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Transcranial direct current stimulation (tDCS) is an emerging therapeutic

tool for treating posttraumatic stress disorder (PTSD). Prior studies have

shown that tDCS responses are highly individualized, thus necessitating the

individualized optimization of treatment configurations. To date, an e�ective

tool for predicting tDCS treatment outcomes in patients with PTSD has

not yet been proposed. Therefore, we aimed to build and validate a tool

for predicting tDCS treatment outcomes in patients with PTSD. Forty-eight

patients with PTSD received 20 min of 2 mA tDCS stimulation in position

of the anode over the F3 and cathode over the F4 region. Non-responders

were defined as those with less than 50% improvement after reviewing clinical

symptoms based on the Clinician-Administered DSM-5 PTSD Scale (before

and after stimulation). Resting-state electroencephalograms were recorded

for 3 min before and after stimulation. We extracted power spectral densities

(PSDs) for five frequency bands. A support vector machine (SVM) model was

used to predict responders and non-responders using PSDs obtained before

stimulation. We investigated statistical di�erences in PSDs before and after

stimulation and found statistically significant di�erences in the F8 channel in

the theta band (p = 0.01). The SVM model had an area under the ROC curve

(AUC) of 0.93 for predicting responders and non-responders using PSDs. To

our knowledge, this study provides the first empirical evidence that PSDs can

be useful biomarkers for predicting the tDCS treatment response, and that a

machine learning model can provide robust prediction performance. Machine

learningmodels based on PSDs can be useful for informing treatment decisions

in tDCS treatment for patients with PTSD.
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1. Introduction

Traumatic experiences, such as the coronavirus disease 2019 (COVID-19) pandemic,

are highly prevalent in modern society (1). Therefore, it is essential to understand how to

best help those affected by traumatic events as well as informing effective interventions to

reduce their psychosocial impacts (2). Many studies have sought to identify the optimal
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way to prevent and treat post-traumatic stress disorder (PTSD)

(3–5), a series of reactions that can occur after someone has

experienced traumatic events.

Transcranial direct current stimulation (tDCS) is a possible

alternative treatment modality for addressing PTSD. More

specifically, tDCS is a therapeutic tool that normalizes brain

function and relieves symptoms by sending weak direct current

stimulation to the brain surface through electrodes located on

the scalp in order to spontaneously activate nerve cells. This is

a safe neuromodulation technique that has few adverse effects

(i.e., loss of consciousness, convulsions, abnormal sensations) as

compared to other brain stimulation modalities (6).

Previous research has demonstrated that tDCS shows great

promise as a therapeutic intervention for treating clinical

neuropsychiatric disorders, including PTSD, depression,

and cognitive decline. Auditory verbal hallucinations are

robustly reduced by tDCS (7). Another study recently

suggested that tDCS may be a promising novel treatment

for addressing impulsivity in attention deficit hyperactivity

disorder (ADHD) (8). A small number of studies have

reported clinically significant improvements following tDCS

treatment with respect to a range of cognitive and emotional

performance metrics in PTSD patients evaluated using

electroencephalograms (EEG), event-related potentials (ERP),

and alpha peak frequencies (APF) (9).

In the current study, although tDCS treatment resulted in

clinical improvements in patients with PTSD, not all patients

were positively impacted by tDCS. Several patients showed a

clinical response, while others showed no difference or even

a worsening of their symptoms. tDCS modulates spontaneous

neuronal activity, and the amount and direction of its effects

critically depend on the physiological state of the target neural

structures. Since the effects of tDCS depend on the baseline

status of the brain at the time of application, individual patients

show considerable heterogeneity in treatment outcomes (10).

Consequently, tDCS responses are highly individualized, and

this critically affects the evaluation of tDCS responses (11).

Supervised machine learning methods (e.g., support vector

machines; SVM) can be used to identify and predict individual

clinical responses in electric field characteristics following tDCS

treatment (12). Individual prognostic classifications of tDCS

outcomes can provide important insights for future tDCS

Abbreviations: ADHD, attention deficit hyperactivity disorder; APF, alpha

peak frequency; AUC, area under the ROC curve; CAPS-5, Clinician-

Administered PTSD Scale for DSM-5; COVID-19, coronavirus disease

2019; EEG, electroencephalogram; ERP, event-related potentials; FDR,

false discovery rate; ICA, independent component analysis; PSD,

power spectral density; PTSD, post-traumatic stress disorder; ROC

curve, receiver operating characteristic curve; SCID, Structured Clinical

Interview; Sev, total severity score; Sx, total number of prevalent PTSD

symptoms; SVM, support vector machines; tDCS, transcranial direct

current stimulation.

interventions. However, to the best of our knowledge, there

are currently no studies utilizing machine learning strategies in

patients with PTSD undergoing tDCS treatment.

EEG has been used as a biomarker for detecting and

classifying brain dysfunction. Previous work has demonstrated

that various forms of brain disorders, including PTSD

(13), schizophrenia (14), major depressive disorder (15) and

Alzheimer’s disease, can be diagnosed by monitoring patients’

EEG responses. Therefore, analyses using EEG responses have

the potential to identify clinical responses to neuropsychiatric

treatments, including tDCS. This study aimed to demonstrate

the potential of evaluating EEG responses in order to

classify responders and non-responders among patients with

PTSD. The results of this study might inform appropriate

individualized treatments that can be adequately introduced by

selecting patients based on their characteristics and expected

treatment effects.

In this study, we compared electrophysiological responses

before and after tDCS treatment by analyzing 62-channel EEG

readings in 48 patients with PTSD. We aimed to provide

a tool for increasing the effectiveness of tDCS by building

and validating a personalized therapeutic response classification

model. A machine learning model was trained to determine

the best performing EEG channels and frequency bands. These

features were also used to predict the outcomes of tDCS

treatment in patients with PTSD. We hypothesized that (1) a

statistically significant difference in the specific channel and

frequency band that can be observed by comparing EEG

responses before and after treatment between responders and

non-responders, and (2) therapeutic responders and non-

responders could be predicted and classified using the EEG

features identified in (1).

2. Materials and methods

2.1. Participants

Fifty-one patients with PTSD were enrolled in this study.

Patients were diagnosed by an experienced psychiatrist using

the Structured Clinical Interview for DSM-V (SCID) Axis I

Psychiatric Disorders (16). The Clinician-Administered PTSD

Scale for DSM-5 (CAPS-5) was used to evaluate psychiatric

symptoms (17, 18). Participants aged <19 years or those with

too many EEG artifacts due to body and eye movements

were excluded from the current study. A total of 48

patients (23 males, age 50.81 ± 11.60 years [mean ± SD])

were ultimately enrolled. All participants signed a written

informed consent form that was approved by the institutional

review board of Inje University, Ilsan Paik Hospital (IRB

no. 2015-07-025). This study was conducted in accordance

with the principles of the Declaration of Helsinki and its

later amendments.
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We categorized the patients into responders and non-

responders based on their CAPS-5 scores. For the clinical

assessment, total severity scores (Sev) and the total number of

prevalent PTSD symptoms (Sx) were obtained for each patient.

These scores statistically significantly decreased in both groups

after tDCS stimulation [Sev: t(47) = 6.33, p < 0.001, Sx: t(47) =

6.89, p < 0.001]. Patients whose PTSD scores (total Sev scores

and total Sx scores) improved bymore than 50%were designated

responders. The remaining participants were designated non-

responders. In total, 31 participants were designated non-

responders and the remaining 17 participants were designated

responders.

Demographic data for the participants in each group are

presented in Table 1. We additionally conducted comparisons

between responders and non-responders on the different sub-

scales of the main PTSD symptoms. The sub factors of PTSD

symptoms in CAPS-5, intrusions (B), avoidance (C), negative

affect and anhedonia (D) and externalizing, anxious arousal

and dysphoric arousal (E), were obtained for comparison.

Independent t-tests were employed to compare age, educational

attainment, and Sev and Sx scores and other main scales

across groups. Sev and Sx scores and other scales include

pre- and post-treatment values measured before and after

treatment, respectively.

2.2. tDCS protocol and application

Each tDCS session was applied using two saline-soaked

sponge pads, with the anodal electrode positioned over the

dorsolateral prefrontal cortex (with a F3 electrode location

selected according to the International 10/20 System) and a

cathode electrode placed over the F4 electrode. The position

of the anode (F3) electrode montage is important in patients

with posttraumatic stress disorder (PTSD) as it is closely related

to the left dorsolateral prefrontal cortex (DLPFC). DLPFC

plays a central role in emotional processing by regulating

fear expression through projections to the vmPFC (19) and

lateralized DLPFC dysfunction could be the underlying cause

of stress and memory problems shown in PTSD patients (20).

In addition, patients with PTSD showed weakly connected and

hypoactive central executive network (CEN) where DLPFC is

involved as a major node (21). We further applied tDCS on

athode (F4) as the position determines current intensity of

stimulation at the left DLPFC by affecting neuromodulation

under the anode (22). Therefore, considering (a) previous

studies supporting the relationship between abnormalities found

in PTSD patients and DLPFC dysfunction (23, 24) and (b) the

efficacy of tDCS for PTSD on DLPFC (25), this study involved

right and left DLPFC (F3 and F4) as the stimulation area of tDCS

for patients with PTSD.

The active stimulation protocol involved applying 2.0

mA intensity for 20 min. Participants sat quietly during

TABLE 1 Demographic and clinical characteristics of responders and

non-responders.

Responders

(N = 17)

Non-responders

(N = 31)

p

Age (years) 51.18± 10.84 50.61± 12.17. 0.874

Sex 0.489

Male 7 (41.2) 16 (51.6)

Female 10 (58.8) 15 (48.4)

Education 10.59± 4.37 11.65± 3.27 0.348

(years)

CAPS-5

Pre

B Sev 11.76± 5.95 10.77± 4.92 0.539

B Sx 3.47± 1.70 3.58± 1.52 0.973

C Sev 5.71± 2.49 3.48± 2.42 0.004

C Sx 1.59± 0.62 1.19± 0.83 0.115

D Sev 13.65± 6.59 13.16± 6.16 0.8

D Sx 4.06± 1.52 4.10± 1.80 0.815

E Sev 11.65± 4.43 10.35± 4.56 0.348

E Sx 3.53± 1.07 3.52± 1.39 0.973

Total Sev 42.76± 16.22 37.42± 13.29 0.224

Total Sx 12.65± 3.69 12.26± 4.07 0.745

Post

B Sev 2.29± 2.17 7.87± 3.86 <0.001

B Sx 0.65± 0.79 2.61± 1.54 <0.001

C Sev 0.53± 1.23 4.32± 2.69 <0.001

C Sx 0.24± 0.56 1.55± 1.12 <0.001

D Sev 2.88± 2.87 10.77± 5.70 <0.001

D Sx 0.71± 0.92 3.42± 1.84 <0.001

E Sev 4.24± 2.82 7.13± 3.42 0.005

E Sx 1.35± 1.00 2.48± 1.43 0.008

Total Sev 9.94± 6.02 30.1± 9.64 <0.001

Total Sx 2.94± 2.3 10.06± 3.56 <0.001

PTSD, post-traumatic stress disorder; CAPS-5, clinician-administered PTSD scale for

DSM-5; Sev, severity; Sx, symptoms; B, intrusions factor of CAPS-5; C, avoidance factor

of CAPS-5; D, negative affect and anhedonia factor of CAPS-5; E, externalizing, anxious

arousal and dysphoric arousal factor of CAPS-5.

the stimulation session, while the researcher monitored and

recorded tDCS electrode impedances. Each subject received 1

tDCS session per day during 10 days. Thus, total 10 session of

tDCS were applied for a subject.

2.3. EEG data acquisition

For EEG acquisition, the participants were seated in a

slightly dim room for 3 min with their eyes-closed and in

a relaxed state. During the experiment, all the participants

were told in advance not to move or sleep. EEG data were

acquired using a NeuroScan SynAmps amplifier (Compumedics
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USA, Charlotte, NC, USA), and a NeuroScan Quick-Cap with

62 Ag/AgCl electrodes was placed according to the extended

international 10–20 system. All recorded EEG data were

sampled at 1,000 Hz and filtered using a 0.1–100 Hz bandpass

filter. The electrode impedance was kept below 5 k�, with

ground and reference electrodes located on the forehead and Cz

reference point, respectively.

2.4. EEG preprocessing

RawEEGdata from 62 EEG channels (excludingHEO, VEO,

and EKG channels) were preprocessed using EEGLAB (26) and

MATLAB R2020a software (MathWorks, Natick, MA, USA).

EEG data sampled at 1,000 Hz were re-referenced according

to the common average reference and the baseline data was

removed. A Butterworth bandpass filter was used to filter the

EEG data with cutoff frequencies of 1 and 50 Hz. Artifacts

caused by movements, such as those of the muscles and eyes,

were rejected using a independent component analysis (ICA).

More specifically, all independent components were filtered by

visual inspection and segments containing large artifacts were

excluded. After pre-processing, EEG segments with a length of

150 s were prepared based on data from 48 patients.

For each segment, power spectral density (PSD) was

extracted using Welch’s method (27). Welch PSD values were

obtained using the built-in method in MATLAB (28, 29). More

specifically, data were divided into several 1 s segments with

50% overlap. Next, each segment was windowed using the

Hamming window and the periodogram of each windowed

semgent was obtained after a fast Fourier transform. Finally, all

periodograms were averaged to obtain the Welch PSD values

for each participant using the average powers in five specific

frequency bands: delta (1–4 Hz), theta (4–8 Hz), low alpha (8–10

Hz), high alpha (10–12 Hz), and beta (12–30 Hz).

2.5. Feature extraction

Figure 1 summarizes the analytical procedure used in this

study. First, we investigated treatment outcomes by comparing

PSD values before and after tDCS treatment, as shown in the

upper pathway in Figure 1. To assess differences, we computed

PSD change rates after treatment. Changes in the frequency

band power over the treatment period were calculated using the

following equation:

Pchange(f ) =
Ppre(f )− Ppost(f )

Ppre(f )
(1)

where Ppre(f ) is the pre-treatment PSD in a certain

frequency band, and Ppost(f ) is the post-treatment PSD in

the same frequency band. By comparing Pchange(f ) between

responders and non-responders, we attempted to identify

frequency bands that exhibited therapeutic effects and used these

bands to predict treatment responses.

To predict treatment response, only pre-treatment PSD was

used to classify responders and non-responders. Pre-PSD was

used as the input to the classifier, as shown in the lower path

in Figure 1.

2.6. Statistical analysis

An independent t-test was used to evaluate the mean

difference in PSD change rates between responders and non-

responders. Since the number of responders was less than 30,

we performed the Kolmogorov-Smirnov test for normality and

Levene’s test for equality of variance. If normality was not

satisfied, we employed a Mann-WhitneyU-test instead of a two-

sample t-test as appropriate. Moreover, we used multiple EEG

channels to compare PSD change rates between the two groups.

P-values were adjusted using the false discovery rate (FDR) to

control for Type I errors. All statistical analyses were performed

using R Statistical Software (version 4.1.1; R Foundation for

Statistical Computing, Vienna, Austria).

2.7. Classification

An SVMwas used to classify responders and non-responders

using the PSD of the pre-treatment phase. SVM is well-known

as a classic supervised learning classifier (30). In this study,

the radial basis function was selected as the kernel function

in the SVM to model complex nonlinear relationships. We

used the grid search method with a range of C and γ values

(ranging from 0.001 to 100) to adjust the optimal combination

of SVM parameters. One combination of hyperparameters with

the best cross-validation accuracy was selected and used to

train an SVM on the entire dataset (31). Using each EEG

channel’s average powers from five frequency bands, we first

split the data into training and testing sets for five-fold cross

validation. For each fold, a grid search was performed to identify

the optimal parameter values producing the best predictive

model. Model evaluation was based on evaluations of the area

under the receiver operating characteristic (ROC) curve (AUC).

We calculated classification performance using the AUC as

well as sensitivity and specificity. To avoid imbalance between

two classes and get reasonable conclusion, we also computed

balanced accuracy which is based on two common metrics,

sensitiviy and specificity.

More specifically, we evaluated classification performance

based on readings from a single EEG channel for each frequency

band. We then improved the SVM model using multiple

channels, starting from a single channel and iteratively adding

channels one by one. We added a channel that best improved
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FIGURE 1

The flowchart of overall analysis procedure.

the model until all 62 channels were used for training. We aimed

to design EEG channels for each frequency band to provide

effective predictors of treatment outcomes. We also performed

the cluster-based permutation test to deal with the multiple

comparison problem in multi-channel EEG data. We produced

1,000 random permutations and p-values were obtained from

the best SVM model which showed the highest AUC in multi-

channel classification (32).

3. Results

3.1. Statistical analysis for treatment
outcomes

To determine the frequency bands that could best select

treatment outcomes following tDCS in patients with PTSD,

we compared the rates of change in PSD values (Pchange(f ))

between responders and non-responders within five frequency

bands. After FDR correction, some channels in the theta and

beta bands showed statistically significant differences between

groups. None of the channels in the remaining three frequency

bands were found to be statistically significant. The theta band

had six significant channels (F7, F8, FC6, FT8, P2, and POZ)

and the beta band had 23 significant channels (AF3, AF4, F5, F3,

F1, F2, F4, F6, F8, FC5, FC4, FC6, FT8, C3, C4, T8, CP3, CPZ,

CP2, CP4, PZ, P2, and POZ) at a statistical significance level of

0.05. Although there were statistically significant differences of

the rates of change in PSD values (Pchange(f )) in those frequency

bands, there were no existing significant differences in baseline

power (pre-PSD). The F8 channel in the theta band [t(39.348)
= –4.18, p < 0.001] and the FC6 channel in the beta band

[t(42.95) = –3.88, p < 0.001] showed the strongest statistically

significant differences. Figures 2A,B show the topographies of

the averaged beta PSD change rates in responders and non-

responders in beta frequency. As can be clearly seen in the figure,

responders exhibited decreased beta PSD values within all 62

channels after treatment, with greater reductions especially in

the frontal and centro-parietal regions. In contrast, in most non-

responders, beta PSD values increased after treatment. Figure 2C

illustrates the statistical significance of the topography of the

logarithmic FDR-corrected p-values. Statistical significance was

observed in the channels located in the frontal and centro-

parietal regions. The FC6 channel in the frontal region, which

showed the statistically strongest significant difference, showed

a relatively large decrease of PSDs in responders (pre-PSD: 0.481

± 0.32, post-PSD: 0.331 ± 0.172). On the other hand, it shows

relatively large increase in non-responders (pre-PSD: 0.383 ±

0.286, post-PSD: 0.422± 0.355).

3.2. Prediction of treatment response

To determine whether pre-PSD reading could be used to

predict treatment response, an SVM was trained to classify

responders and non-responders. First, as a single-channel

approach, the SVM model was trained for each channel and

frequency band to identify the channels and bands that best

represented the treatment response. SVM classification of all

five bands accurately distinguished tDCS responders from non-

responders, with AUCs ranging from 0.71 to 0.81 (delta: AUC =

0.81 at Cz; theta: AUC = 0.71 at FCz; alpha low: AUC = 0.72

at FC5; alpha high: AUC = 0.79 at FC2; beta: AUC = 0.78 at

Pz). Figure 3 shows the topographies of the SVM classification

performances in terms of the AUC for each frequency band.

Second, the multichannel approach improved the SVM

classification between the two groups to a greater degree. More

specifically, as shown in Figure 4, all five frequency bands

usually demonstrate that the AUC increases for the first few

channels and then continues to decrease as the number of

channels increase. Therefore, the prediction accuracy reached its

maximum in all frequency bands when using this multichannel

approach. For the delta example, the single best prediction

accuracy was 0.81 at Cz. However, adding the O1, FC2, FC1, and
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FIGURE 2

Topographies of beta band averaged power spectral density (PSD) change (pre-post) rates in (A) responders and (B) non-responders. (C)

log-scaled adjusted p-values (corrected) from false discovery rate (FDR) obtained from two-sample t-tests also in Beta band. Values between

electrodes are interpolated.

FIGURE 3

Single-channel support vector machine (SVM) performance (area under the receiving operating characteristics curve [AUC]) for each electrode.

(A) Delta; (B) Theta; (C) Alpha Low; (D) Alpha High; (E) Beta.

F2 channels provided a much better performance at 0.93. Table 2

summarizes the prediction performance of the single-andmulti-

channel approaches in each frequency band.

4. Discussion

The present study investigated tDCS treatment responses

using statistical analysis and machine learning techniques

for EEG data in patients with PTSD. Each individual was

defined as a responder or non-responder to tDCS treatment

depending on psychiatric symptom changes assessed by the

CAPS-5 evaluation. Since we acquired multi-channel EEG

data before and after tDCS treatment, a comparison could

easily be made to find the EEG feature best predicting

responsiveness. Using the pre-delta PSDs for five selected

channels (Cz, O1, FC2, FC1, and F2), the SVM model

presented in this paper was able to predict an individual’s tDCS

responsiveness with an AUC of 0.93, despite the small size of the

training data.

4.1. EEG for monitoring tDCS

Together with electrical stimulation, EEG monitoring

can provide additional mechanistic information as well as
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FIGURE 4

Support vector machine (SVM) prediction accuracy in the area under the receiving operating characteristics curve (AUC) for each frequency

band. The red dots indicate the highest classification results of that frequency range.

TABLE 2 Support vector machine (SVM) classification results for the best channel per frequency range with pre-power spectral density (PSD)

readings.

Frequency

band

Single max Multiple max

Channel AUC Sensitivity Specificity

Balanced

accuracy

(%)

Channel AUC Sensitivity Specificity

Balanced

accuracy

(%)

p-value

Delta CZ 0.81 0.7 0.8 75.2 CZ, O1, FC2, FC1, F2 0.93 0.77 0.87 81.7 <0.001

Theta FCZ 0.71 0.35 0.81 58.0

FCZ, POZ, CPZ, FZ,

FC4, FC3, F6, FC1,

FC2, CP1, T8, AF4,

CP2, CP4, F4, F2, C2,

CZ, P6, CP5, FC5,

P7, C6

0.79 0.12 0.97 54.2 0.006

Alpha Low FC5 0.72 0.32 0.91 61.5 FC5, CP6, P2, PZ 0.76 0.13 0.93 53.3 0.011

Alpha High FC2 0.79 0.53 0.87 70.2 FC2, P4 0.8 0.32 0.83 57.5 0.04

Beta PZ 0.78 0.37 0.81 59.0 PZ, CP5 0.87 0.73 0.78 80.0 0.002

AUC, area under the receiver operating characteristics curve.

information regarding the clinical effects on brain function.

EEG has been widely used to measure the cortical effects of

tDCS. For example, Boonstra et al. (33) presented changes

in mean frequency, demonstrating that the mean frequency

was statistically significantly reduced after tDCS stimulation

as compared to sham stimulation. Song et al. (34) observed

a statistically significant increase in beta power during

stimulation. Cavinato et al. (35) observed changes in cortical

EEG oscillations, such as alpha and beta waves, in patients

with disorders of consciousness. Similarly, we observed theta

and beta power changes that were similar to other studies

demonstrating spectral differences in PTSD patients with tDCS
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treatment (36, 37). These two frequency bands, theta and beta,

have been reported as the key observable indices for clinical

effects of tDCS treatment related to major symptoms of PTSD,

such as stress, depressive and anxiety. According to Palacios-

García’s study, the increase in psychosocial stress and stress-

related anxiety was related to specific changes in beta-band

(38). Dunkley also reported theta band plays a critical role in

attentional, depressive and anxiety-related sequelae observed

in PTSD populations (39). Therefore, our findings clinically

suggest that the alleviation of PTSD symptoms, which is the

effect of tDCS treatment, can be observed and monitored in

patients’ EEG.

Most of the aforementioned studies reported an increase in

spectral power after stimulation, and this result was replicated

in our study. However, when the participants were divided

into responders and non-responders, this trend was observed

only for non-responders. More specifically, the non-responders

showed an increase, whereas the responders showed a decrease

after treatment. As there were statistically significant group

differences in PTSD Total sev and sx scores after treatment, as

well as some sub scales of the CAPS (B, C, D and E), these

spectral power differences could be related to clinical effects

to PTSD in major symptoms such as intrusions, avoidance,

negative affect and anhedonia. Especially in a key disease

factor (avoidance, P = 0.004), the responder group differed

significantly from the non-responder group, with a large effect

size. Both groups present differently clinicaly at baseline. This

avoidance factor in CAPS-5 is mainly related to the functional

deterioration of the left frontal lobe (40, 41). The left frontal

anodal tDCS performed in our study is a left frontal lobe

activating protocol. Therefore, these numerical differences in the

treatment responders suggest that the effect of tDCS treatment

was clearly applied in the treatment responders.Since evaluating

differences between responders and non-responders may help

in identifying patients responsive to tDCS at early stages of

treatment, it is crucial to compare patient groups through

EEG monitoring.

4.2. Machine learning for predicting
responsiveness

Owing to recent advances in machine learning, clinical

outcomes can now be measured or evaluated using

electrophysiological data. For instance, a study by Zandvakili

et al. (42). presented an approach for predicting the clinical

response to brain stimulation in mental disorders using

resting EEG readings. Specifically, these researchers proposed

an automated EEG classification to predict tDCS treatment

outcomes in patients with major depressive disorder (MDD).

Based on their proposed cognition labels, the evaluated machine

learning classifier exhibited a high predictive performance

(87%) using a single channel and an even higher predictive

performance (92%) using multiple channels. Albizu et al. also

reported an SVM model that could predict individual tDCS

responsiveness with 86% accuracy (12).

Similar to the study conducted by Zandvakili et al,

we evaluated prediction performance while comparing single

channels and multiple channels. By comparing the performance

of each of the five frequency bands, it was possible to identify

specific channels and bands with high prediction performance.

The proposed approach demonstrated that it is possible to

predict therapeutic outcomes using resting EEG readings with

relatively high performance and accuracy (AUC = 0.93). This

result showed higher predictive performance than the case of

logistic regression was performed with the baseline avoidance

scale (AUC = 0.75), a key disease factor that showed a significant

difference between the two groups in baseline. Furthermore, in

each frequency band, EEG electrodes located in the middle line

(e.g., FCZ, CZ, PZ) and electrodes placed in frontal region (e.g.,

FC5, FCZ, FC2) commonly showed the highest performance.

The accurate prediction of tDCS response is meaningful because

the efficiency of clinical treatment can be substantially increased

given this information.

4.3. Study limitations

Despite the high performance of the predictions generated

in this study, we acknowledge some limitations of this work.

For example, the sample data were based on subjects who

were diverse in age, with patients ranging in age from their

20s to their 70s. According to Bokszczanin’s study, treatment

outcomes may vary according to age and gender (43). However,

differences in age-specific effects of tDCS treatment were not

clearly observed in this study. In addition, the CAPS-5-based

patient group assignments may not be divided clearly. As the

degree of improvement varies substantially from person to

person, some people are located near the boundary between

response and nonresponse. We anticipate extending our study

to a much larger and more comprehensive study population of

patients with PTSD so that the therapeutic effects of tDCS can

be comprehensively identified and predicted.

5. Conclusions

The current study investigated tDCS treatment

responsiveness in patients with PTSD using EEG spectral

power and machine learning-based prediction methods. In

this study, the evaluated patients in the two groups showed

statistically significant differences in EEG spectral power in the

theta and beta frequency bands with respect to their treatment

response. In addition, we demonstrated that machine-learning-

based classifications can predict tDCS treatment outcomes
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with considerable accuracy. From these results, it is possible

to identify specific channels and bands that most accurately

represent the tDCS response in patients with PTSD. Despite one

of the aforementioned limitations (i.e., that we only considered

two labels for CAPS-5), we conclude that these results have

the potential to hold new insights as a basis for diagnosing

and predicting the clinical response to tDCS treatment. These

results could therefore provide critical information informing a

meaningful approach for the early identification of patients who

might be clinically affected by tDCS treatment, thus reducing

the cost and time these patients would otherwise expend during

the treatment process. Our findings inform future research

directions, and, if confirmed, are expected to ultimately inform

medical guidelines.
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