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Background: Mixed results in the predictive ability of traditional biomarkers

to determine cognitive functioning and changes in older adults have led to

misdiagnosis and inappropriate treatment plans to address mild cognitive

impairment and dementia among older adults. To address this critical gap,

the primary goal of the current study is to investigate whether a digital

neuro signature (DNS-br) biomarker predicted global cognitive functioning and

change over time relative among cognitively impaired and cognitive healthy

older adults. The secondary goal is to compare the e�ect size of the DNS-br

biomarker on global cognitive functioning compared to traditional imaging

and genomic biomarkers. The tertiary goal is to investigate which demographic

and clinical factors predicted DNS-br in cognitively impaired and cognitively

healthy older adults.

Methods: We conducted two experiments (Study A and Study B) to assess DNS

for brain resilience (DNS-br) against the established FDG-PET brain imaging

signature for brain resilience, based on a 10min digital cognitive assessment

tool. Study A was a semi-naturalistic observational study that included 29

participants, age 65+, withmild tomoderatemild cognitive impairment and AD

diagnosis. Study B was also a semi-naturalistic observational multicenter study

which included 496 participants (213 mild cognitive impairment (MCI) and

283 cognitively healthy controls (HC), a total of 525 participants—cognitively

healthy (n = 283) or diagnosed with MCI (n = 213) or AD (n = 29).

Results: DNS-br total score and majority of the 11 DNS-br neurocognitive

subdomain scores were significantly associated with FDG-PET resilience

signature, PIB ratio, cerebral gray matter and white matter volume after

adjusting formultiple testing. DNS-br total score predicts cognitive impairment

for the 80+ individuals in the Altoida large cohort study. We identified a

significant interaction between the DNS-br total score and time, indicating

that participants with higher DNS-br total score or FDG-PET in the resilience

signature would show less cognitive decline over time.
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Conclusion: Our findings highlight that a digital biomarker predicted cognitive

functioning and change, which established biomarkers are unable to reliably

do. Our findings also o�er possible etiologies of MCI and AD, where education

did not protect against cognitive decline.

KEYWORDS

digital biomarker, dementia, cognitive impairment, Alzheimer’s disease, cognitive

resilience

Introduction

An unprecedented number of people around the world

are growing older and living longer. However, an increasing

number of them, over the age of 65, will develop cognitive

impairment due to late onset Alzheimer’s disease (LOAD) (1).

Although pathological processes leading to LOAD accumulate

over many years prior to disease onset (2) reliably distinguishing

declining/poor brain health from normal aging processes

remains a challenge. The Lancet Commission’s recommendation

about the importance of midlife prevention strategies in

asymptomatic individuals (3) has spurred several projects to

investigate causal models of aging and LOAD risk. Generally,

causal models on aging hold the view that aging occurs

when there is a loss in either gray and white neuronal

matter or other important brain structures, such as the

hippocampus (4) and the fornix (5). By definition, such

investigations rely on imaging markers and linear mediation

analysis (6). However, on numerous occasions the established

Alzheimer’s disease (AD) biomarkers (amyloid positivity,

APOE4 status) fail to predict cognitive performance in an

advanced age (7).

In contrast, cellular, synaptic, and biochemical features

of resilient cognition in AD have been positively associated

with cognition, representing a “signature” of brain resilience

(8, 9). The latest discovery in brain resilience among older

adults, from the population-based Mayo Clinic Study of Aging

(MCSA), suggests that FDG-PET uptake in the bilateral anterior

cingulate cortex and anterior temporal pole was associated with

baseline global cognition in cognitively stable 80+ year olds

(the resilience signature) and the brain resilience signature

provided significant information about global longitudinal

cognitive change even when considering amyloid status in both

the MCSA and Alzheimer’s Disease Neuroimaging Initiative

(ADNI) cohorts (10). This signature was significantly related to

vascular health and to female gender. Such results supported

the predictive role of metabolic changes, and underlined the

contribution of preventive factors, specifically vascular risk.

Another study found that damage to the support cells (glial

cells or astrocytes) may compromise tissue health in the

hippocampus and proposed to develop therapies that protect

these support cells to fight against the damage aging has

on cognitive ability (11). Taken together, such studies would

enable predictive algorithms for a brain resilience signature,

facilitate identification of brain disease targeting modifiable risk

factors, such as vascular health maintenance, and highlight

digital biomarker metrics sensitive to the midlife risk of

LOAD (12).

However, when focusing on brain resilience being linked

to patterns of digital monitoring biomarkers, it is crucial

to accurately define both brain health and its determinants

through a dynamic trajectory model incorporating antecedent

risk factors and also investigate a complex (composite) digital

biomarker as a proxy for brain health outcomes (13). With

such requirements in mind, two avenues for the validation

of digital monitoring biomarkers for brain resilience can be

explored: (a) creating a digital biomarker platform based on

“digital footprints” for brain function, physical function, social

function, protective or risk factors, such as systemic vascular

risk and mental health, and/or (b) identifying a unique complex

Digital Neuro Signature (14) (DNS)TM that exists as a proxy for

brain resilience and disease prevention, such as LOAD (15). To

satisfy the first option, a digital brain health platform can be

created to assess overall physical health, nutrition, sleep, physical

activity, cognitive activity, socialization, and diet recorded via

smartphones, wearables or other sources of the Internet of

Things (IoT) and on the other side inferred casualty with

various biological variables (16). Such platforms might contain

different classes of digital biomarkers ranging from diagnostic,

prognostic, monitoring, pharmacodynamic, predictive to safety

and susceptibility digital biomarkers, depending on their unique

structure (17). It should be noted that such platforms are still in

their infancy and although they can create a metric that is easy

for researchers to administer and for recipients to digest, further

validation is still needed (18).

In consonance with the second option, a unique DNS

monitoring biomarker was evaluated in the current study using

remote data acquisition (RDA). This type of biomarker can

be extraordinarily useful both in clinical practice and early

therapeutic development to determine the quantification of

subtle imbalances in the biological network associated with

the discordance between FDG-PET measurements from the

Alzheimer’s disease (AD) regions and resilience processes based

on metabolism of the anterior cingulate and anterior temporal
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lobes. When disease modifying treatments are examined, the

DNS monitoring biomarker would serially measure those subtle

imbalances, so that changes in the biomarker indicate target

engagement and related activity. The ability to measure off-

target effects on molecular signatures such as brain metabolism

will increasingly come into play, after a recent draft guidance

document from the FDA to provide recommendations to

sponsors, investigators, and other stakeholders on the use of

digital health technologies (DHTs) to acquire data remotely

from participants in clinical investigations evaluating medical

products (19). Furthermore, to capture the full picture of

ongoing brain processes, we describe the longitudinal validation

of this monitoring biomarker, based on continuous dynamical

interpretation of neuroimaging measurements from the Altoida

large cohort study (14). This would enable meaningful

monitoring of cognitive change, to collect more precise

predictions of therapeutic response through personalized

measurements of the pharmacodynamic drug effects coupled

with automated date/time stamps.

After we developed the Digital Neuro Signature that

corresponds with brain resilience (DNS-br), our goal is to

investigate whether the DNS-br biomarker predicted global

cognitive functioning and change over time relative to

established imaging (amyloid positivity: FDG-PET and PIB

ratio) and genetic markers (APOE4) of brain health. The

second goal of the study is to compare the effect size of the

DNS-br biomarker on global cognitive functioning compared

to traditional imaging and genomic biomarkers. The third

goal of the study is to investigate which demographic and

clinical factors predicted DNS-br in cognitively impaired and

cognitively healthy older adults.

Methods

Study design

We conducted two experiments (Study A and Study

B) to assess DNS for brain resilience (DNS-br) against

the established FDG-PET brain imaging signature for brain

resilience, which emerged from previous studies (10). Study

A (ClinicalTrials.gov Identifier: NCT02050464) was a semi-

naturalistic observational study that included 126 participants,

age 65+, with mild to moderate mild cognitive impairment and

AD diagnosis recruited in Klinik Hirslanden, Zurich. Study B

(ClinicalTrials.gov Identifier: NCT02843529) was also a semi-

naturalistic observational multicenter study which included 496

participants [213 mild cognitive impairment (MCI) and 283

cognitively healthy controls (HC)], performed in ten European

memory clinics and primary care centers, and two primary care

community centers in the USA. Thus, a total of 576 participants

enrolled in the two studies. These participants were either

cognitively healthy (n = 303) or diagnosed with MCI (n = 253)

or AD (n = 20). The patients with symptomatic AD pathology

gave consent through their study partner. The studies shared

similar entry (inclusion/exclusion) criteria and clinical scales,

and we characterized the AD biomarkers using the same criteria

for the analysis. Both studies were approved by the institutional

review board (IRB), i.e., New England IRB in San Diego, USA

where the studies were initiated.

In these studies, we included all participants who: (1) had

a baseline amyloid and FDG-PET scan, (2) completed the full

neuropsychological battery, and (3) were in the Alzheimer’s

disease cognitive spectrum (cognitively unimpaired, mild

cognitive impairment or probable Alzheimer’s disease). Thus,

in this retrospective observational analysis, our independent

variable is the testing method, e.g., DNS-br vs. Resilience

signature from the FDG-PET and other demographic and

imaging variables (elaborated under Materials), and our key

dependent variable is prediction of global cognitive change in

the participants.

Participants

In both Study A and Study B, we excluded participants

with any significant neurologic disease at the recruitment

stage, such as Parkinson’s disease, Huntington’s disease, normal

pressure hydrocephalus, brain tumor, progressive supranuclear

palsy, seizure disorder, subdural hematoma, multiple sclerosis,

or history of significant head trauma followed by persistent

neurologic defaults or known structural brain abnormalities. In

Study B, further key inclusion criteria were: (1) 55–90 years

of age, (2) fluency in English, French, Spanish, Greek, German

or Italian, and (3) familiarity with digital devices, including

currently possessing and actively using an iPad Pro or iPhone

with an at-home Wi-Fi network for the remote assessments.

Using these criteria, we first recruited a control group of

200 cognitively healthy individuals from the community that

underwent the same procedure at the Global Brain Health

Institute (GBHI) at Trinity College, Dublin and 103 cognitively

healthy individuals from the Memory Clinics and Primary

Care centers.

In recruiting participants with cognitive impairments, the

biomarkers (CSF, brain MRI and APOE genotype) were used as

a criterion and cognitive deficits compatible with MCI diagnosis

were found in 253 subjects: 197 from the memory clinics and

primary care centers in various countries in Europe and 56 from

the community centers in the USA. Seven participants were

excluded from the data analysis due to poor data quality. Study

A enrolled a total of 120 subjects: 20 healthy controls (HC), 20

mild to moderate Alzheimer’s disease (AD) patients, 20 vascular

dementia (VAD) patients, 20 fronto-temporal dementia (FTD)

patients and 40 subjects with mild cognitive impairment (MCI).

Study B cohort consisted of HC (n = 283), and patients

with MCI who are at high risk of developing AD within 18–40
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TABLE 1 Demographic characteristics of the full sample longitudinal

dataset.

Study A

(n = 80)

Study B

(NCT02843529)

(n = 496)

Follow-up time, years 1.5 (1.0) 2.6 (1.6)

MCI subjects 40 213

Number of MCI subjects progressing to

dementia

16 (40%) 100 (47%)

Number of MCI subjects with b-amyloid

biomarker progressing to AD dementia

14 (35%) 79 (37%)

MCI subjects progressing to other types of

dementia

2 (5%) 21 (10%)

Average Age, years (SD) 77 (10) 67 (8)

Female 44 (56%) 306 (62%)

Male 36 (44%) 190 (38%)

MMSE 26 (2) 27 (2)

Hippocampal volume, cm3 5.3 (1.5) 6.2 (1.2)

Characteristics of the Study A and Study B participants with available scans and cognitive

evaluation are provided (n = 576). Data are n (%) or mean (SD). MMSE, Mini-Mental

State Examination.

months (n = 213), assessed every 6 months. Study B enrolled

496 subjects from a total of seven European memory clinics and

three primary care centers. The European memory clinics were:

1. Greek Alzheimer’s Association and Related Disorders “Ag.

Giannis;” 2. “Ag. Eleni” memory clinics in Thessaloniki, Greece

of HC (n = 3), MCI (n = 51) and AD (n = 0); 3. the University

of Roma La Sapienza memory clinic in Rome of HC (n = 2),

MCI (n = 16) and AD (n = 0); 4. IRCCS Centro San Giovanni

di Dio Fatebenefratelli memory clinic in Brescia of HC (n = 2),

MCI (n= 14) and AD (n= 0) and 5. Neuromed IRCCSmemory

clinic in Naples, Italy of HC (n = 0), MCI (n = 1) and AD (n

= 0); 6. Fundacion Clinic per a la Recerca Biomédica memory

clinic in Barcelona, Spain of HC (n = 0), MCI (n = 35) and AD

(n = 0); and 7. University of Dublin, Trinity College, St James

memory clinic in Dublin, Ireland of HC (n= 200), MCI (n= 0)

and AD (n = 0). The three primary care centers from Europe

were: BiHELab–Bioinformatics and Human Electrophysiology

Lab and affiliated primary physicians’ network in Corfu, Greece

of HC (n = 12), MCI (n = 13) and AD (n = 0) and two offices

from the Practice for Personalized Medicine of the Hirslanden

Private Hospital in Switzerland (Zurich and Aarau) of HC (n =

12), MCI (n= 27) and AD (n= 0). Finally, the two primary care

community centers in the United States were Scripps Health at

La Jolla, California of HC (n = 12), MCI (n = 35) and AD (n =

0) and the Center for Brain Health—The University of Texas at

Dallas of HC (n= 3), MCI (n= 21) and AD (n= 0).

The MCI and AD cohorts were included independently

on their biomarker status if their diagnosis was consistent

with MCI and Alzheimer’s dementia diagnosis according to

TABLE 2 Demographic characteristics of the 80+ sample longitudinal

dataset.

Variables Mean (SD)/%

Age 81.8 (3.12)

Sex (% male) 52.6%

Education (yrs) 16.45 (2.90)

MMSE (baseline) 26.72 (9.88)

Amyloid positive (%) 54.7%

APOE4 positive (%) 42.3%

Characteristics of the Study A and Study B participants 80 years and above with available

3T MRI, FDG and AV45 PET scans and cognitive evaluation are provided (n = 40). Of

the full sample, 38% were cognitively impaired.

core criteria of NIA-AA revised guidelines (20). Participants

were matched on gender and educational level, with no

statistically significant difference in cognitive performance

between age groups on variables education (p = 0.43, Cohen’s

d = 0.4), or gender (p = 0.68, Cohen’s d = 0.3). This

study monitors a sub-sample of older adults 80+ (n = 40)

years over time to determine biological and digital biomarker

predictors of cognitive resilience, maintaining normal cognition

for an average of 40 months, independent of amyloidosis.

Demographic characteristics of the cohorts are shown in

Tables 1, 2.

Procedure

Upon enrollment, all participants gave written informed

consent for participation and for reuse of their data. In all

groups (HC, MCI and AD), the DNS-br test was administered

at the clinic. Half of the participants used DNS-br unsupervised

at home on Visit 2 (these measurements were verified against

those obtained in the clinic before inclusion in the analysis). An

overview of the procedure is represented in Figure 1.

As shown in Figure 1, the first DNS-br total test duration

was 20min including training (10min training, 2min break,

8min measurement). After establishing this baseline, the DNS-

br test took an average of 8min to administer every 6–8 months.

The total study duration (including a screening period of up to

42 days) was a maximum of 48 months. Baseline assessments

were completed at Training (occurring at 42 to 1 day(s) prior

to Day 1), Test Run 1 (Day 1), Test Run 2 (Day 4 up to day

7, morning or evening) (Figure 1). At Test Run 1 assessments

were conducted in the morning to avoid the effect of circadian

fluctuation in cognitive performance (21). At Test Run 2, a

benign cognitive challenge model was implemented to assess

the sensitivity of digital endpoints to change. Fatigue and sleep

deprivation have been shown to affect performance across a

wide range of cognitive domains (22). With that in mind, most

baseline assessments in Test Run 2 were conducted in the
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FIGURE 1

Baseline assessments and timepoints for the administration of the DNS test.

evening, to produce cognitive fatigue. No napping was allowed

prior to the evening assessments, and no caffeine or other

stimulants were allowed after 12:00 p.m.

The conventional neuropsychological (NP) assessment took

between 120 and 140min per visit, including breaks. Every

6–8 months, participants were also assessed for their clinical

and neuropsychological status with the Mini-Mental State

Examination (MMSE) or Montreal Cognitive Assessment

(MOCA), and clinically examined if a transition from MCI to

dementia (due to AD, or not associated with AD) occurred

using a full neuropsychological battery based on the clinical

characterization of stages from NIA-AA 2018 (23). Clinical

outcomes for MCI/dementia/AD diagnoses were ascertained by

investigators blinded to the predictor variables of this study.

Study A participants were tested for a total duration of 18

months between 2013 and 2017, and Study B participants for 40–

42months between 2017 and 2020. Participating memory clinics

were in Greece, Italy, Spain, Ireland, Switzerland and the USA.

Materials

The baseline NP assessments included a comprehensive set

of tests: the Wechsler Memory Scale (adjusted for education),

MMSE or MOCA, Clinical Dementia Rating (CDR) Memory

Box score, and a full neuropsychological (NP) battery including

the assessments Digit Span Forward, Digit Span Backward,

Trail Making Test A, Trail Making Test B, RAVLT Total, FAQ,

GDS, RAVLT A6, RAVLT A7, Benton VRT, Digit Symbol, Block

Design, Similarities, andWord and Animal Fluency. These tests,

taken together, address 13 cognitive domains.

FDG-PET resilience signature

We preprocessed the FDG-PET images using the same

pipeline described in the paper from Eider M Arenaza-Urquijo

(7). In more detail, a voxel-wise multiple regression analysis was

performed in SPM 12 with smoothed and normalized FDG-PET

maps and z-global cognition scores for the variables of interest.

Following this processing, we used a study-specific gray matter

mask to mask for the voxel-wise analysis. We then averaged

the segmented and normalized gray matter maps of the study

participants and we thresholded to include voxels with a gray

matter probability >0.2. The voxel-wise results were considered

significant when false discovery rate (FDR) p< 0.05 and a cluster

extend of K > 1,500 mm3. Reference anatomical gray matter

labels were determined using the Mayo Clinic Adult Lifespan

Template (MCALT).Then, we used normalized FDG-PET maps

and extracted a single FDG-PET value from the ‘resilience

signature’ described in the paper above. We also extracted a

single FDG-PET value from the same areas described in the

paper (see “global FDG-PET ratio measure” section in methods)

that was used as an FDG based AD biomarker.

PET AD imaging biomarkers

We used available PET tracer (11) C-labeled Pittsburgh

Compound-B ((11) C-PIB) and AV45-PET SUVR values as a

measure of global cortical amyloid retention. The amyloid status

from PET was defined based on a cut-off of 1.11 (24).

Acquisition and measurement of MRI variables

Participants were imaged by a Siemens 1.5T field strength

machine (Siemens Medical, Erlangen, Germany) with a 3-

dimensional T1-weighted coronal spoiled gradient-recalled

echo (SPGR) sequence. Segmentation of brain structural MRI

was performed by semi-automated procedures, for example,

gray matter, white matter, and CSF segmentation were

performed using an Expectation-Maximization (EM) algorithm

after skull-stripping, and Intensity Inhomogeneity Correction.

Hippocampus was segmented by the multiatlas hippocampal

segmentation algorithm described elsewhere (25). The primary

MRI measure was total cerebral brain volume (TCBV) with
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cerebral white matter volume, cerebral gray matter volume,

hippocampal volume, and WMH volume and white matter

hyperintensity as secondary measures. The large WMH volume

(WMH-Large) was defined as those with more than one

standard deviation higher than the age-specific mean values,

using the Fazekas scale.

Additionally, we collected fluid AD biomarkers, consisting

of β-amyloid and p-tau and total tau protein cerebrospinal fluid

(CSF) levels, brain MRI and APOE genotype. To ensure a finer

understanding of the type of cognitive impairment, classification

in the diagnostic clusters of MCI and dementia due to AD

(aMCI and ADD), or MCI and dementia not associated with AD

(naMCI and nADD), were performed based on the β-amyloid

and tau protein CSF levels biomarker.

Digital neuo signature brain resilience (DNS-Br)
biomarker

For this work, we analyzed data from Altoida’s DNS

application which collects digital biomarkers for neurocognitive

function measurement and progression tracking for AD (26).

The Altoida DNS captures 793 active digital biomarkers,

such as reaction time, speed, attention- and memory-based

assessments, as well as every single device sensor input (or

lack thereof) through accelerometer, gyroscope, magnetoscope,

camera, microphone, and touch screen. We piloted Altoida

DNS in an independent pilot study with a sample of young,

healthy controls across all Altoida cognitive domains, and found

that test-retest variability was 0.156% (27). Such low variability

shows excellent internal validity of the Altoida DNS test and

corroborates the represent ability and stability of its measures

over time.

While holding a tablet or smartphone device, the subject is

asked to perform a series of motor functioning tasks and two

Augmented Reality (AR) tasks. In the motor functioning tasks,

the subject is required to draw shapes and tap on the (touch)

screen using the finger of their dominant hand (see Figure 2

for an illustration of all the motor functioning tasks). In one of

the AR tasks, the subject is asked to place three virtual objects

in a small space (∼3 x 3 or 2 x 4m) and afterward find them

again. The AR task is performed by navigating around the space

with the tablet or smartphone in both hands (see Figure 3).

During these tasks, the handheld device collects telemetry and

touch data from the built-in sensors, enabling profiling of

hand micro-movements, screen touch pressures, walking speed,

navigation trajectory, cognitive processing speed, and additional

proprietary inputs.

A single test session using Altoida’s application consists

of two batches of motor tasks and two AR tasks. After a

subject completes all tasks, the recorded digital biomarker data

from the onboard electronics sensors is bundled and securely

and anonymously uploaded to a server for further processing.

Provided the data of multiple subjects, machine learning can

be used to detect patterns. In previous work, machine learning

was either used to classify subjects as healthy or at risk of

AD (26). In this work, we examined DNS signatures from our

validated dataset for AD to see if they demonstrated preclinical

markers that predict cognitive resilience in the older adult

individuals 80+, who could maintain normal cognition for an

average of 40 months, independently from amyloidosis. Such

markers are expressed by the capacity of the DNS measurement

one-time results to inform a novel “digital” brain resilience

DNS signature.

DNS-Br machine learning

We extracted 793 digital biomarker features from the

onboard electronics sensors describing various cognitive,

functional, and physiological characteristics of each subject.

These features include response times, eye-hand coordination

precision, fluctuations in the telemetry (accelerometer and

gyroscope) data, Fourier analysis of the telemetry data, step

detection, and additional proprietary data. Based on the digital

biomarker feature data from a selection of healthy subjects, we

trained a DNS-br match classifier to distinguish “high” brain

resilience individuals≥ 80 years old that wouldmaintain normal

cognition during follow-ups for an average of 40 months. We

used the XGBoost algorithm with DNS preclinical markers that

predict cognitively stable older adults 80+ as the target variable

for the classification.

DNS-Br: Performance evaluation

We applied stratified 5-fold grouped cross-validation to

estimate the generalization performance of theDNS-br classifier.

We grouped data points by subject to ensure that multiple data

points of a single subject were all in the same fold (either training

or testing), preventing learning bias. For our classifier, we

measured accuracy and precision averaged over the five cross-

validation testing folds. To assess the classifier’s performance on

different age groups, we trained nine additional classifiers (10

in total), each using different random subsets of the data. This

machine learning (ML) classifier is a re-purposed version of the

classifier described in a previous study (24) that had an excellent

performance (ROC-AUC 0.91) when examining individuals that

convert to dementia, independently of their Aβ biomarker value,

compared to healthy subjects that remain stable over 3 years

(Table 4, column 1).

DNS-Br: Model explainability

We used the Shapley Additive exPlanations (SHAP) (28)

method to better understand the predictions made by the DNS

brain resilience classifier. The method for obtaining Shapley

values emerges from the context where “n” players participate

collectively obtaining a reward “p” which is intended to be

fairly distributed at each one of the “n” players according to

the individual contribution, such a contribution is a Shapley
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FIGURE 2

The motoric functioning tasks in the Altoida DNS test. These are executed one after another. Using their index finger of their dominant hand,

from left to right, the task is to (1) draw a circle, (2) draw a square, (3) draw a rotated W shape within 7 s, (4) draw as many circles as possible

within 7 s, (5) tap the highlighted buttons (left, right, left, right, etc.) (6) tap the highlighted button as fast as possible, the buttons highlight at

random.

FIGURE 3

Illustration of the Augmented Reality (AR) task in the Altoida DNS

test. During the AR test, the subject is asked to place and find

three virtual objects in the room. To do so, the subject is required

to walk around the room holding a tablet or smartphone device

in front of him/her. While doing so, the camera of the device

records the environment and displays it back to the user on the

screen, augmented with virtual objects (in this illustration, a

teddy bear). The user needs to place the objects on flat surfaces

and later recall their position by walking back to that location.

value. In simple words, a Shapley value is the average marginal

contribution of an instance of a feature among all possible

coalitions. The SHAP method allocates to each feature of a

classifier a game-theoretical value representing the contribution

of that feature toward the classification targets. This is used for

the interpretation of predictions of ML models through Shapely

values. The key idea of SHAP is to calculate the Shapley values

for each feature of the sample to be interpreted, where each

Shapley value represents the impact that the feature to which

it is associated, generates in the prediction. The sign of the

SHAP values indicates the direction of the contribution, and

the magnitude of the SHAP value indicates the importance. For

our classifier, negative SHAP values contribute to classifying as

non-resilient, positive numbers toward resilient. SHAP values

have an additive property meaning they can be summed

together to provide the feature contribution of a group of

features.

Statistical analyses

We conducted statistical analyses similar to the manuscript

from Arenaza-Urquijo (10). We first fitted a multiple regression

model for predicting baseline cognition (gold standard NP

assessments) including demographic variables (age, sex,

education), APOE4 status, DNS-br signature, and imaging

variables (“resilience signature,” amyloid burden and FDG-PET

from the AD signature). The objective of these analyses was

to evaluate whether DNS-br associated with the FDG-PET

uptake in the “resilience signature” predicted cognition over

and above AD biomarkers. Linear regression models were used

to assess the associations of DNS-br scores with FDG-PET

uptake measures and imaging variables, adjusting for age,

sex, and education. In the sensitivity analysis, the models

were additionally adjusted for vascular risk factors including

hypertension, diabetes, smoking and prevalent atrial fibrillation.

We used bonferroni correction to adjust for multiple testing

in the linear regression models and the significant associations

were claimed if P < 0.05/N, where N was the number of

tests performed.

Second, we evaluated whether DNS-br was associated with

the FDG-PET uptake in the “resilience signature,” in order

to predict longitudinal change in global cognition taking into

account amyloid status. To this aim, we fitted a linear mixed

effect model with global cognition as dependent variable, and

time (age at visit), amyloid status, sex, years of education, FDG-

PET, APOE4 status as fixed effects (predictors). The model

included all main effects as well as interactions with time,

including our interactions of interest: DNS-br∗time. Finally,

we fitted a linear mixed effects model for the predictive value

of different risk factors in the DNS-br signature in stable vs.
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cognitively impaired individuals. Random effects for intercept

and slopes were included.

Results

As shown in Table 3, DNS-br total score and majority

of the 11 DNS-br neurocognitive subdomain scores were

significantly associated with FDG-PET resilience signature, PIB

ratio, cerebral gray matter and white matter volume, after

adjusting for multiple testing. Also, the effect size of DNS-br

for FDG-PET resilience signature and PIB ratio were higher, as

compared to Cerebral white matter volume and Cerebral gray

matter volume. In general, greater DNS-br score was associated

with both the FDG-PET resilience signature and PIB ratio.

In Table 4, we investigated whether the DNS-br total score

and the 11 DNS-br neurocognitive subdomains were associated

with FDG-PET resilience signature, PIB ratio, cerebral gray

matter and white matter volume, adjusting for vascular

risk factors. FDG-PET resilience signature was significantly

associated with DNS-br total score and all subdomains except

for DNS Speech and articulation (all with p < 2.9 × 10−3).

PIB ratio was significantly associated with DNS-br total and

all DNS-br subdomain scores except for DNS-br Speech and

Articulation and DNS-br Eye Movement. Cerebral white matter

volume and Cerebral gray matter volume and DNS-br were not

associated with DNS-br-total score, but were associated with a

few DNS-br subdomains. No differences were found between

the clinic administered version of DNS-br and the unsupervised

home administration.

To understand predictors of global cognitive functioning

among individuals 80 years and older, we performed linear

regression analyses and found that sex, education (yrs),

APOE4 status, DNS-br Resilience, sig FDG-PET, and AV45-

PET ratio significantly predicted global cognitive functioning.

Specifically, sex, APOE4 status, and AV45-PET ratio positively

predicted global cognitive functioning. While, education, DNS-

br resilience and sig FDG-PET negatively predicted global

cognitive functioning (See Table 5). To investigate which

factors predicted cognitive changes among cognitive stable

and impaired individuals, we performed a mixed effect model

looking at the independent and interaction predictors (See

Table 6). Sex was the only factor that was significantly associated

with cognitive change. Although sex was positively associated

with changes in cognitive status among cognitive normal and

impaired individuals, its interaction with age was negatively

associated. Additionally, interactions of age∗DNS-br total and

age∗FDG-PET were negatively associated with cognitive change.

Conversely, the interaction between age and AV45-PET was

positively associated (See Table 6). Lastly, we investigated which

factors predicted DNS-br in cognitively stable and impaired

individuals. Among cognitively stable individuals, education,

hypertension, diabetes, smoking, and atrial fibrillation predicted T
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DNS-br total (See Table 7). While for cognitively impaired

individuals, age, education, hypertension, diabetes, and atrial

fibrillation predicted DNS-br total (See Table 7).

Lastly, based on SHAP, the primary contributing group of

active digital biomarkers is AR object finding durations. This

group consists of the participant fine-movements while trying

to find a virtual object in the AR test (micro-movements). The

second most important group of digital biomarker features is

the tapping variance. The tapping variance can be interpreted

as coarse-scale hand motion micro-movement (motor feature).

The third and fourth most essential features are again micro-

movements during object finding, as they account for cognitive

decline over time accounting for amyloid status (Figure 4).

Discussion

The primary goal of the current study was to investigate

whether a digital neurosignature (DNS) biomarker of brain

resilience, (DNS-br), predicted global cognitive functioning and

cognitive change in cognitively healthy and impaired individuals

80+ years old. Specifically, we investigated associations

between DNS-br total (and its 11 subdomains) and established

imaging (amyloid positivity: FDG-PET and PIB ratio) and

biological markers (APOE4) of brain health and cognitive

resilience. The secondary goal was to compare the effect size

of the DNS-br biomarker on global cognitive functioning

compared to traditional imaging and genomic biomarkers.

The third goal was to investigate which demographic and

clinical factors predicted DNS-br in cognitively impaired and

cognitively stable older adults. Our findings provide very

promising results that DNS-br (a digital biomarker) may

be a comparable or greater predictor of global cognitive

functioning, as traditional imaging biomarkers and biological

markers of brain health and resilience. To investigate these

three research questions, we monitored the sub-sample of

older adults 80+ years over time to determine biological and

digital biomarker predictors of cognitive resilience, maintaining

normal cognition for an average of 40 months, independent

of amyloidosis.

These findings have both significant clinical and public

health implications. Clinically, our findings suggest possible

common and unique risk and protective profiles of brain

health and resilience among cognitively stable and impaired

older adults. These profiles may manifest in unique symptom

presentation and progression of cognitive decline, which in

turn may provide insight about which types of treatments

(pharmacological, cognitive, or behavioral treatments) may be

used to prevent or manage cognitive decline, a vision of

precision neurology. The public health implications of our

findings are also noteworthy as the successful use of a digital

health technology, like Altoida, may increase access to early
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TABLE 5 Results of the linear multiple regression models to predict

impairment of your global cognition in the 80+ participants Beta

coe�cients, confidence intervals (CI) for unstandardized Betas and

p-values are provided.

R2 Beta 95% CI p-value

Model 0.45

Intercept 76.80 42.91–91.78 <0.001

Demographic variables

Age −1.63 −1.42–0.196 0.238

Sex 3.42 0.90–5.13 0.005

Education (yrs) −0.655 −0.81–0.17 0.003

APOE4 status 3.29 0.32–4.33 0.030

Digital response biomarkers

DNS-br −27.82 −47.13−−17.57 <0.001

Imaging variables

Resilience sig FDG-PET −33.67 −44.90−−18.34 <0.001

AD sig FDG-PET 8.511 7.38–17.03 0.109

AV45-PET ratio 10.18 7.87–14.22 <0.001

AD sig, Alzheimer’s disease signature. Significant findings: p-value < 0.05, p < 0.01, p <

0.001 significant.

screening, diagnosis, treatment and management of dementia

symptoms, thus curtailing the burden of dementia.

Digital biomarker and brain health,
pathology and resilience

Although established dementia biomarkers, like FDG-

PET, PIB ratio, cortical thickness, beta amyloid and APOE4,

are widely used as risk markers for cognitive impairment,

decline, and dementia, contradictory evidence that they do

not predict global or future cognitive functioning, change,

or decline, call into question their robustness in predicting

dementia among older adults (10). Recent studies highlight that

these established biomarkers are better predictors of baseline

cognition as opposed to future cognition or changes in cognition

(10). These discrepancies in traditional dementia biomarkers

undermine their clinical and public health value and provides

insight on why older adults (80+ years) who present with

positive biological signs of dementia and no clinically significant

cognitive impairment. It is likely that older adults with imaging

and genetic risk markers (APOE E4 carrier) may be cognitively

stable. This calls into question whether interventions are needed

for someone with biological risk but no cognitive and functional

impairment. Established biomarkers may not be the most

sensitive predictors of dynamic changes in cognition, and

suggest instead a digital biomarker may be more sensitive.

Therefore, better instruments are needed to: assess

probability of long-term (and not cross-sectional or short

term decline) cognitive decline, predict changes in cognitive

TABLE 6 Results of the mixed e�ect model to predict cognitive

change in the full sample of 80+ participants (stable and impaired).

Beta 95% CI p-value

Intercept −86.18 −255.32–62.72 0.001

Time (age at visit) 2.51 −0.085–4.910 0.060

Sex 29.23 5.80–59.11 0.01

Education (yrs) −3.75 −6.22–2.67 0.55

APOE4 status 8.89 −29.71–41.86 0.51

DNS-br total 91.23 −35.40–211.68 0.08

“Resilience sig” FDG-PET 74.69 −34.23–198.09 0.21

AV45-PET status −59.77 −76.43−−36.87 <0.001

Sex*time −0.29 −0.66−−0.09 0.02

Education (yrs) *time 0.05 −0.03–0.08 0.42

APOE4 status *time −1.07 −12.19–26.68 0.71

DNS-br*time −7.38 −12.78−−0.23 <0.001

Resilience sig FDG-PET *time −1.45 −2.56−−0.09 0.043

AV45-PET status*time 0.99 0.64–2.31 <0.001

Beta coefficients, confidence intervals (CI) for unstandardized Betas and p values

are provided. AD sig: Alzheimer’s disease signature. Cognitive change was calculated

based on the clinical characterization of stages using the NIA-AA Alzheimer’s Disease

Framework 2018 (24). Significant findings: p-value< 0.05, p< 0.01, p< 0.001 significant.

status, and differentiate biological risk and functional cognitive

impairment and decline, as we cannot rely on traditional

biomarkers. Our study fills a critical void in the literature

by suggesting that a digital biomarker for functional brain

resilience, DNS-br, might be a better predictor of cognitive

impairment and decline and may help us to identify and

distinguish individuals with a biomarker risk and cognitive

impairment and those with a biomarker risk and who are

cognitively healthy.

In the current study, we establish that a novel Digital

Neuro Signature, in the context of functional brain resilience,

which captures over 800 active digital biomarkers through

accelerometer, gyroscope, magnetoscope, camera, microphone,

and touch screen, is a superior predictor of global cognitive

functioning and changes over time compared to traditional

neuropsychological assessments, for asymptomatic at-risk older

adults. For example, in Table 3, DNS-br total score was

significantly associated with several brain health markers

such as: FDG-PET resilience signature and PIB ratio, but

not cerebral white matter volume, and cerebral gray matter

volume. Even after adjusting for vascular risk factors, the

relationships remained the same albeit the magnitudes of the

effect size increased.

However, in more granular analyses, DNS-br perceptual

motor coordination and flexibility were associated with PET

resilience signature and PIB ratio, cerebral white matter volume,

and cerebral gray matter volume. After adjusting for vascular

risk factors, these relationships remained the same and the effect
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TABLE 7 Assessment of the predictive value of di�erent risk factors in the DNS-br signature.

Cognitively stable 80+ (N = 32) Cognitively impaired 80+ (N = 207)

R2 Beta CI p-value R2 Beta CI p-value

Model 0.28 0.33

Intercepta −1.68 −7.17–2.55 0.429 −0.983 −5.19–2.14 0.573

Demographic variables

Agea −0.05 −0.08–0.002 0.062 0.072 −0.09−−0.045 <0.001

Sexa −0.16 −0.45–0.09 0.260 1.97 2.28− –0.07 0.371

Education (yrs) a 0.09 0.05–0.15 <0.001 −0.100 −0.06−−0.14 <0.001

APOE4 status a
−0.14 −0.50–0.26 0.273 1.93 2.29–0.32 0.226

Risk factor variables

Hypertension b
−2.71 −5.31−−1.04 <0.001 2.61 1.12–4.32 <0.001

Diabetes b
−3.39 −5.09−−1.68 0.010 4.17 1.08–6.39 0.005

Smoking b
−2.19 −4.52−−1.9 0.005 2.09 1.51–4.98 0.121

Prevalent atrial fibrillation b
−4.05 −7.26−−1.2 <0.001 5.29 1.49–7.08 <0.001

The table below shows the unadjusted R square, beta coefficients, confident intervals (CI). a : Unstandardized Beta coefficient; b : Standardized Beta coefficients. Significant findings: p-value

< 0.05, p < 0.01, p < 0.001 significant.

sizes increased. DNS-br inhibition was associated with FDG-

PET resilience signature, PIB ratio, and cerebral white matter

volume for unadjusted and adjusted models (vascular risk).

Effect sizes in the adjusted model were greater compared to the

unadjusted model.

DNS-br complex attention, cognitive processing, and visual

perception were associated with FDG-PET resilience signature

and PIB ratio. After adjusting for vascular risk factors, these

relationships remained significant, and the effect sizes increased.

DNS-br planning was only associated with FDG-PET resilience

signature in our unadjusted and adjusted models. DNS-br

prospective memory, eyemovement, spatial memory and speech

and articulation were not associated with any of the traditional

brain health markers in the unadjusted model. However, in our

adjusted model, DNS-br spatial memory was now significantly

associated with FDG-PET resilience signature, PIB ratio, and

cerebral white matter volume. DNS-br eye movement was

associated with FDG-PET resilience signature, cerebral gray

matter volume, and cerebral white matter volume. DNS-br

prospective memory was associated with FDG-PET resilience

signature and PIB ratio. DNS-br speech and articulation was not

associated with any of the brain health markers.

Overall, these granular analyses highlight an interesting

pattern where digital biomarker clusters that measure higher

executive cognitive functioning were associated with established

markers of dementia in both the adjusted and unadjusted

models. Conversely, less executive cognitive functioning like

speech and articulation—linked to frontal lobe areas such

as Wernicke’s and Broca’s area (29)—were not significantly

associated with established biomarkers of dementia in either

model. A possible explanation for this finding is that since

the DNS-br biomarkers for speech and articulation are not

capturing language specific cognitive tasks, but rather a set

of non-language specific features, then it is unlikely that

they will be related to established biomarkers of dementia.

In another interesting finding, spatial memory—linked to

hippocampal function—was only associated with established

biological dementia outcomes in the adjusted model. It is likely

that the association between spatial memory and established

dementia biomarkers may be confounded by vascular risk

factors. Previous research indicates that cardiovascular risk is

correlated with hippocampal structure and function, such as

cortical vasoreactivity to hypercapnia (excessive carbon dioxide

in blood due to inadequate respiration. Additionally, disrupted

functional connectivity observed at those profiles is significantly

increasing those associations (30).

Di�erence between digital biomarkers
and traditional biological predictors of
global cognitive impairment

In Table 5, we investigated which factors predicted global

cognitive impairment in the 80+ participants. As hypothesized,

education, DNS-br, and 18F-fluorodeoxyglucose positron

emission tomography (FDG-PET) resilience biomarkers

were negatively associated with global cognitive impairment.

While, sex, APOE4 status and AV45-PET ratio were positively

associated with global cognitive impairment. Of note, our

digital neural-signature of brain resilience (DNS-br) was

as predictive of global cognitive impairment as FDG-PET

resilience biomarker, which is characterized by uptake in the

bilateral anterior cingulate cortex and anterior temporal pole

(the anterior end of the temporal lobe in the middle of cranial

fossa) among cognitively stable 80+ (the resilience signature).
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FIGURE 4

Feature importance of the DNS-br classifier. (A) The top seven digital biomarker groups according to the SHAP method. Each bar represents the

summed SHAP value of the features in that feature group. (B) A feature value SHAP distribution plot for the top seven contributing features.

Subject specific SHAP values were computed for each datapoint in the classifier training data. For each feature, we then plot for each datapoint

a dot with the feature value of that datapoint, with the dot color coded by the relative feature value. On the left side we observe each feature

ordered according to its importance. The perimeter feature being the most important and texture feature being the least important. The color

represents the values that each feature can take, red for high values and blue for low values. Therefore, for the feature DOT average find

durations, if the values are high (red) the Shapley values will be low and consequently it will be pushing toward class 0 (or high brain resilience

and remaining stable at 80+), otherwise, when the values are low (blue) the Shapley values they will be high that consequently they will be

pushing toward class 1 (or low brain resilience and potential cognitive change at 80+). The position of each dot on the SHAP value x-axis

represents the magnitude and the direction of the contribution of that specific feature value of that specific datapoint toward classifying as

resilient (-1) or non-resilient (+1). Acronyms in the plots are Augmented Reality (AR), Day out Task test (DOT), Back in Time test (BIT),

Accelerometer (ACC), variance (var), first part of a single test (1st) or second part of a single test (2nd).

Such findings are promising because digital biomarkers are less

invasive for patients, more accessible, cheaper, and facilitate

repeated and longitudinal use as compared to traditional

imaging exams, thus increasing likelihood of early screening for

cognitive impairment and Alzheimer’s dementia.

AV45-PET ratio, a proxy for cerebral blood flow in

Alzheimer’s and perfusion, was the strongest predictor of global

cognitive impairment. This finding fills a critical gap in the

literature about structural predictors of AD, as previous studies

have shown that AV45-PET may be less sensitive to reflect AD

severity compared FDG-PET, which may explain FDG-PET was

significantly associated and AV45 was not (31). Other studies

have shown that FDG-PET is not a true reflection of Aβ load

(32) but instead a proxy for prodromal MCI due to Alzheimer’s

disease, frontotemporal lobar degeneration, and prodromal

dementia with Lewy bodies in mild cognitive impairment

subjects (33). Since FDG-PET did not significantly predict global

cognitive impairment, we were unable to determine the nature

and speed of transition from MCI to AD dementia (34). This

finding raises a critical issue with reliance on biological and

structural markers of dementia as they are less sensitive in

identifying prodromal MCI, neurodegeneration, or dementia.

However, our digital neurosignature based on previous and

current findings is more sensitive to identifying prodromal

disease (26).

Predictors of cognitive change

Sex and AV45-PET status were the only predictors of

cognitive change, while the interaction between sex and time,

DNS-br and time, FDG-PET resilience marker and time, and

AV45-PET status and time significantly predicted changes in

cognition. Our findings suggest that men have greater levels of

cognitive change, while individuals with greater levels of AV45-

PET, a proxy for cerebral blood flow, perfusion, and amyloid

burden, had lower changes in cognition. Results also suggest

that over time, men had less changes in cognition, markers

of brain resilience (DNS-br and FDG-PET) were associated

with less cognitive changes, highlighting their protective effect

in preserving cognitive functioning. Conversely, AV45-PET

status over time was positively associated with changes in

cognition suggesting that increases in amyloid burden may lead

to worsening cognitive functioning.

Predictors of brain resilience

Based on results presented in Table 7, two unique risk

profiles emerge. In the cognitively stable group, education,

history of hypertension, smoking, and atrial fibrillation were

predictive of unique patterns in the digital neurosignature
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biomarker of brain resilience. While in the cognitively impaired

group, age, education, history of hypertension, diabetes, and

atrial fibrillation were predictive of different patterns in the same

digital neurosignature biomarker of brain resilience. Despite

the unique risk profiles, evidence shows that regardless of

cognitive status (stable or impaired), vascular risk factors, such

as hypertension, diabetes, smoking and atrial fibrillation, are

negatively associated with brain resilience, suggesting they lower

brain resilience. Adverse effects of vascular risk factors on brain

resilience and brain health may be driven and mediated by

resultant brain injury such as cerebrovascular disease like stroke

and small vessel disease like white matter hyperintensity lesions

(35). If these risk factors are left untreated blood supply to the

brain is reduced affecting brain functioning, metabolism, and

structure, leading to atrophy in overall brain size, white and gray

matter tissue (36).

Conversely, demographic factors, like age and education,

affected brain resilience differently based on cognitive status. In

cognitively impaired older adults, age was positively associated,

while education was negatively associated with brain resilience.

In cognitively stable older adults, education was positively

associated with brain resilience. These conflicting results

highlight differential functions of education on brain health,

where in stable older adults (37, 38), it serves as a protective

factor (which is consistent with previous work), while in

cognitively impaired older adults, it has the opposite effect

on brain health. More years of education alone in this group

did not confer greater brain resilience but instead less. While

this finding contradicts extant literature on the protective role

of education in brain health (39), it is consistent with recent

observations, such as the Religious Orders Study (40), on

cognitive reserve and highlights the grim reality that in older

adults who are predisposed to cognitive impairment by other

risk factors, education alone loses its protective function. Our

finding that age was positively associated with brain resilience

in the cognitively impaired group should be interpreted with

caution as it is likely that individuals who live to 80+ years may

have innate brain resilience.

The clinical and public health
implications of digital health technology

Altoida can serve as a screening, predictive, preventive, and

symptom monitoring and management tool. As a screening

tool, Altoida can identify individuals who may be at risk for

mild cognitive impairment and dementia (specifically AD).

As a predictive tool, Altoida can detect possible cognitive

decline years in advance. Its predictive value highlights its

preventive value, where clinicians could use Altoida to start

early treatments for dementia (behavioral or pharmacological)

to slow cognitive decline. Lastly, Altoida can also be used to

monitor progression of cognitive decline and help clinicians

better manage patients symptoms. Altoida has demonstrated

excellent intra-individual longitudinal changes in cognition, it

can also be used as an instrument that predicts and detects

transitions in cognitive status. Specifically, a DHT, like Altoida,

can be used to detect whether someone will transition from

normal cognitive function to mild cognitive impairment and

from mild cognitive impairment to dementia/AD (14).

Our findings add to the growing body of literature on the

use of wearable and “nearable” technology sensors, surveys,

games, and computer mouse movements as digital biomarkers

to infer cognitive status. Altoida can be used in conjunction with

wearables and nearables to longitudinally monitor cognitive

status and sensitively identify slight, ephemeral, or permanent

changes in cognition. To move the field of digital biomarkers

in brain health forward and to increase its clinical and public

health value in addressing the burden of dementia, digital

health technologies, like Altoida, should be nested in home-

based digital technologies to improve early detection of cognitive

decline, identify which cognitive domains are affected in real-

life settings, and study precise impact treatments on specific

cognitive functions.

Limitations and conclusion

While our study offers several critical insights about

the benefit of digital biomarkers of dementia, these

findings should be interpreted cautiously in light of a few

methodological limitations. First, discrepancy in sample

size between cognitively impaired and stable groups

precludes us from making generalizable claims from our

comparative analyses. Second, it is likely that the use of

a digital technology to conduct cognitive tests may affect

the individual’s performance, which may be confounded by

technophobia and low motivation. Third, the study sample

was representative and as such were unable to perform

subgroup analyses across gender and racial groups, both of

which have well-evidenced differential outcomes in cognitive

decline and dementia. Fourth, our study sample focused

on older adults and thus we were unable to include earlier

age groups to assess whether DNS-br was predictive of

global cognitive function in earlier age groups. Despite these

limitations, our findings make significant contributions to

the literature to advance and enhance our screening and

diagnostic toolbox for cognitive decline and dementia via

digital biomarkers.
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