shown that a single dose of THC attenuates the striatal response
to rewards such as monetary incentives, cannabis marketing,
and music (56–58) suggesting that THC-induced increments in
striatal dopamine reduce salience and attentional processing of
concurrent rewards (56). Acute THC challenge studies therefore
would not only contribute to a fundamental understanding of
ventral-dorsal striatal activation with increasing cannabis use, but
also provide important pharmacological insights on how shifts in
striatal balance can be prevented or controlled in order to avoid
progression to compulsive cannabis use.

DYNAMICS OF TOLERANCE AND
NEUROCOGNITION

Neurocognitive impairments observed during cannabis
intoxication are transient and dynamic over time, depending
on cannabis use frequency (31). Understanding the dynamics
of tolerance can be useful when trying to “tailor” the cannabis
experience and develop dosing strategies which promote
tolerance in patient populations where they do not want the
“high” and neurocognitive impairment. Alternatively, dynamics
of tolerance can also inform strategies to promote efficient
“tolerance breaks” for individuals who want the “high” and the
associated neurocognitive state, but wish to reduce the potential
for addiction, as tolerance development promotes addictive
behavior (31, 59).

The neurocognitive state of cannabis users is strongly
associated with neuroadaptations in the mesocorticolimbic
circuit that occur during acute intoxication, chronic use,
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FIGURE 1 | Schematic representation of neurotransmission and functional connectivity in the mesocorticolimbic circuit in the normal brain (32) (left panel) and
multimodal imaging measures (right panel) that can be employed to assess dynamics within this circuit during an acute challenge with THC and when sober.
Magnetic Resonance Spectroscopy (MRS) has been successfully used to quantify frontal and striatal glutamate concentrations in cannabis users during intoxication
and when sober (33, 34). fMRI measures of functional connectivity (FC) have provided functional associations within and between neural networks in cannabis users
during intoxication (33, 35, 42) and when sober (15–17, 42), and can be used as an indirect marker of striatal dopamine release during cannabis intoxication (33, 81).
Positron emission tomography (PET) can be used to determine CB1 receptor density at glutamatergic and GABAergic neurons in the striatum of cannabis users (60,
62) and to determine dopamine displacement at D2/D3 receptors as a measure of dopamine transmission during cannabis intoxication (36). NAc, nucleus
accumbens; PFC, prefrontal cortex.

and abstinence (see Figure 2). Chronic exposure to cannabis
produces significant downregulation and desensitization of
CB1 receptors in cannabis-dependent users relative to that in
controls (60–62). This homeostatic response of the brain also
potentially causes a state of underactivation and neurocognitive
dysfunction in chronic cannabis users when sober (31, 63–
65). Typically, such deficits rapidly decrease during abstinence
and do not persist beyond 4–5 weeks (63, 66). It has
been hypothesized that neurocognitive impairment in chronic
users arise from a state of withdrawal during which CB1
receptors are downregulated and restrained from THC-related
receptor stimulation (32). Subsequent CB1 receptor upregulation
observed during withdrawal in chronic users (60) was indeed
paralleled by an improvement in neurocognitive function
(64). Interestingly, the only study to date that investigated
the neuroadaptive response to an acute challenge in chronic
cannabis users (35) suggested that stimulation of CB1 receptors
subsequently normalizes striatal glutamate and dopamine
transmission, functional mesocorticolimbic connectivity, and
neurocognitive function (31, 32, 35). This neuroadaptive
response may also explain the absence of neurocognitive
impairment (i.e., tolerance) that is often reported in chronic
cannabis users during THC intoxication (31, 67).

Neuroimaging studies can be instrumental in assessing
the dynamics of CB1 receptor density and neurocognitive

state before or after an acute THC challenge in groups of
cannabis users who vary in their frequency of use. Such
studies could establish downregulation of CB1 receptor density
with increasing cannabis use and determine the impact
of CB1 downregulation on mesocorticolimbic function and
neurocognitive state, in the presence and absence of an acute
THC challenge. Increased knowledge of how temporal changes
in cannabis use frequency affect the dynamics of an individual’s
response and neuroadaptations to an acute challenge with
cannabis, will gain relevance with increasing recreational and
medical use of cannabis. Frequency, dose, and duration of
use to achieve or reverse tolerance are currently unknown
but are important to define recreational use frequencies and
medical dosing strategies at which the development of acute
tolerance, persistence of neurocognitive deficits, and compulsive
use can be avoided.

MARKERS OF THE NEUROCOGNITIVE
STATE

Acute THC studies might also serve to identify neural markers
of cognitive function that differentiate compulsive cannabis use
from non-problematic cannabis exposure, or the impaired state
from the non-impaired state. At present, there is no objective
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FIGURE 2 | Schematic representation of the dynamics of the neuroadaptive state of the mesocorticolimbic circuit when challenged with placebo (PLA) and THC as
users proceed from occasional to chronic cannabis use and into abstinence. In occasional users, an acute THC challenge increases striatal levels of dopamine and
glutamate (33–35) through stimulation of CB1 receptors at presynaptic GABAergic and glutamatergic receptors, leading to hypoconnectivity of the
mesocorticolimbic circuit (here shown superimposed on brain) and neurocognitive dysfunction (33, 35). With repeated cannabis use, CB1 receptors are
downregulated as a neuroadaptive response to CB1 receptor overstimulation (60, 62). In chronic users, this leads to reduced striatal dopamine (40, 41) and
glutamate (19–22), as well as hyperconnectivity within the mesocorticolimbic circuit (9, 42, 82) and neurocognitive dysfunction when sober (13, 24, 27, 28). In these
users, stimulation of CB1 receptors normalizes striatal dopamine and glutamate concentrations, functional connectivity and neurocognitive function during acute
THC intoxication (35). With prolonged abstinence of cannabis, CB1 receptors upregulate (60, 62) and potentially normalize the neuroadaptive and neurocognitive
state (63, 64, 66). NAc, nucleus accumbens; PFC, prefrontal cortex.

assessment that can classify the neurocognitive state in individual
cannabis users. Recent studies have suggested, however, that
acute THC intoxication as assessed by subjective ratings of
“high” produces a reproducible signature change in brain
function that can be detected with neuroimaging techniques
(42, 68). The former study (68) conducted functional near-
infrared spectroscopy (fNIRS) in cannabis users before and after
receiving oral THC and placebo and found increased oxygenated
hemoglobin concentration (HbO) in the prefrontal cortex of
participants with a clinical rating of subjective intoxication.
Machine learning models using fNIRS time course features
and connectivity matrices identified the intoxicated state with
76.4% accuracy (68). The latter study (42) used a data-driven
independent component methodology to analyze fMRI resting
state data to extract a distinct spatial connectivity pattern
of hypoconnectivity involving the dorsal attention, limbic,
subcortical and cerebellum networks, and of hyperconnectivity
between the default mode and ventral attention network, that
was associated with the feeling of a subjective “high” during THC
intoxication (42). That same study also revealed a broad state
of hyperconnectivity within whole-brain networks in chronic

cannabis users compared to occasional cannabis users, which
might be reflective of an adaptive network reorganization
following prolonged cannabis exposure. These acute THC
studies suggest that neural fingerprints of cannabis intoxication
and cannabis use history can be derived from neuroimaging
data. Future studies with acute THC challenges might identify
neurobiological features or phenotype characteristics of impaired
and maladaptive behaviors that might arise from acute and
chronic use of cannabis. Such models might provide unique
insights into emerging adaptations of distinct functional
networks in users that progress from occasional to chronic
cannabis use and underlie the development of a pathological
state, such as cannabis use disorder.

CONCLUDING REMARKS

While the effects of chronic cannabis exposure on brain function
and cognition have become a focal point for research, much
remains unknown about neuroadaptive responses to acute THC
intoxication, and how these develop over time into chronic
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cannabis use. This paper posits that pharmaco-imaging studies
should be considered to explore how neural responses to
an acute THC challenge develop with repeated cannabis use
and how such neuroadaptations relate to the development of
cannabis tolerance, compulsive cannabis use, and their associated
neurocognitive state. Such studies could also target additional
factors that are known to moderate the neural response to an
acute THC challenge, such a dose, potency, composition, and
formulations of cannabis products as well the interaction with
underlying pathological states in case of medical use (32). In
principle, this approach could also be expanded on to assess
neuroadaptations to other drugs of abuse. For example, acute
and chronic alterations in neurotransmission and functional
connectivity of the mesocorticolimbic circuit have been reported
for cocaine (69–71), nicotine (72–76), and alcohol (77–80). The

current proposal on how to assess and define neuroadaptations
in cannabis users would also call for an international, multi-
center research effort in order to include large samples of distinct
cannabis user groups, ranging from novice and occasional
users at the lowest end of the use frequency spectrum to
daily, chronic users at the opposite extreme. It would offer
a unique opportunity to develop an integrative, mechanistic
view of long-term effects of cannabis on the brain as a
neuroadaptive response to acute THC challenges or to the
absence thereof.
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