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Electroencephalogram (EEG)-based tools for brain functional connectivity (FC) analysis

and visualization play an important role in evaluating brain cognitive function. However,

existing similar FC analysis tools are not only visualized in 2 dimensions (2D) but also are

highly prone to cause visual clutter and unable to dynamically reflect brain connectivity

changes over time. Therefore, we design and implement an EEG-based FC visualization

framework in this study, named EEG-FCV, for brain cognitive state evaluation. EEG-

FCV is composed of three parts: the Data Processing module, Connectivity Analysis

module, and Visualization module. Specially, FC is visualized in 3 dimensions (3D) by

introducing three existing metrics: Pearson Correlation Coefficient (PCC), Coherence,

and PLV. Furthermore, a novel metric named Comprehensive is proposed to solve the

problem of visual clutter. EEG-FCV can also visualize dynamically brain FC changes over

time. Experimental results on two available datasets show that EEG-FCV has not only

results consistent with existing related studies on brain FC but also can reflect dynamically

brain FC changes over time. We believe EEG-FCV could prompt further progress in brain

cognitive function evaluation.

Keywords: EEG, functional connectivity, Comprehensive, brain cognitive function, visualization

1. INTRODUCTION

More and more studies prove a strong association between brain cognitive function and neural
connectivity in different brain regions (1–3). An EEG-based brain connectivity analysis provides
much useful and meaningful information to reflect the dynamic changes in brain neural activities,
and an interpretation of the changes in cognitive functions as well (4–7). Therefore, it is of vital
importance to design a friendly human-computer interaction visualization framework to better
reflect the connectivity and its dynamical changes in the brain for evaluation of cognitive states,
which can not only promote the understanding of EEG signals but also assist better performing
the relevant analysis of brain cognitive function. In general, there are three kinds of connectivity:
anatomical, effective, and functional (8). Since the definition of anatomical connectivity is not yet
clear, and some fake connections may be involved in the effective connection, we mainly focus on
functional connectivity (FC) in our designed framework.
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Functional connectivity is defined as the temporal correlation
between spatial remote neurophysiological events (9) and is
essentially employed to measure the degree of dependence or
correlation between signals collected by relevant techniques,
such as functional magnetic resonance imaging (fMRI) (10–
12), diffusion tensor imaging (DTI) (13) and EEG (14, 15), etc.
Compared with fMRI and DTI, EEG has millisecond-level time
resolution, which makes it more suitable for visualizing brain
neural activities, and easier to reflect changes in brain activity in
the temporal dimension (16) as well.

In the past decades, although many teams (17–21) have
devoted themselves to the development of similar toolkits for
analysis and visualization of brain FC, there are still some
issues to be addressed. First, existing related toolkits are not
platform-independent, most of which such as ELAN (21), and
EEGNET (19), are embedded in some platform software like
MATLAB (Math works, Inc.), making them incapable of running
independently. Second, those toolkits lack effective algorithms to
eliminate the problem of visual clutter. Finally, most of them can
only perform a kind of static FC analysis, so they cannot reflect
the dynamic changes of EEG cognitive state.

Therefore, in this article, we design an EEG-based FC
visualization framework (EEG-FCV) to visualize brain
connectivity between different channels, different brain
regions, as well as left and right hemispheres, respectively, so
as to better estimate the brain’s cognitive functions and their
dynamic changes. Besides, we propose a novel brain connectivity
metric, named Comprehensive, to eliminate visual clutter.

The main contributions in this study are involved in the
following three aspects:

• We design and implement a 3D software framework known as
EEG-FCV which is completely independent of platforms, for
the visualization of brain FC and evaluation of cognitive states.

• We propose Comprehensive as a novel metric of brain FC to
efficiently solve the problem of visual clutter.

• We take advantage of the high time resolution of EEG
to realize FC dynamic visualization, so as to provide
some assistance with an analysis of the evolution of brain
cognitive activities.

2. RELATED STUDY

2.1. EEG-Based FC Evaluation Methods
Among those methods for EEG-based evaluation of brain FC,
the most representatives usually include Correlation, Coherence,
and Phase Locking Value (PLV). For example, Risqiwati et al.
(22) performed EEG-based FC analysis with Pearson Correlation
metric in different mental states and found obvious FC effect in
Beta (13–30 Hz) and Theta (4–7 Hz) frequency bands. In Duffy
and Als (23). adopted Spectral Coherence to analyze brain FC of
children with autism and confirmed the changes in connectivity
with the coherence metric. La Rocca et al. (24) further fused
spectral coherence-based connectivity between different brain
regions as a possibly viable biometric feature, concluding that
Coherence is a useful metric in the evaluation of brain FC. In
addition, PLV-based metric is also used to perform FC analysis

to study the difference between the Supplementary Motor
Area (SMA) and Primary Motor Area (M1) when performing
motor imagery tasks of left/right hand movement (25). The
experimental results showed that PLV is one of the robust
features to distinguish different motor imagery states. Sadaghiani
et al. (26) also concluded that alpha band (8–13 Hz) phase
synchrony was linked to neural structures underpinning phasic
control of alertness and task requirements.

2.2. EEG-Based FC Visualization
Applications
Nowadays, many research teams have developed various
EEG FC visualization tools. Hassan et al. (19) developed
an EEGNET plug-in application embedded in MATLAB for
the analysis of functional brain networks. EEGNET could
perform EEG preprocessing and carry out EEG-based analysis
of brain FC among different surface electrodes. To study
the synchronization patterns of different EEG acquisition
channels, Alba et al. (17) designed a time-frequency-topography
visualization system based on various techniques, such as time-
frequency decomposition and Bayesian approach, to perform
various synchrony measurements. In order to reduce the visual
clutter of FC visualization produced by coherence measures from
multichannel EEG, Ten Caat et al. (18) optimized the way of
graphical layout through a maximal clique-based (MCB) method
and a watershed-based (WB) method with a better visualization
effect. ELAN is a freely available software package, developed
by the Brain Dynamics and Cognition Laboratory in Lyon (21),
for the analysis of scalp and intracranial EEG. ELAN could
provide phase synchronization analysis of EEG and visualization
of topographic mapping. Peyk et al. (20) provided a MATLAB-
based EMEGS toolkit that can visualize data as 3D projections of
multiple models, including simple sphere models, realistic head
shapes, and realistic brain shapes.

Althoughmany EEG-based FC analysis and visualization tools
have been developed, most of them have to be embedded in some
platform software such as MATLAB as the plug-in toolboxes, so
they are difficult to avoid visual clutter and cannot reflect the
dynamic changes in brain connectivity. All these factors have
hindered the further promotion of these existing tools.

3. FRAMEWORK OF EEG-FCV

The framework and work flow of EEG-FCV are shown in
Figures 1, 2, respectively. EEG-FCV is composed of three
modules: Data Processing Module, Connectivity Analysis
module, and Visualization module. The raw EEG data first
undergoes preliminary preprocessing, including artifact removal
and down-sampling. Then the new-generated data file in .mat
format is sent into the Data Processing Module.

3.1. Data Processing Module
Usually, EEG signals of the Alpha frequency band (8–13 Hz) in
the occipital lobe and parietal lobe appear and play a major role
when someone is awake, quiet, and eye-closed. When a person
is in a state of concentration, thinking, alertness or anxiety,
EEG signals of the Beta frequency band in the frontal lobe are
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FIGURE 1 | Overall framework of EEG-FCV.

FIGURE 2 | Work flow of EEG-FCV.

strongly correlated with brain cognitive activities. EEG signals
in the Theta frequency band are more active near the Fz lobe
when someone is in meditation, drowsiness, hypnosis, or sleep
state. EEG signals in the Delta frequency band (1–4 Hz) are
dominated during sleeping (27–29). Therefore, we can infer the
cognitive function by observing the connectivity and its changes
in different frequency bands.

Therefore, in Data Processing Module, we first extract EEG
features by adopting Wavelet Packet Decomposition (WPD) in
frequency bands of Alpha, Beta, Theta, and Delta, respectively.
EEG feature vectors in these four frequency bands can be
directly used as the input of the Connectivity Analysis module
for static visualization. Regarding the dynamic display of FC
visualization, we perform slicing with a fixed time interval
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according to different feature labels in EEG to obtain multiple
EEG feature vectors with equal length and then send those
features to the Connectivity Analysis module to calculate FC
metrics for visualization.

3.2. Connectivity Analysis Module
In the Connectivity Analysis module, we not only embed three
commonly used FC metrics(PCC, Coherence, and PLV) but also
propose a novel FC metric named Comprehensive to extract the
connection weight and highlight the strength of the connectivity
between EEG channels, so as to facilitate the elimination of vision
clutter brought by commonly used FC metrics algorithms.

3.2.1. Pearson Correlation Coefficient
Given two time series of signals x = {x1, x2, · · · , xi, · · · , xn}
and y = {y1, y2, · · · , yi, · · · , yn} (xi and yi are the sample points
with an index of i), PCC r is in statistics the measure of linear
correlation between x and y. It is the ratio between the covariance
of the two signals and the product of their SDs. Thus, PCC is
essentially a normalized measurement of the covariance, and the
result has a value between −1 and 1. Thus, for n paired data
{xi, yi} in x and y, PCCr is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)

√

∑n
i=1(xi − x̄)2

√

∑n
i=1(yi − ȳ)2

(1)

where x̄ and ȳ are the sample means which equals to 1
n

∑n
i=1 xi

and 1
n

∑n
i=1 yi, respectively. The greater the absolute of r, the

stronger the correlation.

3.2.2. Coherence
Coherence, also called spectral coherence in signal processing, is
commonly used to estimate the power between input and output
of a linear system. The coherence Cohxy between x and y can be
calculated as Equation 2:

Cohxy =
|pxy(f )|

2

pxx(f ) · pyy(f )
(2)

where pxy(f ) is the cross-spectral density at a frequent band f
between x and y, and pxx(f ) and pyy(f ) are the auto-spectral
density of x and y, respectively. The magnitude of the spectral
density is denoted as |p|.

Cohxy always satisfies 0 ≤ Cohxy ≤ 1. Similar to PCC r, if
Cohxy is closer to 1 at frequent band f , there exists a stronger
relationship between x and y.

3.2.3. Phase Locking Value
Phase Locking Value, also known as phase synchronization index,
is a phase-based FC method, which actually measures the phase
difference between two channels. PLV between x and y can be
written as:

PLV = |n−1
n

∑

t=1

ei(φxt−φyt)| (3)

where φxt and φyt represent the phase angles of x and
y, respectively at time t. The range of PLV is [0,1]. The

larger the value PLV , the stronger the phase synchronization
between x and y.

Phase Locking Value can be used to investigate task-induced
changes in long range synchronization of neural activity from
EEG data, and statistics can be argued to be a proxy for
connectivity. Intuitively, if the EEG signal in two channels
(electrodes) during an experimental condition rises and falls
together more than a baseline value, then there is more
synchronization, or loosely speaking, enhanced connectivity
between these two electrodes. If it is less than the baseline
value, there is de-synchronization, or loosely speaking, decreased
connectivity between the two electrodes.

Although the above three metrics are commonly used for FC
analysis, they do not consider the co-variation in the power of
the EEG signal between two electrodes and are more sensitive to
the volume conduction effect. However, it might not only lead
to visual clutter due to the smaller difference between the three
metrics in connectivity strength but also be difficult to highlight
the connectivity to find an optimal connection between channels
in the brain network.

3.2.4. Our Proposed Metric of Comprehensive
To better reflect the connectivity difference between channels,
and eliminate the vision clutter, we propose a novel measure
metric, named Comprehensive. The core idea of Comprehensive
is to assign a weight for FC visualization to the edge between
two channels (also termed as nodes in the brain network) in
the brain network by respectively calculating the degrees of
the two channels (Figure 3). Comprehensive can not only show
the difference in the connectivity strength between channels
and, thus, find the key connectivity among them but also can
efficiently eliminate the visual clutter. In detail,

First, for the ath, bth channels Ca and Cb in channel set
{C1,C2, · · · ,Cn}, a, b ∈ {1, 2, · · · , n}, we define, respectively the
in-degree weightwIn−degree and the out-degree weightwOut−degree

of channel Ca in Equations 4 and 5 as the average connectivity of
the number of head adjacent channel Ci, and tail end adjacent
channel Cj to channel Ca, respectively :

wIn−degree =
1

n

n
∑

i=1

dia (4)

wOut−degree =
1

n

n
∑

j=1

daj (5)

where i, j ∈ {1, 2, · · · , n} are the subscripts of ith channel Ci and
jth channel Cj. dia represents one metric of PCC r, Cohia, and PLV
from channel Ci to Ca. daj is similar to dia.

Then, Comprehensive dab
∗ can be denoted as:

d∗ab =
1

2

(

wOut−degree + wIn−degree

)

× dab (6)

Similar to PCC,Coherence, and PLV , we need to normalize d∗
ab

in line with different metrics chosen by dab. For example, if we
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FIGURE 3 | Comprehensive EEG-FCV.

FIGURE 4 | Three ways of Visualization. (A) is the model of between-channel, (B) is the model of between-BR, and (C) is the model of between-L/RH.

choose PCC or PLV as dab, d
∗
ab

will be between 0 and 1, while
Coherence as dab, d

∗
ab

will lie between−1 and 1.

3.3. Visualization Module
3.3.1. Basic Concepts
The static/dynamic visualization is realized in the Visualization
module. In this module, six FC visualizations, including between-
channel, between-brain-region(between-BR), between-left-right-
hemisphere(between-L/RH), internal-connectivity, comparable
connectivity, and dynamic connectivity are designed to show FC
effects in different situations.

Herein, between-channel FC visualization means to visualize
the connectivity between two different channels. Between-BR
visualization is to show the connectivity between two different
BRs distributed in line with the international 10–20 system,
which are frontal lobe, parietal lobe, occipital lobe, temporal lobe,
and central zone, respectively. Correspondingly, the connectivity

between two different hemispheres is shown in between-L/RH
visualization. Internal connectivity visualization is to reveal the
connectivity results between channels either in the same BR
or in the same L/RH. In addition, EEG-FCV also provides
comparable FC visualization of different cognitive states, so as
to facilitate analyzing FC differences for various psychological
activities. Finally, as a special function of EEG-FCV, the FC
changes of EEG over time are realized in Dynamic Visualization,
which helps researchers to better observe the connectivity
changes, thereby assisting in the study of relevant potential
neuropsychological activities.

3.3.2. 3D Display in Different Visualization Levels
3ds Max software (Autodesk Company, USA) is employed
as the development tool to construct our 3D visualization
module. There are three different levels of visualization, which
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FIGURE 5 | Between-channel FC visualization of PCC and Comprehensive. (A–C) is the heat map of PCC, Coherence and PLV. (D–F) is the heat map of

Comprehensive based on (A–C).

are between-channel (Figure 4A), between-BR (Figure 4B), and
between-L/RH (Figure 4C).

Between-channel level of 3D visualization is designed and
implemented in terms of the 81-channel’s 3D coordinates of
the standard 10–20 lead provided by EEGLab. For better
visualization, we mark those channels in the central zone of the
cerebral cortex (such as Nz-Iz) in red and those in other areas
in blue, respectively, as shown in Figure 4A. In order to show
3D visualization of the between-BR level, we first connect the
3D coordinates of all the channels in the same BR to generate a
polyhedron. According to this method, a total of 12 visualization
levels of different BRsmarked in white is generated. Similarly, the
3D visualization of between-L/RH levels can also be achieved, as
shown in Figures 4B,C, respectively.

3.4. Connectivity Visualization
In EEG-FCV, the connectivity strength is represented by different
colors, transparency, and thickness of connection lines. The
golden-and-red lines indicate the connectivity values between
channels are greater than zero. The greater the values, the
stronger the connectivity between channels, and the thicker and
more opaque the line. In contrast, black-and-white lines mean
the connectivity values are less than zero. Similarly, the smaller
the values, the weaker the connectivity between channels, and the
thinner and more transparent the lines.

We calculate the connectivity of between-channel to evaluate
the connectivity of between-BR or between-L/RH. For n
BRs(or L/RHs) z = {z1, z2, · · · , zk, · · · , zn}, ∃za∈z and
∃zb∈z (a, b∈[1, n], a6=b). For N channels {x1, · · · , xi, · · · , xN}

and M channels {y1, · · · , yj, · · · , yM}, ∀xi∈za and ∀yj∈zb
(i∈[1,N], j∈[1,M]). C(xi, yj) represents the connectivity between
channel xi and channel yj obtained from between-channel
connectivity. Therefore, the connectivity C(za, zb) between BR(or
L/RH) za and BR(or L/RH) zb can be denoted as:

C(za, zb) =

N
∑

i

M
∑

j

C(xi, yj) (7)

4. EXPERIMENTS

4.1. Datasets
We use two different datasets: SEED and Fatigue Driving to verify
the performance of EEG-FCV.

4.1.1. SEED Dataset
SEED is a public dataset issued by SJTU for EEG emotion
recognition (30, 31). Fifteen Chinese subjects (male:female =
7:8, MEAN: 23.27, STD: 2.37) are recruited to participate in the
experiments. Each subject is asked to perform the experiment
three times with an interval of approximately 1 week, and
watch fifteen Chinese film clips with three emotion stimuli
(positive, neutral, and negative emotions) in each experiment.
The duration of each film clip is approximately 4 min. There is
a total of 15 trials for each experiment. EEG is recorded by EEG
cap with 62 channels in line with the international 10–20 system.
Then EEG is downsampled to 200Hz and filtered with a bandpass
frequency from 0 to 75 Hz.

Frontiers in Psychiatry | www.frontiersin.org 6 July 2022 | Volume 13 | Article 928781

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Zeng et al. EEG-FCV

FIGURE 6 | Between-channel FC visualization of PCC and Comprehensive. (A,B) are between-channel FC visualization of PCC and Comprehensive. (C) is

Between-channel FC visualization of 1/8 of Comprehensive.

4.1.2. Fatigue Driving Dataset
The fatigue driving dataset includes 20 healthy subjects (9
women, 11 men) of EEG data collected in 2 h of driving for

mental state prediction. Each subject is required to perform the
driving tasks twice on 2 consecutive days. The experiment is

conducted following the principles outlined in the Declaration
of Helsinki of 1975, as revised in 2008.

EEG is recorded with a sampling frequency of 200 Hz by a 62-
channel EEG cap (Brain Products GmbH, Munich, Germany),
then EEG data between 1 and 30 Hz is remained by band-pass
filtering, and eye blinking artifacts are removed by means of
Independent Component Analysis (ICA) (32). Fatigue Driving
dataset contains EEG of five mental states namely TAV1 to TAV5
evoked by two stimuli of video and audio, as well as the right and

left button press. In addition, EEG of the other threemental states
(WUP, PERFO, DROWS) is also recorded without any stimuli
but at different driving speeds. Please refer to Zeng et al. (33, 34),
and Zhao et al. (35) for more details.

4.2. Comprehensive vs. PCC, Coherence
and PLV
First of all, we compared the results of using different FCmetrics.
Figure 5 shows the results bymeans of PCC, Coherence, PLV, and
Comprehensive in the EEG alpha band of the SEED dataset.

We can see from Figures 5A–C that the closer the distance
between two channels, the larger the value of Coherence, PCC,
and PLV, and the stronger the connectivity. Conversely, the
farther the distance between two channels, the smaller the value
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FIGURE 7 | This is between-BR FC visualization of different ranges of PCC. (A) is between-BR FC visualization of the whole PCC. (B,C) are between-BR FC

visualization of 1/2 and 1/8 of PCC.

FIGURE 8 | This is between-L/RH FC visualization of different ranges of PCC. (A) is between-L/RH FC visualization of the whole PCC. (B) is between-L/RH FC

visualization of 1/2 of PCC. (C) is between-L/RH FC visualization of 1/8 of PCC.

of Coherence, PCC, and PLV, and the weaker the connectivity.
The values of PLV between two channels are usually larger than
Correlation and PCC. In addition, the connectivity between

channels in the frontal lobe(F region), the frontal cortex(FC
region), and the frontal temporal lobe(FT region) is commonly
stronger than in other regions.
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When using Comprehensive to measure and visualize brain
FC, as shown in Figures 5D–F, the connectivity between
channels with larger Comprehensive is highlighted by assigning a
greater positive weight (≥ 0) to the connection. Correspondingly,
the connectivity with smaller Comprehensive between channels
is weakened by assigning a smaller negative weight (≤ 0) to
the connection. Visual clutter of brain FC can be effectively
eliminated in this way.

4.3. FC Visualization
In this section, we take PCC and corresponding generated
Comprehensive based on PCC as examples to show brain FC in
3D in our proposed visualization modules. Similar results can
be obtained based on the other two metrics and corresponding
Comprehensive metrics.

4.3.1. Between-Channel Visualization
Brain FC based on PCC in 3D is shown in Figure 6, from
which the phenomenon of visual clutter can be easily observed
so that it is very difficult to evaluate the connectivity between
channels. After adopting Comprehensive, the important
connections between brain channels (the corresponding
Comprehensive value is larger) become more prominent, and
those connections with negative Comprehensive values are
faded or even disappeared so that the problem of visual clutter
can be effectively alleviated, the visualization of brain FC by
Comprehensive is shown in Figure 6B.

In addition, to further eliminate visual clutter, we define four
kinds (1/2, 1/4, 1/8, and 1/16) of visualization modes.

To obtain 1/2 of Comprehensive, the mean value of
Comprehensive between channels is firstly calculated, then
compared with Comprehensive values of each pair of channels.
If the mean value of Comprehensive is greater than 0, only those
connections whose Comprehensive values are greater than the
mean value of Comprehensive are displayed in the visualization
of brain FC; If mean value of Comprehensive is less than 0, only
those connections whose Comprehensive values are less than the
mean value of Comprehensive are displayed in the visualization
of brain FC. Similarly, 1/4, 1/8, and 1/16 of Comprehensive can
also be obtained. In this way, important connections between
channels are highlighted and those minor ones are faded or even
ignored so that the problem of visual clutter in visualization
can be effectively avoided. The connectivity of brain FC by
PCC, Comprehensive, and 1/8 of Comprehensive in 3D is
shown in Figures 6A–C, respectively. We can find that those
important connections in an analysis of cognitive states are all
displayed prominently, and the visualization of brain FC in 3D
becomes more clearer than those of PCC in Figure 6A and of
Comprehensive in Figure 6B.

In addition, we could also find from Figure 6 that the
connectivity strength between two adjacent channels is the
largest. The farther the distance between two channels, the
lower the connectivity strength. Furthermore, we also find the
connectivity strength between channels in the Frontal lobe(F
region), Arcuate Fasciculus (AF region), Parieto Occipital (PO
region), and Occipital lobe(O region) is usually greater than that
in other brain regions.

TABLE 1 | Inter-hemisphere FC with PCC.

Hemisphere PCC

Left 260.48

Right 278.0063

TABLE 2 | Inter-BR FC with PCC.

BR AF C CP F FC FP

PCC 0.49 9.45 16.56 46.87 21.71 5.89

BR FT O P PO T TP

PCC –0.46 5.74 31.81 15.48 –0.18 0.55

TABLE 3 | Inter-L/RH FC with PCC.

L/RH PCC L/RH PCC L/RH PCC

AFL 12.75 FL 9.77 PL 4.88

AFR 0 FPL 0 POL 1.58

CL 3.59 FPR 0 POR 1.79

CPL 4.75 FR 10.07 PR 9.07

CPR 4.53 FTL 0 TL 0

CR 4.16 FTR 0 TPL 0

FCL 4.68 OL 0 TPR 0

FCR 4.95 OR 9.77 TR 0

4.3.2. Visualization Between Brain Regions
Because Comprehensive is commonly used to measure the
connectivity between two channels in the same brain region,
it is not applicable to measure the connectivity strength
between different brain regions and between left and right brain
hemispheres. Therefore, we employ PCC to assess the strength of
connectivity between different brain regions and between left and
right brain hemispheres and then visualize them in 3D.

In addition, we obtain the sum of PCC values of each pair of
channels in the same brain region (Figure 7A), called PCC of the
brain region, then adopt the same approach in Section 4.3.1 to
calculate 1/2, 1/4, 1/8, and 1/16 of PCC of one brain region, for
the avoidance of visual clutter in between-BR visualization.

Figures 7B,C are the between-BR connectivity of 1/2 and
1/8 of PCC, respectively. From them, we can learn that the
Between-BR connectivity between the Frontal lobe and Frontal
Cortex(F-FC), between Central Parietal and Parietal lobe(CP-P),
and between the Parietal lobe and Parieto Occipital(P-PO) is
much stronger.

4.3.3. Visualization Between Left/Right Hemisphere
Similar to Section 4.3.1, 1/2, 1/4, 1/8, and 1/16 of PCC between
left and right brain hemispheres can also be obtained by summing
PCC values of each pair of channels of the left and right brain
hemisphere. Figure 8 shows between-L/RH FC connectivity.
Figure 8A is the connectivity of PCC of the left and right brain
hemispheres. Figures 8B,C show between-L/RH connectivity of
1/2 and 1/8 of PCC.
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FIGURE 9 | Comparable Connectivity Visualization of PCC and Comprehensive. (A,B) are Comparable Connectivity Visualization of PCC and Comprehensive. (C,D)

are Comparable Connectivity Visualization of 1/2 of PCC and Comprehensive.

It is obvious that the connectivity between left Arcuate
Fasciculus (AFL region) and Central zone(C region), between
Central Parietal (CP region) and Parietal lobe (P region), between
left Frontal lobe and right Frontal lobe (FL-FR), and between
left Frontal lobe and left Frontal Cortex (FL-FCL) is significantly
stronger than connectivity of other L/RHs.

4.3.4. Visualization of Internal Connectivity
Tables 1–3 show the internal-connectivity results of the
inter-hemispheres, inter-BR, and inter-L/RH, respectively.
Connectivity between channels in the right hemisphere of the
brain is slightly stronger than that in the left hemisphere, and the
internal connectivity in the frontal lobe (F region) and parietal
lobe (P region) is much stronger. In addition, the internal
connectivity of the left arcuate fasciculus (AFL region) and right
frontal lobe (FR region) is greatly stronger than that of other
brain regions.

4.3.5. Visualization of Comparable Connectivity
Comparable Connectivity Visualization is to analyze brain FC
and its differences under different cognitive states (i.e., different
emotions). Similarly, the comparable FC of 1/2, 1/4, 1/8, and 1/16
of PCC can also be obtained by summing PCC between channels.

For example, we perform the connectivity comparison
analysis of two emotional states: neutral and positive by
using PCC and Comprehensive, as shown in Figure 9, gold-
and-red lines indicate stronger connectivity than the contrast
experiment. The greater the difference between the connectivity
of the two recognitive states is, the thicker the line indicating
connectivity is and the more opaque it is. Among them,
Figure 9A shows comparable FC of PCC between channels. It
can be clearly seen that the connectivity of neutral emotions
is stronger than that of positive emotions near channel F7.
In addition, the connectivity between other channels is weaker
than that of positive emotions. Figure 9B shows comparable
FC of Comprehensive between channels. The connectivity of
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FIGURE 10 | Dynamic visualization changes over time.

TABLE 4 | Full name and abbreviation.

Full name Abbreviation Full name Abbreviation

functional connectivity FC between-brain-region between-BR

2 dimensions 2D between-left-right hemisphere between-L/RH

3 dimensions 3D Independent component analysis ICA

Pearson correlation coefficient PCC frontal cortex FC

Phase locking value PLV frontal temporal FT

functional magnetic resonance imaging fMRI arcuate fasciculus AF

diffusion tensor imaging DTI parieto occipital PO

Supplementary motor area SMA central parietal CP

Primary motor area MI left arcuate fasciculus AFL

maximal clique-based MCB left frontal FL

watershed-based WB left frontal cortex FCL

Wavelet packet decompotion WPD right frontal FR

neutral emotions becomes much more invisible for CB1 and
CB2. Figures 9C,D show comparable FC of 1/2 of PCC and
Comprehensive, indicating Comprehensive performs better than
PCC in avoiding visual clutter.

4.3.6. Visualization of Dynamic Connectivity
EEG-FCV can also display dynamic changes of brain FC over
time through Dynamic Connectivity, which provides assistance
for the dynamic evolution analysis of brain cognitive function.
Figure 10 shows the FC dynamic visualization in the EEG
alpha band from time T0 to T9, which is implemented by
constructing a corresponding dynamic functional connectivity
matrix based on PCC. Compared with the connectivity
between two channels that is farther apart, the connectivity
between two adjacent channels has more obvious changes
over time.

5. DISCUSSION

We design and implement EEG-FCV to analyze the connectivity
of 15 participants in the SEED dataset. From the experimental
results, we can further confirm the connectivity between adjacent
channels is generally stronger than that between non-adjacent
(also called distant) channels. Furthermore, we verify the findings
of the connectivity in the frontal lobe (F region) and the arcuate
fascicle (AF region) are stronger, especially in the left arcuate
fascicle (AFL), as Kim found in 2007 (36). In addition, as
Dasdemir found in 2017 (37), we also find that interhemispheric
connectivity is weaker than intra-hemispheric connectivity.

We compare the connectivity changes of different metrics
in different frequency bands. First, we find that when subjects
are stimulated with negative emotion, the right hemisphere
is more active than the left hemisphere, which is consistent
with the results found by Alfano and Cimino (38). Therefore,
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positive emotions are activated relative to the left hemisphere
(as measured by a reduction in the alpha band) and negative
emotions are activated relative to the right hemisphere as Ahern
pointed out in 1985 (39). It is known that alpha oscillatory activity
plays an important role in cognitive processing (40). Our findings
confirm the alpha band oscillations because the alpha bands are
muchmore tightly connected than the electrodes in the beta band
and delta band.

In the fatigue driving dataset, DROW is the most boring and
monotonous task without any stimulation after nearly 2 h of
driving, which can be prone to make the subject tired. While in
TVA3, as a driving task with medium difficulty, the subject drives
his car accompanied by video and audio stimuli, so that he is in
an alert state. Therefore, we compare the connectivity differences
in different frequency bands by different functional connectivity
metrics between TVA3 and DROW states, respectively. We find,
as we predict, that the connectivity of subjects is generally
stronger during TVA3 than in the state of fatigue. Similar to the
findings of Kakkos et al. (41), we also find that brain regions
show much tight connection and more active interaction as
workloads increase. In addition, the connectivity between the
frontal lobe (F region) and the parietal lobe (P region) is generally
stronger than that in other brain regions, which is alsomentioned
by Corbetta and Shulman (42). And the connectivity between
the frontal lobe (F region) and the left arcuate fascicle (AFL
region) is significantly stronger than that in other brain regions.
This proves once again that the arcuate fascicle (AF region) is
thought to provide connectivity for spatial attention, which is
consistent with the findings of other researchers (43–46). At the
same time, we find that there is a certain increase in the central
regional (channel CZ) connectivity during the state of fatigue as
charbonnier found in 2016 (47).

Compared with some current tools, such as EEGLab and
EEGNet, EEG-FCV has realized the EEG-based analysis of brain
FC and implemented the dynamic visualization in 3D with the
avoidance of the visual clutter. However, EEG-FCV does not
contain the subsequent statistical validation phase, which will be
improved in the follow-up study to make it have better versatility
in brain connectivity analysis. All full names and abbreviations
are described in Table 4.

6. CONCLUSION

In this study, we design an EEG-based cognitive function
visualization system, EEG-FCV, and validate it on the SEED
emotion dataset and fatigue driving dataset. The results show
that EEG-FCV can effectively display the visualization effect of
functional connectivity of EEG data in different frequency bands
using PCC, correlation, and PLV. In order to solve the problem of
visual clutter, we also propose a novel metric of Comprehensive,
which can effectively display the difference in connectivity results
and visualize brain FC much more clearly. We believe EEG-
FCV can be useful in promoting EEG-based brain FC analysis
and visualization.
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