
MINI REVIEW
published: 14 April 2022

doi: 10.3389/fpsyt.2022.886918

Frontiers in Psychiatry | www.frontiersin.org 1 April 2022 | Volume 13 | Article 886918

Edited by:

Hsien-Yuan Lane,

China Medical University, Taiwan

Reviewed by:

Tomiki Sumiyoshi,

National Center of Neurology and

Psychiatry, Japan

Chieh-Hsin Lin,

Kaohsiung Chang Gung Memorial

Hospital, Taiwan

Kenji Hashimoto,

Chiba University, Japan

*Correspondence:

Gina Chapa-Koloffon

ginachapak@gmail.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Molecular Psychiatry,

a section of the journal

Frontiers in Psychiatry

Received: 01 March 2022

Accepted: 28 March 2022

Published: 14 April 2022

Citation:

Khoodoruth MAS,

Estudillo-Guerra MA,

Pacheco-Barrios K, Nyundo A,

Chapa-Koloffon G and Ouanes S

(2022) Glutamatergic System in

Depression and Its Role in

Neuromodulatory Techniques

Optimization.

Front. Psychiatry 13:886918.

doi: 10.3389/fpsyt.2022.886918

Glutamatergic System in Depression
and Its Role in Neuromodulatory
Techniques Optimization
Mohamed Adil Shah Khoodoruth 1†, Maria Anayali Estudillo-Guerra 2†,

Kevin Pacheco-Barrios 3,4, Azan Nyundo 5, Gina Chapa-Koloffon 6* and Sami Ouanes 1

1Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar, 2Department of Physical Medicine and Rehabilitation,

Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States, 3Neuromodulation Center and

Center for Clinical Research Learning, Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts

General Hospital, Boston, MA, United States, 4Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad

de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru, 5Department of Psychiatry and Mental

Health, School of Medicine and Dental Health, The University of Dodoma, Dodoma, Tanzania, 6Hospital Infantil de México

Federico Gómez, Mexico City, Mexico

Depressive disorders are among the most common psychiatric conditions and contribute

to significant morbidity. Even though the use of antidepressants revolutionized the

management of depression and had a tremendous positive impact on the patient’s

outcome, a significant proportion of patients with major depressive disorder (MDD)

show no or partial or response even with adequate treatment. Given the limitations

of the prevailing monoamine hypothesis-based pharmacotherapy, glutamate and

glutamatergic related pathways may offer an alternative and a complementary option

for designing novel intervention strategies. Over the past few decades, there has been

a growing interest in understanding the neurobiological underpinnings of glutamatergic

dysfunctions in the pathogenesis of depressive disorders and the development of new

pharmacological and non-pharmacological treatment options. There is a growing body of

evidence for the efficacy of neuromodulation techniques, including transcranial magnetic

stimulation, transcutaneous direct current stimulation, transcranial alternating current

stimulation, and photo-biomodulation on improving connectivity and neuroplasticity

associated with depression. This review attempts to revisit the role of glutamatergic

neurotransmission in the etiopathogenesis of depressive disorders and review the

current neuroimaging, neurophysiological and clinical evidence of these neuromodulation

techniques in the pathophysiology and treatment of depression.

Keywords: glutamate, neuromodulation, TMS (repetitive transcranial magnetic stimulation), direct current

stimulation (tDCS), photo-biomodulation therapy, treatment-resistant depression, depression, mini review

INTRODUCTION

Different theories were put forward to explain the etiopathogenesis of depression. This
has been a major challenge for the development of treatment options, since only 30%
of patients with MDD who receive an adequate treatment experience full remission (1).
Some of the neurobiological factors theoretically associated with depression are the activation
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of the inflammatory system, hypothalamic-pituitary-adrenal
axis disturbances, dysfunctional neuroanatomic circuits
(particularly the default mode network), abnormal neural
activity, neurotransmitter dysfunction, polymorphisms in the
5-HTT promoter region (5HTTLPR) and interactions between
brain derived neurotrophic factor (BDNF); and neurotrophic
tyrosine kinase receptor 2 (NTRK2) polymorphisms (2).

Theories of neurotransmitter dysfunction in depression
are well established. The monoamine theory proposes that
depression is caused by a decrease of the extracellular availability
of noradrenaline and serotonin. Hence, the therapeutic effect
of antidepressants aimed to increase their availability. Despite
the multiple studies about various multimodal pharmacological
and psychological treatments of depression, the evidence for
the efficacy and tolerability of these treatment options remains
insufficient (3).

The delayed, and in many cases poor, response to the
current antidepressants may suggest that there are more
neurotransmitters involved in the pathophysiology of depression
than those accounted for by the monoamine theory. Prominent
among them is the glutamatergic system which may contribute
to the dysfunction and perceived treatment poor response
(2). Given the complexity of mood disorders and the setbacks
of previous monoaminergic targets, there has been growing
evidence about non-invasive neuromodulating techniques
that target networks such as the limbic-cortical system
framework, producing both local and regional effects (4).
Growing evidence from animal and human studies shows that
structural pathology, network, and connectivity dysfunction
related to deficits in excitatory glutamate neurons and inhibitory
GABA interneurons in the cortical and limbic areas of the brain
are implicated in the genesis of depressive symptoms. As current
pharmacotherapeutic treatment for depression which focused
on the monoamine hypothesis has significant limitations,
glutamatergic related mechanisms promise to produce superior
therapeutic interventions (5). This article reviews the proposed
glutamatergic mechanisms of neuromodulation in the treatment
of depression.

GLUTAMATERGIC SYSTEM AND
DEPRESSION

Glutamate is the principal excitatory neurotransmitter in
the brain, and glutamatergic mechanisms play significant
roles in nearly all key functions affected in depressed states
(6). Postmortem studies have put forward evidence linking
glial cell abnormalities, whose role is synaptic glutamate
removal, and the pathophysiology of mood disorders (7).
Lower glutamine/glutamate levels have also been found in
the cortex of patients with depression (8). The “much
faster than usual” antidepressant effect of ketamine, discussed
later, further solidifies the role of glutamate in treatment-
resistant major depression. Ionotropic (N-methyl-D-aspartate
[NMDA], α-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic
Acid Receptors [AMPA], and kainate receptors [not discussed
herein] and metabotropic (mGluR) glutamate receptors have

been shown to be responsible for modulation of mood and
associated functions that are impaired in depression (9). These
observations have brought about the hypothesis that NMDA
and/or AMPA receptors might be novel therapeutic targets
for treating depression. Figure 1 summarizes the interplay
among NMDA-R inhibition, gamma aminobutyric acid (GABA)-
ergic interneuron disinhibition, and ketamine metabolites
hydroxynorketamines (HNK), taking ketamine—a glutamatergic
agent that has been intensively investigated over the past 20
years—as an example.

Ionotropic Receptors
These receptors are all cation-permeable, homo- and heteromeric
blocks of structurally distinct subunits (11). Even though all three
classes of ionotropic receptor pertain modulatory (allosteric)
sites, the NMDA receptor (NMDA-R), a tetrameric heteromeric
assembly of NR1 and NR2 subunits which contains glycine and
glutamate recognition sites, respectively, is unique in possessing
a co-agonist site and an additional site accessible to open channel
blockers such as ketamine, memantine, and amantadine.

In several animal models, NMDA-R antagonists have been
shown to produce antidepressant-like effects (12, 13). In humans,
Crane (14, 15) was the first to report beneficial effects of high-
dose D-cycloserine (DCS), an agent with NMDA-R activity
initially developed to treat tuberculosis, on depressed mood,
insomnia and anorexia. Although the antidepressant effects
of NMDA-R blockers have not been consistent, a potent
augmentation of antidepressant activity has been hypothesized
when ketamine, an NMDA antagonist, was co-administered
with other antidepressants to patients with depression (16, 17).
NMDA antagonists are also not devoid of psychotomimetic,
motor, and other adverse side effects, that might be mitigated by
the use of CP-101,606, an NR2B-subunit antagonist (9).

Historically, NMDARs have received more attention as they
are key players in the process of excitotoxicity, a pivotal
mechanism in stroke and neurodegenerative disorders. While
NMDA receptors allow entry of Ca2+, AMPA receptors
heterotetramer, which consists of four glutamate receptor
subunits (GluR1-4), mediate the entry of Na+ current into
the neuron, thus resulting in rapid signal transmission (18).
Compared with NMDA receptors in depression, AMPA receptors
seem to be understimulated (19). Positive allosteric modulator
Org 26576 has shown greater symptomatic improvement
compared with placebo, as well as good tolerability and
pharmacokinetic properties (20). Similarly, previous studies on
drugs that combine serotonin uptake inhibition with positive
allosteric modulation of AMPA receptors have shown that AMPA
receptors potentiators (ARPs) or “AMPAkines” may augment the
activity and perhaps expedite the onset of the therapeutic effects
of biogenic amine and second messenger-based antidepressants
(18, 21).

Ketamine: One Drug, Many Uses
Originally approved in 1970 as an anesthetic, ketamine thereafter
earned notoriety as a recreational drug of abuse (“Special K”)
because of its dissociative effects. Subsequently, in 2019, the Food
and Drug Administration (FDA) approved the S-enantiomer
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FIGURE 1 | Proposed mechanisms of action of glutamatergic modulators and other putative rapid-acting antidepressants (10).

of ketamine, esketamine, for patients with treatment-resistant
depression. Although many monoaminergic treatments exist, at
least a third of patients do not have a response after two or
more trials of antidepressant drugs and are considered to have
treatment-resistant depression (22). When evidence emerged
about its rapid (within several hours) antidepressant effects (23),
ketamine revolutionized the landscape as there was desperate
need for urgent relief of suicidal crises and faster restoration of
functioning, thereby providing a respite on economic and social

burdens of treatment-resistant depression. Efficacy and safety
studies (Studies 3002 and 3003) of esketamine in treatment-
resistant depression showed its impressive and rapid onset of
action on day 2 of treatment, along with its efficacy beyond 1
month in patients who had an initial response (24).

Ketamine is a mixture of two enantiomers (mirror image
molecules): R- and S-ketamine. (2S,6S)- and (2R,6R)-HNK
are ketamine’s major metabolites (10). Esketamine’s product
monograph enumerates increased blood pressure, dissociation,
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dizziness, and nausea among others as common side effects
(25). Nonetheless, Zanos et al. (26) indicated that (2R,6R)-
HNK did not induce any of the side effects typically associated
with ketamine.

Besides, some clinical trials have shown that by modulating
rather than inhibiting NMDARs, may prevent ketamine’s
NMDAR inhibition-mediated side effects. For example, partial
agonists at the NMDAR glycine B binding site, such as GLYX-
13 (rapastinel) and D-cycloserine, produced antidepressant
effects in both human and animal studies (27). Furthermore,
another likely more potent and novel NMDAR enhancer,
sarcosine, a glycine transporter-1 (GlyT-1) inhibitor, showed
improvement in depressive behaviors and symptoms (28, 29).
Another novel NMDAR enhancer which looks promising in the
treatment of mood disorders is sodium benzoate, a D-amino
acid oxidase (DAAO) inhibitor which prevents degradation
of D-amino acid (30). A recent clinical trial demonstrated
that sodium benzoate can decrease perceived stress, improve
cognitive function, and enhance treatment adherence in late-life
depression (31).

Metabotropic Receptors
Metabotropic glutamatergic receptors (mGluR)[homodimers],
which are mainly distributed in corticolimbic areas, can
be broadly divided into three categories according to their
structures, ligand recognition profiles and coupling to cellular
transduction systems: group I (mGluR1 and 5) receptors,
group II (mGluR2 and 3), and group III (mGluR4, 6,7 and
8) (32).

Group I mGluR antagonists mimic certain properties
of NMDA antagonists to some extent such as their
influence on mood, as well as their neuroprotective effects
(32, 33). This similarity could be explained by the indirect
facilitation of NMDA receptors by presynaptic group
I receptors, and thus promoting glutamate release in
cortico-limbic areas such as the amygdala (34). Moreover,
it has been shown that mGluR 5 antagonists have
antidepressant actions in animal models of acute and chronic
stress (35).

While group I receptors are positively coupled with
Phospholipase C via Gq, group II and III receptors, on the
other hand, are positively coupled to Gi, leading to an inhibitory
effect on adenylyl cyclase (32, 36) which subsequently suppresses
the release of glutamate (37, 38) and in turnmodulates depressive
states. As shown in Figure 1, mGluR 2/3 antagonists are thought
to enhance synaptic glutamate levels, thereby boosting AMPAR
transmission and firing rates and extracellular monoamine
levels. A few articles have suggested that the antidepressant
effects of group II antagonists is linked to their induction of
glutamate release in the serotonin-rich dorsal raphe nucleus
(DRN) (39, 40). The DRN has been strongly associated
with mood disorders such as depression (41). Furthermore,
group III agonists have been found to possess antidepressant
effects in rodent models by reducing excessive glutamate
release (42, 43).

ASSESSING THE GLUTAMATERGIC
SYSTEM

The assessment of glutamate and glutamate receptors is
of high interest across many neuropsychiatric disorders.
However, compared to other neurotransmitter systems, its in-
vivo assessments pose several challenges (44). The most common
assessment approach is the so-called “molecular imaging” with
positron emission tomography (PET) and single photon emission
computed tomography (SPECT). These techniques have the
advantage of being an in vivo technique and having an excellent
safety profile (45). Specific tracers are available for PET/SPECT
molecular imaging of subtypes of the ionotropic (NMDA,
AMPA, and kainate receptors) and metabotropic glutamate
receptors (mGluRs).

Due to conformational issues and the difficulty of utilizing
brain-penetrating ligands for amino acid receptors, there has
been little advance in developing radiotracers for ionotropic
glutamate receptors, with the exception of the NMDA receptor
(GluN2B subunit ligand). On the other hand, mGluR imaging,
particularly for subtypes 5 and 1, has been found effective
(44), and has been used in studying the pathophysiology,
endophenotypes, and drug development for depression (46–48).

Moreover, 1H magnetic resonance spectroscopy (MRS) is
also a non-invasive method for the assessment of levels of
neurometabolites including glutamatergic ones in the brain (49).
MRS takes advantage of differential protons’ magnetic fields
depending on their chemical environment. Using this property,
it helps distinguish between different chemical compounds,
and quantify their concentrations, including glutamate-related
metabolites (50). The metabolites are measured in a specified
volume, the voxel. MRS was widely used in depression studies
showing that patients with depression had lower glutamate and
glutathione (GSH) levels; however, due to overlapping signals
and low concentrations, this method is prone to signal-to-noise
ratio challenges. New methodological improvements are needed
to boost this ratio and increase the likelihood of generating robust
and reliable results in the study of depression (51, 52).

Furthermore, one can indirectly assess the glutamatergic
synapsis in the cortex using transcranial magnetic stimulation
(TMS) with paired pulse protocol. The intracortical facilitation
(ICF) metric has been associated with glutamate tonus in the
motor cortex (53, 54). In particular, pharmacological studies
with paired-pulse TMS have demonstrated that both GABA-A
agonist (55, 56) and NMDA antagonist reduced ICF (57, 58).
Thus, ICF is assumed to be mainly associated with glutamate
receptor-mediated excitatory functions in the motor cortex. Only
few studies have assessed the role of ICF in depression with
heterogenous results (59–61). New evidence on glutamatergic
tonus from non-motor cortex (such as DLPFC) areas with
combined TMS-EEG protocols is needed.

Although, none of the above methods is the perfect and
reliable technique to assess glutamatergic pathways in patients
with depression. The combination of clinical and multimodal
neuroimaging assessments is the best approach for robust and
reproducible protocols.
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MODULATORY TECHNIQUES THAT
TARGET GLUTAMATE PATHWAYS

The International Neuromodulation Society defines therapeutic
neuromodulation as “the alteration of nerve activity through
targeted delivery of a stimulus, such as electrical stimulation or
chemical agents, to specific neurological sites in the body (62).

In the last decades, several non-invasive brain stimulation
techniques have been used to treat depression in humans,
including rTMS or tDCS. Reduced connectivity in the prefrontal
cortex and anterior cingulate gyrus and reduced neuroplasticity
are found in depressive disorders and play important roles in the
pathophysiology of depression (63–66).

Brain stimulation’s effect on depression might be through
neuroplasticity modulation. Electroconvulsive therapy (ECT) is
among the oldest brain stimulation techniques that have been
used to treat refractory depression. ECT impacts plasticity-
associated transcripts and their proteins in the hippocampus
(67). Also, several clinical studies have shown an increase in
connectivity and cerebellar volume in patients with MDD (68–
72) and white matter modulation in the pathways between the
frontal and limbic areas after receiving ECT therapy (73). Animal
models showed that ECT influences the glutamatergic system; rat
models with decreased glutamate, exhibited NR2B upregulation
after ECT.

TMS is a non-invasive technique of brain stimulation that
uses the principles of electromagnetic induction to produce
an electrical current in the brain surface. A magnetic field
induces a secondary electrical current. There are different types
of TMS including rTMS which generates repetitive magnetic
pulses from seconds to minutes. rTMS is a Food and Drug
Administration (FDA) approved treatment for patients with
MDD who are resistant to antidepressant treatment. rTMS
might stimulate neurogenesis like ECT, and also modulate
brain activity and neurotransmitters including dopamine and
serotonin. Cortical excitability modulation might be impaired
in patients with depression, and TMS might improve cortical
modulation (74), and modulate functional connectivity between
the central executive work and default mode network (75).

Transcutaneous Direct Current Stimulation
TDCS
tDCS is another noninvasive brain stimulation technique for
the treatment of depressive disorders. The device of tDCS has
two electrodes, anode, and cathode. It applies a constant low
current (0.5–2mA) via electrodes on the scalp and changes the
cortical excitability.

At a neuronal level, tDCS modulates the resting membrane
potential in a polarity-dependent fashion: anodal stimulation
increases cortical excitability in the stimulated region while
cathodal decreases it.

A recent meta-analysis that included 27 randomized
controlled trials concluded that tDCS was effective in the
treatment of depression when compared to sham (76). Also,
some authors consider that tDCS should be considered as
“definitely effective” (Level A) given the current evidence.

Transcranial Alternating Current
Stimulation (TACS)
Another stimulation approach used to modulate endogenous
brain activity is tACS, which applies a weak bidirectional
and biphasic current with a sine-wave pattern to the scalp
for a duration of 2–5min (lower than the typical time for
stimulation for tDCS which is 20min) (77). Three recent
articles have showcased the potential therapeutic effects of
tACS for the treatment of MDD and cognitive impairment:
one well-structured double-blind randomized clinical trial
(78) and two case reports (79, 80). In a nutshell, these three
papers seem to indicate that tACS is a safe, even during
pregnancy, and efficacious long-term tool in MDD treatment
research. Proposed mechanisms of action for tACS have been
changes in cortical excitability, in brain electrical activity, and
biochemical changes including neurotransmitter release (77).
This non-invasive brain stimulation paradigm deserves further
investigation in larger randomized trials and with various
neurophysiologic assessments, especially that the mechanism
of tACS, in association with the glutamatergic pathway, has
been understudied.

Photo-Biomodulation
Light has a wide range of effects on physiological and
behavioral functions, including circadian rhythm, mood, and
cognition (81, 82).

Recent research studies support antidepressant effects of
light therapy, while light deprivation can induce depressive-like
behaviors, which further indicates that light signals are a powerful
modulator of mood-related behaviors.

Photo-biomodulation therapy (PBMT) is a novel and non-
invasive therapy based on delivering photons in the range of red
to near-infrared (NIR) spectra (600–1,100 nm) inside tissues (83,
84). PBMT can efficiently penetrate biological tissues including
the CNS and produce beneficial photo-biomodulation effects;
some of the proposed mechanisms of action are the increase
in ATP synthesis, neurogenesis stimulation, increase on brain
perfusion, and decrease of inflammation (85).

Recently, several animal and clinical studies on MDD have
shown that PBMT can induce antidepressant-like effects when
the prefrontal cortex (PFC) is targeted (86, 87). However,
the mechanism by which PBMT ameliorates glutamatergic
dysfunction to display the antidepressant phenotype is unclear.

Zhan et al. found in an animal model, that tPBMT
decreased extracellular glutamate levels via upregulation of
glutamate transporter-1 (GLT-1), alleviated dendritic atrophy
and upregulated the expression of AMPA receptors on the
postsynaptic membrane. This was associated with behaviorally
significant antidepressant effects in mice exposed to chronic
unpredictable mild stress (88).

Vagal Nerve Stimulation (VNS)
VNS, initially developed for seizure disorders, came into the
spotlight when patients reported improvements in mood after
being treated for epilepsy. VNS involves surgically implanting
a vagal nerve stimulator in the upper left area of the chest wall
which then provides electrical stimulation to the vagal (tenth
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cranial) nerve. The stimulation lasts for 30 s, and can be turned
on or off by the patient by holding a magnet over the device. The
largest VNS study targeting treatment-resistant MDD (failure
to respond to medications and ECT) consisted of 235 patients
who received either VNS or a placebo/sham treatment (89). The
duration of treatment was over 12 weeks and there was only a
15% positive response rate and 10% remission rate. However,
positive response increased to 34% over time (90). This finding
suggests that VNS would not be recommended for an acute
debilitating depressive episode or high-risk clinical situations
of harm to self or others. Nonetheless, this treatment is worth
considering as an adjunct to medication management. One
theory behind the antidepressant effects of VNS is the decrease
of glutamate concentration in the rostral anterior cingulate
cortex (91).

CURRENT NEUROPHYSIOLOGICAL AND
CLINICAL EVIDENCE

Non-invasive brain stimulation offers a potential alternative,
non-pharmacologic approach to treat unipolar depression and
treatment resistant depression (TRD), even though there is
some evidence about the efficacy and safety of non-invasive
neuromodulation techniques to treat unipolar depression,
especially in the case of ECT and rTMS (92).

The rationale for neuromodulation for depression is based on
a neural network theory that posits a specific set of structurally
and functionally connected brain regions that work together to
maintain normal mood regulation (93, 94), however, little is
known about the specific mechanisms.

The putative cellular mechanisms of action to this group of
therapies involve the action over the glutamatergic neuronal
firing, depending on the technique and polarity used, TMS and
ECT will depolarize the cell membrane and generate an action
potential while tDCS have an impact on the action potential
depending on the polarity, cathodal stimulation will decrease,
and anodal stimulation will increase the action potential. The
after-effects are mediated by “long-term potentiation (LTP)-
like” mechanisms where the upregulation of neurotransmitter
release facilitates the opening of AMPARs and indirectly
that of NMDARs (95). The mechanism of action of tDCS in
psychiatric disorders has been attributed to the effects of anodal
stimulation (96). Studies often report the anode placement
over the frontal cortex while the cathodal electrode placement
reports are more inconsistent, however, there are reports of
inflammation reduction and neuroprotective effects by cathodal
stimulation (97).

In this review, we looked for the possible clinical impact
of different neuromodulation techniques over glutamate
pathways and we found three rTMS studies (Table 1): 2 with
TRD patients (98, 99) and another with MDD patients (100)
that were not taking any pharmacological treatment. MRI
spectroscopy was performed before and after the intervention
to assess the glutamate/GABA ratio (Table 1). The studies
found modifications on the glutamatergic and GABAergic
neurotransmission after high-frequency rTMS treatment on

DLPFC. Specifically, an increase of the glutamine/creatine ratio
(100) and GABA concentrations (98, 99) on the left DLPFC after
∼20–25 daily sessions. Indeed, this justify further research on
glutamate biomarkers for the optimization of rTMS protocols
in depression.

Given that deficits in glutamate in cortical and limbic regions
are implicated in MDD and causally related to depressive-like
behaviors; treatment that reverses or normalizes glutamate can
improve depressive symptoms. Glutamate receptors, specifically
the metabotropic subgroup II receptors of mGluRs are targets
of interest in developing novel antidepressants (103). Preclinical
studies have demonstrated that the antagonism and negative
allosteric modulation of mGlu2/3 receptor has antidepressant
properties (104, 105). Indeed, the expressionmGluR2/3 receptors
reduction is observed in the anterior cingulate cortex among
patients with MDD (106, 107). Furthermore, significant increase
in CSF levels of glutamate and glutamine among MDD
patients compared to healthy control (108) has been observed
and linked to hyperactivation of NMDA receptors (109),
inflammatory process (110, 111) and serotonergic signaling
(111). Similarly, a systematic review and meta-analysis evidence
shows that even peripheral blood glutamate levels were
significantly increased in MDD patients compared to the
controls (112).

While pharmacological techniques have targeted the
glutamatergic receptors as a therapeutic target for treating
depressive disorders, neuromodulation techniques offer
alternative or augmentative treatment for the same. Non-invasive
brain stimulation techniques including the non-convulsive TMS
and tDCS and convulsive ECT and MST provide safe options
targeting specific areas in dorsolateral prefrontal cortex (DLPFC)
which is a key site for the frontoparietal network (FPN).
In hypoactive state, (FPN) is associated with hyperactivity
of the default mode network (DMN) that may promote
depressive behavior and cognitions such as self-referential
processing, depressive rumination and negative bias observed in
MDD (113–115).

Provided at high frequency (HF-TMS), low frequency
(LF-TMS), theta-bursts (TBS) and deep (dTMS) (116, 117);
clinical trials have demonstrated the efficacy and safety of
TMS treatment. HF-TMS over the left DLPFC is shown to
have a superior effectiveness compared to sham treatment
in individuals with depression even when used without
concomitant antidepressant (118, 119), and has the benefit
of accelerating clinical response (120) and also effective as a
monotherapy for both unipolar or bipolar depression (121). In
case of poor response to HF-rTMS, LF-TMS can be especially
advantageous and safe when there is high risk of seizures and
poor tolerability to pain (117, 122).

Similar to TMS techniques, tDCS targets left DLPFC primarily
aiming to counterbalance the hyperactivity of the DMN
secondary to hypoactivity of the frontoparietal network of the
left DLPFC (123). tDCS combined with antidepressant produce
faster and greater response compared to the antidepressant alone
or tDCS alone (119). In a non-inferiority trial, tDCS failed to
show its non-inferiority to escitalopram, but was still superior to
placebo (124).

Frontiers in Psychiatry | www.frontiersin.org 6 April 2022 | Volume 13 | Article 886918

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Khoodoruth et al. Neuromodulation, Glutamate, and Depression

TABLE 1 | Evidence on glutamate modulation by drugs and by tDCS.

Author Subjects Intervention /Study

design

Outcomes Results

Evidence on glutamate modulation by drugs

Chris Baeken

et al. (98)

Eighteen

antidepressant-free

unipolar

treatment-resistant

depressed (TRD)

patient.

Sham-controlled

accelerated high

frequency (aHF)-rTMS

MR spectroscopy

study applied to the

left dorsolateral

prefrontal

cortex (DLPFC).

Neurochemical

concentrations in the

bilateral DLPFC and

rostral anterior

cingulate

cortex (rACC).

– Compared to healthy individuals, TRD patients displayed

significantly lower baseline glutamate and glutamine

concentrations in the left DLPFC.

– aHF-rTMS does not significantly alter neurochemical

concentrations in the three predefined brain regions.

– Clinical improvement was related to significant GABA

concentration increases in the left DLPFC.

Dubin et al.

2016 (99)

Twenty-three with TRD

(7 men)

A 5-week naturalistic,

open-label treatment

study of rTMS, 10-Hz

rTMS over the left

dorsolateral prefrontal

cortex (DLPFC)

rTMS pulses over the

left DLPFC at 10Hz and

80%−120% of motor

threshold for 25 daily

sessions, with each

session consisting of

pulses

Hamilton Rating Scale

for Depression

(HAMD24).

– Levels of medial

prefrontal cortex

(MPFC)

γ-aminobutyric acid

(GABA) and the

combined

resonance of

glutamate and

glutamine (Glx) as

assessed in vivo

with proton

magnetic

resonance spectroscopy (1H

MRS).

– GABA in the MPFC increased 13.8% (p = 0.013) in all

depressed individuals after treatment.

–No significant effects of rTMS on Glx.

– GABA and Glx were highly correlated in severely

depressed patients at baseline but not after TMS.

Erbay MF et al.

(100)

Eighteen patients with

MMD without

pharmacological

treatment (10 female, 8

male)

20 sessions of rTMS

directed at the left

DLPFC over a 2-week

period

The Hamilton

Depression

Scale (HAMD) H

magnetic resonance

spectroscopy (H-MRS)

–Statistically significant differences in HAMD scores before

and after rTMS. (p < 0.001)

–The peak metabolite ratios of NAA/Cr, GSH/Cr, and Gln/Cr

were significantly higher after rTMS compared to those

before rTMS.

(p = 0.016, p = 0.040 and p = 0.008, respectively)

Evidence on glutamate modulation by tDCS

Filmer et al.

(101)

47 healthy subjects tDCS at left PFC

Across three sessions,

subjects received

anodal, cathodal, or

sham stimulation.

In the case of anodal

and cathodal sessions,

the stimulation was

applied for 9 minutes

including 30-s ramp up

and down, at an

intensity of 0.7mA

Behavioral

tasks performance:

–visual search, go

no go.

– ravens (intelligence)

– psychological

refractory period

(PRP) paradigm. MRS

GABA and glutamate

the ratio of GABA

to glutamate.

–Cathodal stimulation reduced training-related reaction

times [BF10 = 3.446, t(46) = 2.16,

p = 0.018].

GABA and glutamate in the prefrontal cortex were

associated with the disrupted response selection training.

–Subjects who showed a higher level of inhibition (more

GABA relative to glutamate) in the prefrontal cortex were

affected by stimulation to a greater extent, showing higher

levels of disruption to response selection training gains in

active tDCS sessions compared to sham.

Mezger E et al.

(102)

20 healthy subjects,

12= women

Double-blind cross-over

design, 20 subjects

were randomized

to active tDCS with

standard bifrontal

montage, anode over

the left dorsolateral

prefrontal cortex

(DLPFC) and the

cathode over the right

DLPFC.

Two combined

tDCS-MRI sessions

(approximately 2 h each)

–PANAS trait and

state questionnaire

(Positive And Negative

Affect Schedule)

–(MRS) to quantify

glutamate (Glu), Glu +

glutamine (Glx) and

gamma aminobutyric

acid

(GABA) concentration.

–Resting-state

functional connectivity

MRI (rsfcMRI)

For both conditions PANAS scores were higher before

(meanactive = 16.00 = 9.6; mean sham = 14.95 = 7.1)

compared to after (mean active = 13.25 = 8; mean sham=

12.15 = 8.6) the stimulation.

There were no significant changes of Glu, Glx and GABA

levels across conditions.

Female subjects showed a significant reduction in Glu

concentration in the active compared

to the sham condition (β = 0.03 [0.01–0.05], t(140) = 2.87,

p = 0.004, d = 1.29 [0.41–2.17]), while male subjects did

not.

After active tDCS, there was an increase within

thesubgenual/subcallosal cortex (at trend level;

clustercorrected at 20 voxels, cluster: x = 2; y = 28; z = –

22 (21 voxel); log-p value = 1.0; FDR-corrected.
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As for convulsive modalities, ECT has been used for decades
as second line treatment for MDD and in some cases such as
acute suicidal or psychotic features, it can be used as a first line.
ECT is now considered safe, effective and tolerable with increased
efficacy with increased in association with medications, when
combined with nortriptyline and lithium and venlafaxine and
lithium (125, 126). MST is a TMS variant with a more focused
superficial field andminimal stimulation of inner brain structures
such as hippocampus (127), thus having lower incidences of
cognitive deficits unlike ECT (128) but with antidepressant
effect similar to RUL ECT (129, 130). Animal models reveal
a better understanding of the antidepressant mechanism of
neuromodulatory techniques such as deep brain stimulation
(DBS), which is observed to work through activating brain
derived neurotrophic factor (BDNF) related pathways. DBS
targeting the ventral medial prefrontal cortex is thought to
exert its antidepressant-like and cognitive enhancement effect
by increasing expression of BDNF, Akt, and mammalian target
of rapamycin (mTOR), and observed to restore stress-induced
synaptic loss in the hippocampus (131).

While abnormal projection of excitatory glutamate neurons
in the brain regions could contribute to structural alteration,
emotional stress and depression alter GABAergic function that
impairs the fine-tune and control glutamate related excitatory
function leading to dysfunction in these neural circuits (132, 133).
Brain imaging studies have shown structural and functional
alterations in depression, particularly the decreased volume of
the hippocampus and the subgenual and anterior cingulate cortex
of the prefrontal cortex (134, 135). Functional brain imaging
shows dysfunction in three major networks related to depression,
including default mode network (DMN) responsible for resting
taste introspection and ruminations, the salience network (SAL)
processing salient information from external sources and the
central network (CEN) responsible for working memory and
attention (136). Unlike themonoamine systemwith themain role
of providing extrinsic inputs to the cerebral cortex, Glutamate
provides both excitatory and inhibitory control of information
flow in the brain (132, 137, 138).

The alteration of glutamate in CSF, blood and brain tissue
related to synthesis, metabolism and reuptake into neuronal or
glial cells is linked to decreased glutamate in the subgenual of
anterior cingulate cortex associated with reduced connectivity
with insula and decreased BOLD response to emotional stimuli
in MDD patients (139). Alteration of the glutamatergic pathway
could be linked to acute and chronic stress affecting specific
circuits relevant to increased or decreased connectivity observed
in individuals with MDD. Indeed, chronic stress is thought to
cause atrophy of glutamate neurons contributing in volume
reduction in cortical and limbic structures implicated in
depression (63, 140). The alteration of glutamatergic neurons

secondary to stress could also be attributed to neuroendocrine
mechanism related to HPA and elevation of adrenal
glucocorticoids which are implicated in the etiopathogenesis of
depression. While administration of glucocorticoids may lead
to dendritic atrophy and reduction in number of synapsis in the
hippocampus and PFC, survival of neurons may be enhanced by
downstream regulation of glucocorticoids by major neurotrophic
factors such as (BDNF) which plays a role in regulation and
function of neurons (141–145).

CONCLUSION

Non-invasive brain stimulation offers a potential alternative,
non-pharmacological approach to treat unipolar depression
and TRD. While pharmacological techniques have targeted
the glutamatergic receptors as a therapeutic target for
treating depressive disorders, neuromodulation techniques
offer alternative or augmentative treatment for the same.
Non-invasive brain stimulation techniques including the non-
convulsive TMS and tDCS and convulsive ECT andMST provide
safe options targeting specific areas in DLPFC which is a key
site for the frontoparietal network (FPN). The rationale for
neuromodulation for depression is based on a neural network
theory that posits a specific set of structurally and functionally
connected brain regions that work together to maintain normal
mood regulation. However, little is known about the specific
mechanisms and further research is needed to investigate the
considerable potential of ionotropic and metabotropic receptors
in relation to multi-target treatment of depressive disorders.
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