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Schizophrenia is a psychiatric disorder characterized by hallucinations, anhedonia,

disordered thinking, and cognitive impairments. Both genetic and environmental factors

contribute to schizophrenia. Dysbindin-1 (DTNBP1) and brain-derived neurotrophic

factor (BDNF ) are both genetic factors associated with schizophrenia. Mice

lacking Dtnbp1 showed behavioral deficits similar to human patients suffering

from schizophrenia. DTNBP1 plays important functions in synapse formation

and maintenance, receptor trafficking, and neurotransmitter release. DTNBP1 is

co-assembled with 7 other proteins into a large protein complex, known as the

biogenesis of lysosome-related organelles complex-1 (BLOC-1). Large dense-core

vesicles (LDCVs) are involved in the secretion of hormones and neuropeptides, including

BDNF. BDNF plays important roles in neuronal development, survival, and synaptic

plasticity. BDNF is also critical in maintaining GABAergic inhibitory transmission in the

brain. Two studies independently showed that DTNBP1 mediated activity-dependent

BDNF secretion to maintain inhibitory transmission. Imbalance of excitatory and inhibitory

neural activities is thought to contribute to schizophrenia. In this mini-review, we will

discuss a potential pathogenetic mechanism for schizophrenia involving DTNBP1, BDNF,

and inhibitory transmission. We will also discuss how these processes are interrelated

and associated with a higher risk of schizophrenia development.

Keywords: schizophrenia, dysbindin-1, BDNF, GABAergic transmission, vesicular trafficking, activity-dependent

release

INTRODUCTION

Schizophrenia is a neurodevelopmental disorder with a life-time prevalence of ∼0.4% (1). It is
characterized by positive symptoms (presence of auditory and visual hallucinations, delusions,
disorganized behaviors), negative symptoms (loss of motivation, anhedonia, and blunted affect),
and cognitive deficits (impairments in learning and problem solving) (2, 3). A combination of
different genetic and environmental factors can increase the risk for schizophrenia (4). Studies have
shown that schizophrenia has a heritability of∼80%, and twin studies established that genetics play
an important role in the development of schizophrenia (5, 6). Further studies suggest significant
associations between individuals with high schizophrenia polygenic risk scores and comorbidity
with cognitive disorders, respiratory illness, and digestive diseases (7). Genetic influences to the
development of schizophrenia are numerous and complex. In this mini-review, we will summarize
evidence for the dysfunctions in dysbindin-1 (DTNBP1), a protein coding gene regularly implicated
in schizophrenia as well as brain-derived neurotrophic factor (BDNF), and GABAergic circuit
function in relation to schizophrenia.
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DYSBINDIN-1

Dysbindin-1 (DTNBP1) is a protein encoded by dystrobrevin-
binding protein 1 gene (DTNBP1), located at chromosome
6, position 22.3 (8). It is a coiled-coil-containing protein
and found in various brain regions (8, 9). A study on
Drosophila’s neuromuscular junction using electrophysiological
screening revealed that DTNBP1 was required for presynaptic
retrograde and homeostatic regulation of neurotransmission
downstream or independently of calcium influx (10). Another
electrophysiological study reported that DTNBP1 loss led
to decreases in readily releasable pool in the calyx of Held
synapses and could be related to the cognitive impairment in
schizophrenia (11). In addition, a recent study has shown that
DTNBP1 plays an important part in the axonal mitochondrial
movement which further affects calcium homeostasis in
presynaptic terminals (12). The null protein mutation of Dtnbp1
in sandy (sdy) mice (13) displayed schizophrenia-like behaviors
and deficits in dopaminergic, glutamatergic, and GABAergic
neurotransmission (14–21). Patients with schizophrenia have
significantly lower levels of DTNBP1 mRNA in the dorsolateral
prefrontal cortex, hippocampus, and nucleus accumbens
compared to healthy controls (22). In the post-mortem brain,
presynaptic DTNBP1 is reduced in synaptic terminals of
hippocampal formations, which may contribute to cognitive
deficits commonly seen in schizophrenia (9). Genetic studies
have also provided evidence of DTNBP1 impacting susceptibility
to schizophrenia. Genome-wide association studies have
identified multiple single nucleotide polymorphisms (SNPs) of
DTNBP1 as potential risk factors for schizophrenia (23). Several
studies conducted in Japanese, Irish, and Chinese populations
suggest that genetic variation in DTNBP1 is associated with
schizophrenia (8, 24, 25). DTNBP1 is also shown to be involved
in initiating an immune response to environmental stimuli,
which might explain the increased vulnerability of schizophrenia
due to environmental impact in combination with genetic
influence (26).

Studies have established the important role of DTNBP1 in
intracellular protein trafficking, which affects various neuronal
functions, including synapse formation and maintenance,
receptor trafficking, and transmitter release (27–32). In neurons,
DTNBP1 is located in the cytoplasm and can be assembled with
several other proteins into a large protein complex, known as the
biogenesis of lysosome-related organelles complex-1 (BLOC-1).
BLOC-1 contains eight proteins: DTNBP1, cappuccino, pallidin,
muted, snapin, and BLOS1-3 (33). In the central nervous system,
BLOC-1 subunits, including DTNBP-1A, -1B, and -1C, are found
in multiple brain regions, including hippocampal formation
(HF) and are associated with synaptic vesicles or postsynaptic
densities (34, 35). Previous studies reported DTNBP-1A as
playing an important role in neuron development and spine
growth (36–40). The DTNBP-1B subunit is present in humans,
but not in mice (34). In studies involving genetically engineered
mice, DTNBP-1B forms aggresomes at perinuclear regions in
order to separate aggregated proteins produced by misfolded
protein (41, 42). However, in humans, DTNBP-1B is diffused
within the neuronal nuclei and axon terminals (34). Both

DTNBP-1B and -1C isoforms are reduced in schizophrenic
HF (34, 35) and significant reduction of DTNBP-1C was
found in dorsolateral prefrontal cortex in schizophrenia (43).
An experiment involving sdy mice with mutations in both
DTNBP-1A and -1C indicated that decreases in DTNBP-1C
led to decreased hilar mossy cells of dendate gyrus (35). This
indicates the role of DTNBP-1C in maturation of newborn
neurons in the dendate gyrus in a BLOC-1 independent manner
(35). In addition, systematic investigation of BLOC-1 genes in
schizophrenia patients revealed a significant association between
the BLOC1S3 gene and schizophrenia (44). During embryonic
and early postnatal development, BLOC-1 is expressed more
abundantly (45), which implicates an important role of BLOC-
1 during early-life neural development. Another role of the
BLOC-1 complex is the biogenesis of melanosomes and platelet-
dense granules through self-assembly and interaction with actin
cytoskeleton (46). Actin polymerization complex is a necessary
organelle for synaptic function, and the expression of this actin
cytoskeleton was reduced in DTNBP1-deficient cells (47). Other
studies have shown that DTNBP1 recruited BLOC-1 is important
for the regulation of oxytocin, metabotropic glutamate receptor,
synaptic NMDA receptors, serotonin transmission, activity-
dependent synaptic vesicle recycling, and synaptic plasticity (17,
48–55). Disruption of the BLOC-1 complex can lead to changes
in the formation of large dense-core vesicles (LDCVs), which
are involved in the secretion of hormones and neuropeptides.
Studies have shown that LDCVs mediate the release of
monoamines (Serotonin, Dopamine, and Noradrenaline) and
peptides, including substance P, BDNF, and oxytocin (56). Of
BLOC-1 complex proteins, loss of DTNBP1 or muted both led
to the enlargement of LDCVs, and loss of DTNBP1 alone led
to reduced LDCV numbers in cells from mice while muted
deletion did not change the LDCV number (57). The release
of LDCVs in neurons is also activity-dependently regulated in
the central nervous system. For example, deletion of Munc13,
a classic presynaptic protein involved in anchoring and activity-
dependent release of synaptic vesicles, led to a reduction of LDCV
release (58). BLOC-1 also contributes to the activity-dependent
vesicle release. For example, it is shown thatmutations of pallidin,
whose encoded protein directly binds with DTNBP1 in BLOC-
1, disrupted activity-dependent synaptic vesicle recycling (54).
Therefore, DTNBP1 plays an essential role in activity-dependent
neurotransmitter release, and DTNBP1 downregulations or
genetic variations may contribute to schizophrenia by decreasing
the size of readily releasable pool of synaptic vesicles which
regulates synaptic transmission.

BDNF

Another gene known to be associated with schizophrenia
is brain-derived neurotrophic factor (BDNF) located in
chromosome 11p13 (59). BDNF has been known to play
important roles in neuronal development, survival, and synaptic
plasticity (60). A single nucleotide polymorphism rs6265 in
BDNF gene, known as Val66Met, impacts intracellular trafficking
and activity-dependent secretion of BDNF (61), which can
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FIGURE 1 | Representation of GABAergic circuitry in prefrontal cortex. Top row: A sample diagram depicting typical projections in a healthy system with functioning

feedback loops and balanced excitatory and inhibitory inputs and outputs. Botom row: a sample diagram of this system altered by GABAegic cell changes seen in

Schizophrenia. This altered system includes reduced inhibitory GABAergic signaling resulting in downstream hyperactive excitatory transmission. These could result in

disrupted feedback systems and maladaptive plastic changes in vital subcortical regions.

subsequently lead to memory impairment (62). A case-control
association study of the Han Chinese population revealed a
positive correlation between rs6265 and schizophrenia (63).

DTNBP1 is involved in the secretion of BDNF from pyramidal
neurons in the cortex (64). Super-resolution imaging showed

that DTNBP1 was located close to BDNF in the cytoplasm of
neurons, possibly on LDCVs (65). Deletion ofDtnbp1 in primary

cultured neurons did not change spontaneous BDNF release but
did change activity-dependent BDNF secretion (65, 66). These
results suggest that DTNBP1 binds to LDCVs containing BDNF
and regulates its activity-dependent secretion. The activity-
dependent secretion of BDNF exerts a profound effect on
synapse formation and maintenance as well as circuit function
(67, 68). Activity-dependent production and secretion of BDNF
exhibits a synapse-type specific effect on inhibitory synapses
of hippocampal neurons. For example, disruption of activity-
dependent transcription of BDNF selectively affects soma-
targeting GABAergic synapses of hippocampal CA1 neurons, but
not other types of GABAergic synapses or excitatory synapses of
these neurons (69). This study suggests that activity-dependent
BDNF production and its subsequent secretion from pyramidal
neurons selectively affects the maintenance of those soma-
targeting inhibitory synapses. Consistent with synapse-specific
regulation by the activity-dependent secretion of BDNF, deletion
of Dtnbp1 in mouse prefrontal cortex (PFC) pyramidal neurons
exclusively affected GABAergic inhibitory synaptic transmission,
but not excitatory transmission (65), which has also been
observed in cultured neurons (66). The resulting reduction
in inhibition showed similar synapse-type specificity, as those

located on the soma of pyramidal neurons were most affected.
In contrast, GABAergic synapses targeting distal dendrites
showed normal functions (65). The selective deletion of DTNBP1
also induced a behavioral deficit in pre-pulse-inhibition (PPI)
that was rescued by direct administration of BDNF into the
affected brain region (65). PPI deficiency is useful for modeling
schizophrenia in animals (70) and has been used for decades
to assess pharmaceutical efficacy in human patients suffering
from schizophrenia (71). PPI behavioral deficits that were
reversed by local infusion of BDNF in Dtnbp1 knockout mice
with schizophrenia-like behavior underscores the importance
of DTNBP1 in regulating BDNF secretion and its role in the
development and treatment of schizophrenia (65).

GABAergic TRANSMISSION

The balance between excitatory and inhibitory transmission
in the brain is vital for normal cognitive function. Studies
have shown that dysfunction in GABAergic inhibitory circuits
can lead to impaired cognition (72) and may contribute
to schizophrenia (Figure 1). GABAergic interneurons are a
heterogeneous group of neurons often categorized into at
least three groups: parvalbumin-positive (PV+), somatostatin-
positive (SST+), and 5-hydroxytryptamine 3a receptor-positive
(5HT3R+) interneurons (73, 74). PV+ interneurons are one
of the most abundant GABAergic interneurons in the cortex,
comprising roughly 30% of interneurons in the cortex. PV+
neurons express parvalbumin, a Ca2+-binding protein in the
cytoplasm, which could regulate the short-term plasticity of
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PV+ neurons (75). The majority of PV+ neurons emerge from
Medial Ganglionic Eminence during development and migrate
to the cortex (76). Mature PV+ neurons showed extensive
axon arbors and connections to adjacent pyramidal neurons,
which are considered non-selective (77). The axons of PV+
neurons mostly target soma and axon initial segment regions
of the post-synaptic neurons; The majority of PV+ neurons
show a high-frequency firing pattern when excited (76). These
properties combined with their unique axon terminal location
render PV+ neurons the major inhibitory driving force in the
cortex (76). Moreover, PV+ neurons are also interconnected
via electrical synapses, or gap junctions, making them more
capable of synchronizing the inhibition of adjacent neurons (78).
Of the other types of GABAergic interneurons, SST+ neurons
mainly target the dendrites and soma of post-synaptic neurons,
while 5HT3R+ neurons more likely target the distal dendrites
of post-synaptic neurons (79, 80). The axon targeting specificity
of these interneurons, together with differences in synaptic
strength, enables diverse functions of neuronal micro-circuits.
For example, in a simple circuit configuration of PV+, SST+, and
excitatory neurons, the overall effect of SST+ neuron activities
on excitatory neurons could be either inhibition or dis-inhibition
when the microcircuit was located in different cortical regions
(81, 82).

GABAergic transmission is regulated by the activity of
glutamic acid decarboxylase (GAD) that participates in
GABA synthesis (72). Several studies indicated that decreased
expression of 67 kD isoform of GAD (GAD67) is associated with
schizophrenia and bipolar disorders (83, 84). Analysis of GAD
immunoreactivity in post-mortem brains from schizophrenic
patients also reveal reduced GAD in patients compared to
controls, indicating GABAergic dysfunction in schizophrenia
(85). Interestingly, DTNBP1 emerges as one of the candidates
for regulating inhibitory synapse strength. In vitro recordings
of Dtnbp1 deficient mice revealed significant decreases in
GABAergic transmission at both pre- and post-synaptic
levels and decreased parvalbumin markers (86). Deletion
of DTNBP1 specifically in pyramidal neurons reduced the
soma-targeting inhibitory synapse density without alterations
in dendritic inhibitory synapses or excitatory transmission
(65). Consequently, application of BDNF into extracellular
space rescued this type-specific reduction of inhibitory synapses
(65). Taken together, these results indicate that DTNBP1 plays
several important roles in regulating inhibitory transmission and

pathogenic mechanisms of schizophrenia, at least in part via
BDNF secretion.

DISCUSSION

Via regulating activity-dependent BDNF secretion, DTNBP1
could regulate both neural development and inhibitory
circuit function. It is also likely that malfunctioning of
other DTNBP1 related processes could induce impairments
that lead to the development of schizophrenia. While
it is not yet known exactly how DTNBP1 regulates the
functionality of different neural circuits in brain regions
involved in schizophrenia, more studies are necessary to
identify whether such a circuit change contributes to its
role in the pathogenesis of schizophrenia. Modern in vivo
imaging techniques can be harnessed to study how these
different biological markers contribute to schizophrenia
in animal models. For example, mouse models displaying
schizophrenia-like behavior can be imaged with miniaturized
microscopes (miniscopes) (87–93) to examine longitudinal
changes in activity of excitatory and inhibitory neurons in brain
regions implicated in schizophrenia. Simultaneous optogenetic
manipulations of circuitry are also possible using miniscopes
(94, 95) to explore how in vivo manipulation of circuitry
impacts behavior using animal models for schizophrenia.
These tools will further advance schizophrenia research in
animals and help develop potential therapeutic interventions in
human patients.
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