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For children and adolescents, there is a high risk of developing post-

traumatic stress disorder (PTSD) after suffering from catastrophic events.

Previous studies have identified brain functionally and subcortical brain

volumes structurally abnormalities in this population. However, up till now,

researches exploring alterations of regional cortical thickness (CTh) and

brain interregional structural covariance networks (SCNs) are scarce. In this

cross-sectional study, CTh measures are derived from 3-Tesla Tl-weighted

MRI imaging data in a well-characterized combined group of children and

adolescents with PTSD after an earthquake (N = 35) and a traumatized

healthy control group (N = 24). By using surface-based morphometry (SBM)

techniques, the regional CTh analysis was conducted. To map interregional

SCNs derived from CTh, twenty-five altered brain regions reported in the PTSD

population were selected as seeds. Whole-brain SBM analysis discovered a

significant thickness reduction in the left medial orbitofrontal cortex for the

subjects with PTSD. Similarly, analysis of SCNs associated with “seed” regions

primarily located in default mode network (DMN), midline cortex structures,

motor cortex, auditory association cortex, limbic system, and visual cortex

demonstrated that children and adolescents with PTSD are associated with

altered structural covariance with six key regions. This study provides evidence

for distinct CTh correlates of PTSD that are present across children and

adolescents, suggesting that brain cortical abnormalities related to trauma

exposure are present in this population, probably by driving specific symptom

clusters associated with disrupted extinction recall mechanisms for fear,

episodic memory network and visuospatial attention.
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Introduction

Posttraumatic stress disorder (PTSD) is a prevalent and
disabling mental disorder characterized by a cluster of emotional
and behavioral symptoms including re-experiencing, avoidance,
hyperarousal, negative cognitions, and mood (1) related to
the experience of catastrophic events. 20.52% of the youth
population after suffering from injury developed PTSD (2), and
the overall lifetime prevalence is 3–9% (3). Prior findings have
suggested that children and adolescents are more vulnerable
to developing PTSD after catastrophic events than are adults
(4, 5). As a collective trauma caused by natural disasters,
earthquakes have caused more extensive trauma to the public
representing the negative impact on social processes at the
collective level compared to individual crisis events (6). The
devastating Wenchuan 8.0-magnitude earthquake resulted in
heavy casualties and seriously affected approximately 46 million
people, of whom a considerable number were suffering from
PTSD (7). For minors, the psychological impact of the
earthquake is extremely far-reaching. During the follow-up of
6, 12, and 18 months, the incidence of PTSD symptoms was
9.7%, 1.3%, and 1.6% respectively (8). And the prevalence
of posttraumatic stress in adolescents until 8 years after
the Wenchuan earthquake was still 1.9–2.7% (9). Moreover,
there has been ample evidence indicating that juveniles
display different pathogenesis of PTSD, in consequence of
neurodevelopment (10), psychological tolerance (11), and
individual differences (12). With the purpose of thwarting the
negative impacts of mental trauma in children and adolescents,
the emphasis of current research is on how to understand the
neurobiological mechanisms associated with minors.

Nevertheless, most neuroimaging studies of PTSD have
focused on adults. Only a few pieces of literature have
reported brain imaging changes in children and adolescents
after exposure to an injury (13, 14). Besides, the major
findings in minors are regional functional alterations like the
amygdala (15), medial prefrontal cortex (16), visual cortex
(17), and anterior cingulate cortex (13). Understanding the
brain structural changes in the children and adolescents after
trauma who are developing and still malleable can provide a
way to explore neuropathophysiological mechanisms of PTSD
for countering negative consequences, particularly because
some studies have found that even the mature brain can be
for structural changes after treatment interventions in the
adult population (18, 19). Structural neuroimaging research in
pediatric posttraumatic patients can potentially help illuminate
the relationship between PTSD and brain structure, however, up
till this moment, such studies are scant (14).

Cortical thickness (CTh) is a relatively novel structural
neuroimaging analysis technique estimated generally by
surface-based method, which can reflect changes in the
cerebral cortex with the normal aging process and various

nervous system diseases (20). Compared to the voxel-
based morphometry (VBM) method, CTh determined by
surface-based morphometry (SBM) might detect the delicate
abnormities of brain structure more acutely (21, 22). However,
most of the brain structure imaging studies of PTSD is
based on the VBM method, among which adult patients are
mostly focused. And the structural brain changes in adult
patients with PTSD reported are mainly in the volumes
of the hippocampus, amygdala, insula, medial prefrontal
cortex, anterior cingulate, etc., (23–25). So far relevant
pieces of research on structural neuroimaging analysis in
children and adolescents with PTSD are still limited and
no consistent conclusion has been drawn, particularly on
cortical thickness. To our knowledge, there are only three
reports on CTh about PTSD patients up to now, not including
minors having experienced earthquakes (26–28). Ahmed
et al. (26) found subjects with PTSD indicated a marked
reduction in the insula thickness by using Freesurfer analysis
on Qdec. A different result is reported by Rinne-Albers et al.
(27) who found there was no significant difference in CTh
between pediatric posttraumatic patients and controls in four
selected ROIs including the insula. Moreover, the method
of brain structural covariance networks (SCNs) constructed
from inter-regional correlations estimated according to a
group of individual images is a relatively untapped resource
to be applied to reveal inter-regional co-variance patterns
across the population of brain disorders like early psychosis
(29–31). Importantly, for children and adolescents, SCNs as
the consequence of interaction and promotion during brain
development and maturation could help further understand the
abnormal alteration of the morphometry relationships between
different parts of the developing brain (30). In summary,
a combined method involving CTh and SCN analysis may
provide underlying information on the regional structure
and interregional network relationships related to pediatric
posttraumatic patients, which has not been reported in the
current literature yet.

In this cross-sectional neuroimaging study, structural and
network-level substrates of PTSD in children and adolescents
after the same earthquake were assessed by using CTh analysis.
Here, we hypothesized that altered CTh and covariance strength
derived from 3-Tesla MRI in pediatric posttraumatic patients
compared to traumatized non-PTSD subjects. First, regional
cortical thickness analyses between groups were conducted to
test for regional hypotheses. Next, we collected the mainly
abnormal brain regions originally identified in the published
neuroimaging meta-analyses on PTSD and restrained them
to these which are reported at least in two individual meta-
analyses. Furthermore, for measuring the correlation strength
of CTh between these synthesized brain regions and all other
brain vertices, a seed-based SCN analysis was used on the
interregional network-level.
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Materials and methods

Participants

Fifty-nine right-handed subjects who all experienced the
same Wenchuan 8.0-magnitude earthquake were recruited
(Table 1). The acquisition of neuroimaging and clinical data
from survivors took place in December 2009, 17 months after
this disaster. All participants were children or adolescents,
who were between 8 and 18 years of age (35 PTSD with a
mean age of 14.74 ± 2.08 years and 24 non-PTSD controls
with a mean age of 14.58 ± 1.79 years) and didn’t suffer any
physical head injury or any loss of consciousness > 5 min
in the catastrophe. They were drawn from a large-scale PTSD
survey of survivors 8–15 months after the earthquake. They
were first carefully screened through the PTSD checklist (PCL)
(32, 33). Subjects with a PCL score > 35 further participated in
interviews led by two experienced psychiatrists. The Clinician-
Administered PTSD Scale (CAPS) (34) was used to confirm
the PTSD diagnosis in these individuals with suspected PTSD,
and the structured clinical interview for DSM-IV (SCID) was
used to exclude any psychiatric comorbidities. Those who
scored > 50 on the CAPS were eligible for further evaluation
for inclusion in the PTSD group. An age-and sex-matched
trauma-exposed non-PTSD group was formed from those with
a PCL score < 30 points and a CAPS score < 35 points.
The exclusion criteria for the PTSD group were: (1) history
of other nervous system diseases and psychiatric disorders;
(2) use of psychotropic medications and drug treatment in
the past 2 months; (3) any significant medical or history of
head injury; (4) left-handedness; (5) IQ < 80; (6) magnetic
resonance imaging contraindications. The traumatized control
participants were similarly screened using the SCID and CAPS
scale. These subjects who experienced the same traumatic events
but with CAPS scores below 35 were included in the non-PTSD
group. The non-PTSD control group used the same exclusion
criteria as the PTSD group. An experienced neuroradiologist
inspected brain scans and ruled out clinical abnormalities. This
research was approved by the Medical Ethics Committee of West
China Hospital, Sichuan University, and all subjects and their
guardians offered written informed consent after being provided
a complete description of this study.

Magnetic resonance imaging
acquisition

Images were acquired on a Siemens 3.0T Trio TIM MRI
scanner at the West China Hospital. All subjects underwent
high resolution three-dimensional T1-weighted anatomical
brain scans (MPRAGE, 176 slices, TR/TE = 1900/2.26◦msec,
flip angle = 9◦, acquisition matrix = 256 × 256,
resolution = 1× 1× 1◦mm3).

Measurement of cortical thickness

The T1-weighted MRI data were preprocessed in FreeSurfer
(Version 7.1.01). The image processing includes the following
main steps: motion correction, skull strip, Talairach transform
computation, subcortical grey matter (GM)/white matter
(EM) segmentation, intensity normalization, WM-GM
boundary tessellation, automatic topology fixer, and spherical
registration. Then, the cortical surface of individuals is
registered to a standard spherical map after inflation by
the spherical registration method. And sulcal and gyral
features were recognized automatically by the software. The
CTh data were smoothed by a 10-mm FWHM Gaussian
kernel for reducing measurement noise and improving
statistical power.

Region-of-interest definition

We predefined twenty-five region-of-interests (ROIs)
according to our previous research (35) in Table 2. The
specific strategy was followed: each candidate seed was
originally identified in at least two individual published
neuroimaging meta-analyses on PTSD. These ROIs were
modeled by spheres of 20◦mm diameter around each
peak coordinate and chosen as seeds to create structural
covariance connectivity maps for a hypothesis-driven
approach.

Statistical analyses

All cortical statistical analyses were performed using the
SurfStat toolbox2 within MATLAB www.mathworks.com. And
for the problem of multiple comparisons, each cluster was
corrected with a random-field-theory (RFT) (36) at ap < 0.05
level of significance, limiting the probability of reporting a
family-wise error to below 0.05. Two-sample t-test and chi-
square analyses in SPSS software3 were used to compare
the demographic characteristics between trauma-exposed non-
PTSD and PTSD participants.

Regional substrates: Cortical thickness analysis
between groups

In order to obtain the cortical thickness Ti of each cortical
surface point i, general linear models (GLM) were used for
fitting calculation:

Tiintercept + β1
(
Group

)
+ β2

(
Age

)
+ β3(Gender)

1 http://surfer.nmr.mgh.harvard.edu

2 https://www.math.mcgill.ca/keith/surfstat/

3 https://www.ibm.com/analytics/spss-statistics-software
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TABLE 1 Sample characteristics.a

Clinical information PTSD (N = 35) Non-PTSD (N = 24) Test statisticsb

Age (years) 14.74± 2.08 14.58± 1.79 0.592

Gender (female/male) 23/12 14/10 0.565

Education (years) 8.43± 1.99 8.54± 1.64 0.509

CAPS (total) 7.01± 5.78 67.90± 15.23 < 0.001

Handedness (right/left) 35/0 24/0 –

Height (cm) 157.89± 8.92 158.50± 8.80 0.934

Weight (kg) 51.25± 8.01 49.95± 9.55 0.430

aPresentation of characteristics is mean± SD. bTwo-sample t-test was used to test continuous characteristics and categorical characteristics were tested by chi-square.

In the formula above, β1 values represent variable of interest and
other β2−3 represent covariates, considering the notable impacts
of Age and Gender on cerebral cortex (37).

Interregional network substrates: Structural
covariance networks analysis

To map interregional SCNs, the CTh of each ROI was
correlated with the thickness measurements across all cortical
surface points. For each seed, we fitted interaction models that
included terms for seed thickness, group, and their parametric
interaction to assess group differences in seed-based structural
covariance. The linear model at the cortical surface point i was
fitted to calculate:

Ti ∼ intercept + β 1
(
Group

)
+ β2

(
Seed

)
+ β2

(
Age

)
+

β4
(
Gender

)
+ β5

(
Group∗Seed

)
where ∗ denotes an interaction. As before, we regressed the
covariates of age and gender.

Results

Samples characteristics

The comparisons of demographic characteristics between
trauma-exposed non-PTSD and PTSD participants are provided
inTable 1. The average gender and age of PTSD individuals were
alike to the control’s, as were education and height, and weight.
In addition, the groups differed in CAPS scores.

Regional substrates: Cortical thickness
analysis

The Surface-based morphometry analysis of CTh
highlighted that PTSD patients displayed a significantly
thinner cluster of the left medial orbitofrontal cortex (mOFC)
than non-PTSD control subjects (P = 0.0265, corrected with
RFT) (Figure 1). No difference was seen in PTSD patients>
non-PTSD subjects.

Interregional network substrates:
Structural covariance networks
analysis

The seed-based structural connectivity analyses between
PTSD and non-PTSD control groups are presented in Figure 2
and Table 3. Findings showed that there were three types of
alteration of cortical structural covariation for seed regions
of interests: positive contrast (PTSD groups > non-PTSD
controls), negative contrast (PTSD groups < non-PTSD
controls), and both positive and negative contrasts. When
considering positive contrast, there were two seed regions
located in the auditory association cortex [left superior temporal
gyrus (STG)] and motor cortex (right precentral gyrus) that
showed increased covariance with other brain vertices in
PTSD patients compared with non-PTSD participants between
CTh. When considering the negative contrast, the results
showed that lesser connectivities of ten seed regions located
in the default mode network (DMN) regions [including left
posterior cingulated cortex (PCC), right precuneus, right medial
prefrontal cortex/anterior cingulate cortex (mPFC/ACC) and
right inferior parietal lobule (IPL)], midline cortex structures
[including bilateral medial frontal gyrus (MFG), right mid-
cingulate cortex (MCC)], visual cortex [including left middle
occipital gyrus (MOG) and left inferior temporal gyrus (ITG)],
and limbic system (right amygdala) were found in PTSD
patients compared with non-PTSD participants between CTh.
When both positive and negative sides were considered, there
were two seed regions including the left insula and precentral
gyrus.

In summary, covariance networks found were centered
on six key regions, and representative images are shown
in Figure 3. These were connectivities: (1) of seed regions
including the right mPFC/ACC, right precuneus, right MCC,
left insula, left precentral gyrus, and bilateral MFG with the
bilateral entorhinal (Figure 3A); (2) of seed regions including
the left MFG, left STG, right MCC, and bilateral precentral
gyrus with the left parahippocampal (Figure 3B); (3) of
seed regions including the right amygdala, left MOG, left
precentral gyrus, and left ITG with the bilateral superior parietal
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gyrus (SPG) (Figure 3C); (4) of seed regions including the
left MFG, right IPL, right precentral gyrus, and left ITG
with the bilateral supramarginal gyrus (SMG) (Figure 3D);
(5) of seed regions including the left STG, right IPL, and
left ITG with the bilateral PCC (Figure 3E); (6) of seed
regions including the left insula and precentral gyrus with the
bilateral precuneus (Figure 3F). All these findings survived the
p-RFT < 0.05 correction. For RFT-corrected maps depicting
SCNs of all reported findings, please see Supplementary
Figures 1–18.

TABLE 2 Coordinates-region-of-interests (ROIs).

Number Brain areas Left/Right
(L/R)

Peak coordinates

X Y Z

1 hippocampus L −28 −12 −14

2 amygdala L −20 −8 −12

3 R 24 −2 −16

4 medial prefrontal
cortex/anterior
cingulate cortex

L 0 20 26

5 R 12 36 18

6 insula L −42 8 −4

7 R 42 2 12

8 medial frontal
gyrus

L −34 4 52

9 R 12 42 24

10 caudate/putamen L −8 2 14

11 inferior frontal
gyrus

R 46 16 10

12 precuneus L −10 −52 42

13 R 10 −52 46

14 posterior
cingulate cortex

L −2 −42 20

15 fusiform gyrus L −46 −42 −12

16 R 36 −72 −10

17 superior
temporal

gyrus/angularis

L −50 −2 2

18 mid-cingulate
cortex

L −2 −16 36

19 R 8 16 34

20 inferior parietal
lobule

R 32 −50 48

21 middle occipital
gyrus

L −32 −86 0

22 superior frontal
gyrus

L −24 52 10

23 precentral gyrus L −36 −8 38

24 R 40 10 40

25 inferior temporal
gyrus

L −48 −10 −20

FIGURE 1

Regional cortical thickness analysis between groups. The
surface-based morphometry analysis highlighted a significant
thickness reduction in the left medial orbitofrontal cortex for
post-traumatic stress disorder (PTSD) participants compared
with trauma-exposed non-PTSD subjects [1,994 vertices,
P = 0.0265, corrected with random-field-theory (RFT)].

Discussion

The current research provides insights into the regional
structure and interregional network differences of posttraumatic
patients, in a well-characterized combined sample of children
and adolescents after an earthquake, between 8 and 18◦years of
age. By using surface-based morphometry analysis, we analyzed
CTh and examined the structural covariance connectivity of
the abnormal regions involved in PTSD on network-level
between participants with and without PTSD. As expected,
on the structural whole-cortex vertex-wise level, a significant
reduction in CTh was detected in the left mOFC. In the
interregional structural covariance analysis, several seed regions
mainly located in the DMN regions, midline cortex structures,
motor cortex, auditory association cortex, limbic system, and
visual cortex showed altered structural connectivities with six
key regions: the bilateral entorhinal; the left parahippocampal;
the bilateral SPG; the bilateral SMG; the bilateral PCC and the
bilateral precuneus compared the PTSD subjects with the non-
PTSD.

Alterations in regional cortical
thickness between groups

Post-traumatic stress disorder (PTSD) patients highlighted
significantly thinner cortex in the left mOFC than non-PTSD
groups. One of the leading factors in PTSD is the failure
of fear extinction, and the reported mOFC which plays an
important role in extinction learning is closely associated with
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FIGURE 2

The structural connectivity network profile between the abnormal seed areas and the whole-brain cortical surface points in a combined sample
of post-traumatic stress disorder (PTSD) group and non-PTSD. Bands with red and blue represent increased and decreased covariance,
respectively. Ring color with gradient red and green-blue represents areas in the collected abnormal seeds and the whole-brain cortical
surface, respectively. And the Desikan-Killiany atlas (thirty-four regions/per hemisphere) underlay the whole-brain cortical parcellations. As for
abbreviations on the drawing, please refer to Supplementary Table 1.

the fear loop (38–40). The mOFC in classical experiments (41–
43) has been widely considered to be involved in the retention
or recall of extinction learning. In addition, the brain activity
in the mOFC region decreased during experiencing a trauma
(44), which seemed to reflect the lack of the “switch-off”
mechanism of fear at this point (45). Furthermore, evidence
from neuroimaging research suggested a positive correlation
between the cortex thickness of mOFC and extinction recall (46,
47). And Morey et al. found that there were smaller orbitofrontal

volumes in minors with PTSD (48). Taken together, individuals
will maintain a better extinction ability to respond to fear
when mOFC regions are activated more. In contrast to that,
the thinner cortex in the mOFC of PTSD patients found in
this research may reflect the reduced flexibility to control fear
and may make children and adolescents more vulnerable to
traumatic events. Therefore, the abnormalities in mOFC areas
might be the outcome of disrupted extinction recall mechanisms
for fear in PTSD.
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Alterations in interregional structural
covariance networks

Covariance networks in the current study were significantly
correlated with brain activations in areas centered on six key
regions: the bilateral entorhinal, the left parahippocampal, the
bilateral SPG, the bilateral SMG, the bilateral PCC, and the
bilateral precuneus. Previous studies on the SCNs of PTSD
have shown the structural integrity of the cingulate region,
the cingulum bundle, and/or the amygdala or amygdala and
other frontal regions in the adult population (49–52). At the
same time, there are only a few reports about the structural
connectivity changes derived from cortical thickness for minors
with PTSD, which reported abnormalities in the left PCC, the
right inferior frontal cortex, and the left ACC (53, 54). The
current study discovered abnormal integrations of the structural
connectivity of the entorhinal cortex, parahippocampal, and
parietal cortex for children and adolescents with PTSD. These
extensive abnormalities of integrated changes of structural
connectivity may reveal why children and adolescents might
be more vulnerable to the harmful effects of disastrous events,
which will continuously threaten the health and welfare of
current and future generations calling for more post-disaster
policy attentions to the trauma problems faced by children in
the process of growth and development after the earthquake and
giving them long-term interventions and support (55, 56).

The entorhinal, parahippocampal, PCC, and precuneus
are important components of the episodic memory network
which have been proved to be often activated during episodic
recall in PTSD patients by imaging studies (57–62). The
entorhinal cortex and parahippocampal work together for
spatial positioning and the formation of declarative memory
(63). As the primary interface for information flow between the
neocortex and the parahippocampal formation, the entorhinal
cortex receives multimodal information from other cortical
regions and then transmits them to the parahippocampal
(64). We observed reduced structural connectivities in DMN
regions (including right mPFC and right precuneus), midline
cortex structures (including bilateral MFG and right MCC), the
motor cortex (right precentral gyrus) with the left entorhinal
and in left insula with the right entorhinal, which may be
a result of inhibition of information flow between entorhinal
cortex and neocortex associated with unique symptoms of
emotional processing, re-experiencing memory and awareness
of bodily states in PTSD youths. Additionally, the disturbance
of structural connectivity in the parahippocampal might
be the basis for sensory and contextual memory defects
in posttraumatic patients (65, 66). The results that there
were decreased structural connectivities in the midline cortex
structures (including left MFG and right MCC)) and increased
structural connectivities in the motor cortex (right precentral

gyrus) and auditory association cortex (left STG) with the
left parahippocampal gyrus supported the dual representation
theory of PTSD (67), which suggest a dissociation between
sensory and contextual memory representations in PTSD. This
abnormal alteration of connectivity in the left parahippocampal
gyrus is consistent with the previous structural covariance
network studies showing that there was an increased correlation
between the limbic system and the visual-related cortex (51) and
impaired integration of the prefrontal limbic network with other
parts of the brain in PTSD patients (68). Similar dissociation
between hyperactive sensorimotor regions and hypoactive
memory-associated regions was reported during PTSD-related
flashbacks (69, 70). Viard et al. indicated decreased within-
DMN connectivity of PCC in adolescents with PTSD (71),
so the decreased structural connectivity in the visual cortex
(left ITG) and DMN regions (right IPL) is known for their
roles in visual mental imagery and contextual cue processing
(67, 72) with the left PCC and the increased structural
connectivity between auditory association cortex (left STG)
and the right PCC might relate with distorted images and
sounds, dysfunctional autobiographical memory retrieval. The
precuneus which responds to multiple cognitive processes could
be divided into regions involved in cognition, sensorimotor, and
visual processing (73). Our results that seed regions in the left
insula and precentral gyrus were structurally connected with
the bilateral precuneus confirm this separation and might help
explain the complex clinical manifestations of PTSD patients.
From the above, our findings of altered structural connectivity
of the four areas in the episodic memory network may be the
foundation of trauma re-experiencing and recalling in children
and adolescents with PTSD.

In addition, there were different connections in the
bilateral SPG and SMG for PTSD patients compared with
controls. The SPG is known for a crucial role in the
early integration of visuospatial information carried by
somatosensory, proprioceptive, and auditory stimuli (74, 75).
And SMG is the secondary somatosensory cortex which can
integrate exogenous and internal-sensory information (76).
The precentral gyrus has an increased structural connection
with SPG and SMG may indicate that PTSD patients are
more difficult to process tactile and proprioceptive visuospatial
sensory information related to external cues to carry out
somatic drive. The decreased connection in the amygdala,
MOG, and ITG with SPG suggests that PTSD patients
have a reduced ability to integrate visuospatial information.
Besides, the decreased connection between the inferior temporal
gyrus and supramarginal gyrus may reveal the decreased
spatial perception of PTSD patients. Consequently, these
connection changes in SPG and SMG may reflect the reduction
of visuospatial information integration ability in the youth
population with PTSD.
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TABLE 3 Abnormal seed-based structural connectivity between post-traumatic stress disorder (PTSD) and non-PTSD (cluster p < 0.05,
p-random-field-theory (RFT) corrected).

Seed numbers and regions Peak of clusters NVtxs p-RFT Anatomical location of clusters

X Y Z

Positive contrast (PTSD > non-PTSD)

17 L superior temporal gyrus −9 16 39 2986 0.002 L superior frontal

−23 −22 −18 38 0.006 L parahippocampal

4 −48 33 2204 0.01 R posterior cingulate
R isthmus cingulate

24 R precentral gyrus 40 −26 56 4605 0.0003 R postcentral

24 8 58 3010 0.002 R superior frontal

−58 −25 31 3500 0.004 L supramarginal

−21 −18 −22 35 0.0089 L parahippocampal

47 −40 1 2334 0.03 R bankssts

15 −31 39 1731 0.049 R paracentral

Negative contrast (PTSD < non-PTSD)

3 R amygdala 35 −46 38 3934 0.0005 R superior parietal
R inferior parietal

5 R medial prefrontal cortex −21 1 −25 111 0.00003 L entorhinal

9 R medial frontal gyrus −24 −1 −23 111 0.00004 L entorhinal

13 R precuneus −23 3 −25 206 0.0004 L entorhinal

14 L posterior cingulate cortex −2 29 −4 74 0.02 Lrostral anterior cingulate

19 R mid-cingulate cortex −19 1 −30 112 0.0001 L entorhinal

−28 −14 −35 1548 0.00999 L parahippocampal
L entorhinal

20 R inferior parietal lobule −2 −18 29 51 0.0068 L posterior cingulate

64 −42 23 2351 0.015 R supramarginal

21 L middle occipital gyrus 30 −51 45 2169 0.02 R superior parietal

25 L inferior temporal gyrus 54 30 −2 2317 0.003 R pars triangularis

33 −47 40 2775 0.004 R superior parietal

57 −33 17 2836 0.01 L supramarginal
L superior temporal

−46 −68 9 1952 0.01 L lateral occipital
L inferior parietal

−3 −28 28 48 0.049 L posterior cingulate

8 L middle frontal gyrus −19 2 −30 2178 0.00002 L parahippocampal
L entorhinal

41 −30 13 2894 0.02 R supramarginal
R transverse temporal

Two-sided contrast (both positive and negative)

6 L insula (positive) −5 39 52 2780 0.0037 L superior frontal

38 30 42 2195 0.0083 R rostral middle frontal

−9 −56 64 2098 0.02 L precuneus

8 −54 26 1846 0.04 R precuneus

6 L insula (negative) 24 −6 −29 40 0.0097 R entorhinal

23 L precentral gyrus (positive) 54 −11 33 9343 0.00001 R postcentral

29 42 32 3613 0.0003 R rostral middle frontal

−27 −39 53 3754 0.003 L postcentral
L superior parietal

−16 −66 64 2701 0.003 L middle temporal
L temporal pole

−26 55 17 2387 0.007 L rostral middle frontal

2556 0.009 R precuneus
R isthmus cingulate

18 −55 5 1914 0.02 L superior parietal

−22 −20 −20 28 0.03 L parahippocampal

23 L precentral gyrus (negative) 42 6 25 5375 0.0003 R precentral

−27 −2 −22 54 0.004 L entorhinal

NVtxs, number of vertices; L, left; R, right.
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FIGURE 3

The main altered connectivity network profiles in structural covariance between post-traumatic stress disorder (PTSD) and none-PTSD group,
centered on six key regions. (A) The connectivity network profiles of the right medial prefrontal cortex (mPFC), right precuneus, right
mid-cingulate cortex (MCC), left insula, left precentral gyrus, and bilateral medial frontal gyrus (MFG) with the bilateral entorhinal. Bands with
red and blue represent increased and decreased covariance, respectively. Ring color with gradient red and green-blue represents areas in the
collected abnormal seeds and the whole-brain cortical surface, respectively. And the Desikan-Killiany atlas (thirty-four regions/per hemisphere)
underlay the whole-brain cortical parcellations; (B) the connectivity network profiles of the left MFG, left superior temporal gyrus (STG), right
MCC, and bilateral precentral gyrus with the left parahippocampal; (C) the connectivity network profiles of the right amygdala, left middle
occipital gyrus (MOG), left precentral gyrus, and left inferior temporal gyrus (ITG) with bilateral superior parietal gyrus; (D) the connectivity
network profiles of the left MFG, right inferior parietal lobule (IPL), right precentral gyrus, and left ITG with bilateral supramarginal gyrus; (E) the
connectivity network profiles of the left STG, right IPL, and left ITG with the bilateral posterior cingulated cortex; (F) the connectivity network
profiles of the left insula and precentral gyrus with the bilateral precuneus bilateral. As for abbreviations on the drawing, please refer to
Supplementary Table 1.
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Conclusion

This research supplemented deeper insights to structure
and network substrates of posttraumatic patients in children
and adolescents, suggesting that cortical alterations related to
trauma exposure are present in this population, probably by
driving specific symptom clusters associated with disrupted
extinction recall mechanisms for fear, episodic memory
network, and visuospatial attention. In other words, connections
in certain cortical regions may underlie the presentation
of certain symptoms. These changes in regional and
interregional structural features have significant implications
for understanding the neural underpinnings of young
posttraumatic patients.

However, several limitations deserve attention. Firstly, due
to the limited sample size of subjects, regional alterations
between groups may lack sensitivity and results should
be considered rather preliminary. Secondly, for the control
group, only traumatized non-PTSD individuals were included
but healthy controls who had not experienced a traumatic
event were not. Finally, current interregional analyses are
conducted at the group-level, only reflecting differences in
co-variance networks between two populations not including
modulation effects of SCN by clinical characteristics. In the
future, further individualized structural covariance networks
analysis will be implemented using a larger sample of
posttraumatic patients and adding non-traumatized healthy
controls to explore individual differences among children and
adolescents and modulation effects of cortical thickness by
clinical characteristics.
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