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A major difficulty with treating psychiatric disorders is their heterogeneity:

different neural causes can lead to the same phenotype. To address

this, we propose describing the underlying pathophysiology in terms of

interpretable, biophysical parameters of a neural model derived from the

electroencephalogram. We analyzed data from a small patient cohort

of patients with depression and controls. Using DCM, we constructed

biophysical models that describe neural dynamics in a cortical network

activated during a task that is used to assess depression state. We show that

biophysical model parameters are biomarkers, that is, variables that allow

subtyping of depression at a biological level. They yield a low dimensional,

interpretable feature space that allowed description of differences between

individual patients with depressive symptoms. They could capture internal

heterogeneity/variance of depression state and achieve significantly better

classification than commonly used EEG features. Our work is a proof of

concept that a combination of biophysical models and machine learning may

outperform earlier approaches based on classical statistics and raw brain data.

KEYWORDS

depression, dynamic causal modeling (DCM), biomarkers, event-related potentials
(ERPs), machine learning

Introduction

Depression affects roughly one in six people (1), and its prevalence may be increasing
(2). A major difficulty with treating depression, and psychiatric disorders in general,
is their heterogeneity: a clinical phenotype or classification can arise from multiple
different neural causes (3, 4). To address this heterogeneity, we propose describing

Abbreviations: DCM, Dynamic Causal Modeling; ERP, Event-related Potentials; MSIT, Multi-Source
Interference Task; JR, Jansen and Rit mass model; ICA, Independent Component Analysis; MCC,
Matthew’s Correlation Coefficient; SHAP, Shapley Additive Explanation; PCA, Principal Component
Analysis.
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depression in terms of interpretable, biophysical parameters
of a neural model, derived from the electroencephalogram
(EEG). These parameters may serve as biomarkers, variables that
allow subtyping of depression at a biological level. They can
be thought of as latent variables that may capture individual
differences between patients. As a proof of concept, we show that
this idea works even in a small patient cohort.

Several studies have used EEG data to identify potential
biomarkers for psychiatric disorders (5–8). These studies
emphasized EEG features: components of event-related
potentials (ERPs) or oscillatory responses, not biophysical
parameters. For example, multiple papers report smaller N1
amplitudes in depression (6, 9, 10). However, the results from
these studies are difficult to connect back to biology: The data
features (e.g., ERPs, oscillatory responses, and resting state
activity) do not directly map back to brain structures or to
physiologic changes. There are exceptions, e.g., the loudness
dependence of the auditory evoked potential (11–13), but in
general these analyses are mainly phenomenological. They
also fail to consider depression’s internal heterogeneity, which
limits generalizability of the derived biomarkers. A recent
meta-analysis suggested that no EEG marker had reliable
clinical utility (14), although newer work has tried to address
this (15, 16).

One approach to overcoming depression’s heterogeneity
might be to shift the level of analysis. For instance, source
localization techniques can interpret scalp phenomena in
terms of their underlying cortical generators (8, 17). Still
these methods emphasize waves/patterns in the electrical
activity whose neural basis remains unclear. A deeper level
of analysis more grounded in cellular physiology may be
possible when using biophysical models. This is the approach
we take here. Their parameters describe the neurobiology or
neural populations (e.g., synaptic time constants, intrinsic,
and extrinsic connectivity) that give rise to the scalp-recorded
patterns. They capture important developmental, structural and
functional properties of cortical sources. Synaptic time constants
are important for determining the EEG signal (18). Intrinsic
and extrinsic connectivity go through characteristic changes
throughout the development of the brain and can exhibit
differences with age or in the presence of a disease (19). For
instance, we and others have used biophysical models to analyze
data from patients with neurological diseases recorded using
M/EEG and fMRI (20–24).

Here, we constructed biophysical models using Dynamic
Causal Modelling (DCM). These describe the cortical network
activated during a cognitive conflict task that activates
depression-relevant brain areas (25–27). Our model transforms
high-dimensional EEG data onto a mechanistically interpretable
feature space (20); in which, we show below that we can better
measure depression’s internal heterogeneity. We present a
proof of concept for the following idea: that biophysical
model parameters yield a low dimensional, interpretable

feature space. As a result of that better capture of internal
heterogeneity/variance, model-derived features achieved
significantly better classification than manifest EEG features.
Our work shows that a combination of biophysical models and
machine learning may be an alternative to earlier approaches
based on classical statistics and raw brain data.

Materials and methods

Dataset

The dataset included 15 psychiatric patients who reported
current or past depressive symptoms and 34 non-diagnosed
controls. Importantly, this dataset was not limited to patients
diagnosed with unipolar depression, but included bipolar
and unspecified depression. We considered this a better
demonstration of our approach to heterogeneity. This is a
secondary analysis of a cohort collected in a previous study (28).
For details of the EEG recordings, see C Methods.

Electroencephalogram (EEGs) were collected as participants
performed the Multi-Source Interference Task (MSIT), see
Figure 1C (29). MSIT has been validated to produce robust
cortical activations at the single-participant level, in both fMRI
(29) and EEG (30) studies, and is used for assessing depression
state. For more details regarding the task and dataset, see
Supplementary methods.

Event-related potentials analysis

We emphasized a Positive Potential signal, defined as
evoked responses between 250 and 350◦ms after event onset.
Positive Potential components were extracted from 70 EEG
channels (average ERPs over participants are included in
Figure 1A; see also Supplementary Figure 1). Previous
MSIT studies found differences in similar Positive Potential
components between task conditions (31, 32). These early
Positive Potentials are a common signature of conflict and
cognitive control, and arise when incongruent stimuli are
processed (33, 34). We used Positive Potential peak amplitude
and latency as EEG classification features (see Class Balancing
and Model Training section below). To test for the effect
of conditions (interference vs. control), Wilcoxon tests were
conducted on each channel to compare the peak amplitude
and latencies. Latency exhibited significant differences, see
Supplementary Table 1. See also Supplementary methods for
more details on the ERP extraction pipeline.

Dynamic causal modeling

We used Dynamic Causal Modelling (DCM) (20–22, 35–
40) to infer processes at the neuronal level from scalp EEG
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FIGURE 1

(A) Sample average electroencephalogram (EEG) responses. These are shown per channel retained for classification analysis. Both control (red)
and interference condition (blue) averages are plotted across the 350◦ms response time post stimulus onset. Channels Cz, F3, and F4 show
typical event-related potentials (ERP) amplitudes, while T7 and T8 show flat EEG responses across the duration. (B) Jansen and Rit Model. The
schematic diagram summarizes the evolution equations that specify a Jansen and Rit (JR) neural mass model of a single source. This model
contains three populations, each loosely associated with a specific cortical sub-population or layer: pyramidal and spiny stellate neurons and
inhibitory interneurons. Second-order differential equations mediate a linear convolution of presynaptic activity to produce postsynaptic
depolarization. This depolarization gives rise to firing rates within each sub-population that provides inputs to other populations. The operations
are captured by the equations shown on the right-hand side, which are explained in the bottom-left comer inset that includes the parameters
appearing in these equations and then definitions. For a thorough discussion of these equations, see the study by (26). (C) Multiple Source
Interference Task (MSIT). The task requires participants to report on a presented stimulus by using their index, middle or ring finger to press
three buttons corresponding to numbers 1, 2, and 3 respectively. The stimulus appears on a screen displaying three numbers; one number (the
target) is different from the other two (distractors). The participant identifies the target by pressing the corresponding buttons. There are two
task conditions, control, and interference. During control trials, the distractor numbers are zeros and the location of the target number is
aligned with its corresponding button. In interference trials, the distractors are non-zero numbers, and the target is in a location misaligned with
that of the button.

measurements (2). We characterized changes of intrinsic

(within area) and extrinsic (between area) connections across

task conditions and between individuals. We assessed whether

information flow changed in the same way (top-down,

bottom-up or both) between the two task conditions across all

participants. We here used DCM for Evoked Responses and

Jansen and Rit (JR) mass model (Figure 1B). JR models can

predict both evoked and induced responses and have been used
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in theoretical and experimental studies (27, 41–44). DCM was
implemented using SPM12. For more details about DCM, see
Supplementary methods.

Functional network

The functional network modeled with DCM can be seen
in Figure 2 (cf. model M1 in top left corner, all other models
include the same network and assume changes in different
connections, explained below). This network is comprised of
areas activated during the MSIT (29, 45). The network included
sensory, temporal, parietal, dorsal and ventral frontal areas, and
ACC: V1, dACC and the following areas in both hemispheres:
ITG, SPL, vlPFC, dlPFC. Changes in functional connectivity
within this network were observed, at the group level, in patients
with depression (46–49). For details about the coordinates of
these areas, and why we chose this network and no other
areas, see Supplementary methods. We used DCM parameter
estimates as data features for classification and clustering.

Dynamic causal modeling parameters

Dynamic causal modeling (DCM) parameter estimates
were obtained by fitting ERPs, i.e., Positive Potentials evoked
during the MSIT task. We fitted ERP recordings from different
participants, patients, and controls. We thus obtained DCM
parameter estimates. Noise or heterogeneity in the scalp-level
recordings might arise from a small number of disruptions in the
underlying network. After fitting, variability in ERP recordings
leads to variability in the biophysical model (DCM) parameter
estimates across participants. This, in turn, could describe
biotypes or endophenotypes of depression. We hypothesize: (1)
If DCM can capture that variability, then DCM-derived model
parameters might be more effective than raw ERPs at classifying
patients from controls; (2) Clustering of DCM parameters
may help identify clusters of endophenotypes. We tested these
hypotheses below.

Dynamic causal modeling (DCM) parameters were obtained
after fitting data from individual subjects. These included the

FIGURE 2

Best fitting models. (A) Dynamic causal modeling (DCM) best fitting model M6 (left) and runner up model M29 (right). Model M6 includes
changes in forward connections at all levels except VI. The runner up (M29) is very similar. It also includes the corresponding feedback
connections on top of the forward connections included in M6. (B) Best fitting DCM models showing modulations of intrinsic connections for
controls (N22; left) and patients (N26; right).
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following parameters: extrinsic connectivity, A (12 × 2 = 24
parameters), differences in extrinsic connectivity between MSIT
conditions, B (24 parameters, derived from the model fitting as
shown in Results), excitatory and inhibitory receptor density,
G (2 × 10 = 20 parameters), strength of connections between
the three populations of the JR model shown in Figure 1B, H
(4 parameters; see arrows in Figure 1B), and excitatory and
inhibitory synaptic time constants, T (20 parameters).

Model comparison

Because we did not know how connectivity changed
between task conditions, we compared several variants of
the biophysical model describing the network of Figure 2.
We considered a network containing all of our modeled
brain regions: V1, ITG, SPL, vlPFC, dlPFC, and dACC. We
assumed forward and backward connections between specific
areas, as well as lateral connections between homologous
areas in the right and left hemispheres. We asked which
connections might change between MSIT conditions and
considered all possible changes. The alternative model variants
differed in the connections that could change. Following
(39), we first considered changes of extrinsic connections
(i.e., between nodes) only. Then in step 2, changes in
intrinsic connections. The first twenty candidate models with
extrinsic connections changes that we considered, are shown
in Supplementary Figure 2. Overall, the candidate model
space comprised 45 models. We describe in detail these 45
models in Supplementary methods. The 45 models included
all possible models where forward or backward connections
changed between different parts of the brain network. Finding
the most likely among these models yielded the extrinsic
connections that were modulated during the task. For model
comparison, we used an approach known as Bayesian model
selection (BMS). This was performed assuming fixed-effects
(FFX) (50). BMS fits competing models to EEG data and assesses
the most likely model. See Supplementary methods for more
details.

We considered variations of the network shown in Figure 2.
We assumed changes in intrinsic connections from each node
to itself (in addition to changes in extrinsic connections that
the winning model above assumed) (39). We thus assumed
that intrinsic connections could change at any (combination of)
brain areas: V1, ITG, SPL, {vlPFC, dlPFC}, and dACC. We thus
compared 32 candidate models in total.

Classification features

The biophysical parameters of the best DCM model
obtained via BMS were used as features for patient
classification and subtyping.

Two sets of classification features were used. DCM
parameters and EEG features. DCM parameters were directly
compared to EEG features. The DCM parameters included
intrinsic and extrinsic connections that were found to differ
between MSIT conditions in both the patient and control DCM
fits. This resulted in 92 DCM parameters. These were used as
DCM predictors in machine learning classifiers.

To compare the predictive power of the DCM parameter
estimates with raw EEG features, we used an equal number
of ERP features (51). The full set of potential EEG features
included 240 variables (60 EEG Channels x 2 conditions x
2 variables, i.e., ERP peak amplitude and latency differences
between the two MSIT conditions). We reduced the number
of channels to 23 so that the total number of EEG features
was the same as the number of DCM parameters. This reduces
bias in the comparison between ERP and DCM feature sets. To
choose these 23 channels, we performed permutation testing
that assesses the change in prediction error of classification
after permuting a feature (52, 53). The ERP features were
chosen based on their contribution to a random forest model
(constructed without hyperparameter tuning). This “naive”
random forest allowed us to select channels with features that
were most beneficial in separating classes while still allowing
for multiple interaction effects between features. The tradeoff
of this method stems from using a reduced number of features
with the benefit that they are potentially more meaningful, and
easier to interpret.

Critically, the above selection of ERP features, biases the
subsequent machine learning analysis against our a priori
hypothesis that DCM-based features will provide at least
equivalent classification and clustering–the DCM analysis
considers an unselected set of model parameters, whereas the
ERP analysis begins with features already known to have some
classification power. The selected channels are included in
Supplementary Table 2.

Class balancing and algorithm training

The dataset was imbalanced between control and patient
classes. Only 15 of the 49 participants being patients with
depressive symptoms. We implemented Synthetic Minority
Over-sampling Technique (SMOTE) to correct for this
imbalance (54). For more details, about oversampling, see
Supplementary methods. This brought parity to the classes
with 34 observations each (patients and controls).

Given the sample size limitations, we used 10-fold cross-
validation to train and tune machine learning classifiers (55,
56). See Supplementary Figure 9 for a visual depiction of the
sampling strategy and Supplementary methods. The cross-
validation was used to train classifiers and assess whether DCM
features can better measure depression’s internal heterogeneity,
compared to EEG features (56). We compared the performance
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of different machine learning algorithms to distinguish patients
with depression vulnerability from controls in both the EEG
and DCM feature sets. The algorithms included Support
Vector Machines (SVM) (57), Random Forests (52, 58), and
Gradient Boosted Trees (59). Comparing DCM and EEG
features using multiple algorithms ensures that conclusions
are not sensitive to the specific algorithm used. We also used
multiple performance metrics, including F-measure (F1-score),
and the Matthews’ Correlation Coefficient (MCC) (60). See
Supplementary methods for more details.

Feature importance

The best performing classifier as determined by mean MCC
score was used to compute feature importance. Shapley additive
explanation (SHAP) values were constructed for predictions on
the original data set (49 participants, no SMOTE augmentation)
(61). This reveals how efficient the low dimensional space
spanned by DCM and EEG classification features is in
describing the internal heterogeneity of patients with depressive
symptoms. SHAP values were constructed using subsampling
of different combinations of input features and attributing a
weight representing how much credit features should receive
for class prediction. The predictive power of EEG and DCM
features was compared directly because the corresponding
SHAP values take on the same scale and are predicting the same
underlying data.

Unsupervised clustering

The ten most important features as determined by SHAP
values from both the ERP and DCM feature sets were used
to construct embedding scores with t-stochastic neighbor
embeddings (t-SNEs). t-SNEs are useful for exploring higher-
dimensional data in lower dimensional representations when
non-linear relationships exist in the data (62). For more
details on t-SNE see Supplementary methods. This provided
visualizations of the data that were convenient for assessing
subtypes or clusters of patients with depressive symptoms.

Clustering was performed using k-means in the
three dimensional space obtained by t-SNE. K-means is
an unsupervised machine learning method that groups
observations to reduce within-cluster sum squares distances
and increase the sum squared distance between cluster centroids
(63, 64). K-means depends on an a priori number of clusters.
The optimal cluster number can be found by computing
Silhouette scores across candidate values of k. Observations
which been classified appropriately have a lower mean distance
between points within their assigned cluster compared to the
mean distance to points in the next-nearest cluster neighbors
(65). This ratio is given by Silhouette scores.

Results

Dynamic causal modeling

We first asked how information flow changes between
the congruent and incongruent condition of the MSIT. We
used Bayesian Model Selection (BMS; see Supplementary
methods) to find the connectivity pattern between our six
modeled areas. We fitted ERP data using a biophysical DCM
model (Figure 1B) and scored all possible model variants that
corresponded to different subsets of connections that might
change between MSIT conditions. Different competing models
represented different combinations of modulated forward or
backward extrinsic connections (see also Methods). BMS
identified the winning model as M6 (BF > 3; Figure 2A, see
also Supplementary Figure 4). Model M6 includes changes
in forward connections between ITG→SPL, SPL→vlPFC,
SPL→dlPFC, and vlPFC→dLFPC. The runner up (M29) is
very similar to M6 (Figure 2B). It includes the corresponding
feedback connections on top of the forward connections
included in M6. M29 also includes changes in feedforward and
feedback connections between vlPFC, dLFPC, and dACC. Thus,
the prominent difference between task conditions was changes
in the forward (bottom-up) information flow between sensory
processing and associative regions. This corresponds to different
processing of sensory input between the two MSIT conditions
that gives rise to ERP differences in the first 350◦ms after
stimulus presentation.

In the second step, BMS was used to test the modulation
of the intrinsic connections. In this step, we fixed the extrinsic
connections to those shown in the winning model M6 above.
We then considered variants of M6, where intrinsic connections
(within each brain area) were allowed to change. These variants
formed a different model space to the one considered above
(Methods and Supplementary Figure 3). BMS identified that
variant N22 had the highest evidence (BF > 3; Figure 2B,
see also Supplementary Figure 5). This included modulated
intrinsic connections in V1, SPL, vlPFC, and dlPFC areas. The
runner up (N23) is exactly the same as N22 with the additional
modulation of dACC intrinsic connections (Supplementary
Figure 5). We also performed the same BMS for the patient
cohort.

We repeated the earlier analysis, where we fitted the neural
mass model to patient data only. We wanted to capture the
intrinsic heterogeneity. We first found that model M8 best
described the changes in extrinsic connections (Supplementary
Figure 6). This included changes in all feedforward connections.
The runner up (M41) was similar to the winning model, M8,
in that it included changes in the feedback connections too.
The difference from M8, was that it did not include changes in
feedforward (and feedback) connections between V1 and SPL
and vlPFC and dACC. The winning model for patients, M8,
was similar to the winning model for the control cohort (M6).
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The difference between the winning models was that two more
brain regions showed modulations of feedforward connections.
Patients showed changes in vlPFC to dACC and V1 to ITG, in
addition to changes in forward (bottom-up) information flow
between the ITG to SPL, SPL to vlPFC and dlPFC, and vlPFC to
dlPFC that we had found for controls. However, we did not use
this difference for our clustering analyses below. Thus, we do not
claim that the additional connection changes that we found for
the patient cohort are biomarkers of depression or depressive
vulnerability. Rather, the similarities (common connections)
between M6 (controls) and M8 (patients) were the inputs
to machine learning algorithms together with the biophysical
parameters described in the last paragraph of this section below.

In the second step, similar to the analysis above, we
identified N26 as the model with highest evidence (BF > 3;
Figure 2B, see also Supplementary Figure 7). This is very
similar to N22 that was the winning model for controls. The only
difference between N22 (controls) and N26 (patients) is that
N22 includes changes in intrinsic connections in ITG instead
of SPL. The runner up (N9) is also very similar and assumes
modulations of intrinsic connections in dACC instead of V1.
Again, we are not claiming this change to be a biomarker
of depression, but as an example of how DCM can identify
underlying neurological variability. The clustering/classification
analysis used only the intrinsic connections that were common
to N26 and N22.

Several connections were independently shown to be
modulated between conditions in both cohorts (controls and
patients): ITG to SPL, SPL to vlPFC, and dlPFC, vlPFC to
dlPFC, and the intrinsic connections in V1, vlPFC, and dlPFC.
After finding the set of extrinsic and intrinsic connections that
changed between MSIT conditions, we fitted the winning model
(N22 for controls; N26 for patients) to each participant. Example
model predictions for each of the three populations are shown
in Supplementary Figure 8. Blue and red lines correspond to
the two MSIT conditions (control and interference). There are
three pairs of lines, corresponding to the three populations of
the JR model (cf. Figure 1, right panel). After fitting the model,
we obtained connections (A, B) and other biophysical parameter
estimates from each participant (G, H, T; see Methods). These
were used as DCM predictors in the next section.

Classification

Our goal was to assess whether DCM features can better
measure depression’s internal heterogeneity, compared to EEG
features. To do this, we asked whether DCM features achieved
significantly better classification than EEG features (56). EEG
features included ERP parameters, i.e., ERP peak amplitude and
latency differences between the two MSIT conditions. We used
ERPs from 24 channels so that the number of EEG predictors
was equal to the number of DCM predictors. This allowed us

to perform head-to-head comparisons between ERP and DCM
predictors. Crucially, we chose ERP predictors in such a way
that it biases subsequent analysis against DCM predictors (they
were the best classifiers in an initial random forest model;
see Methods for more details). Due to the small sample (15
patients), it was not possible to test out of sample predictions
for algorithm robustness. To assess the relative ability of DCM
and ERP parameters to capture diagnostic heterogeneity (and
thus support better classification), we computed classification
performance using three algorithms: SVM, Gradient Boosted
Tree and Random Forest (Figure 3). The SVM algorithm
performed best for both the DCM and ERP data sets (highest
average MCC scores).

Overall, DCM features led to better classification accuracy
than EEG features across all three algorithms tested. SVM was
used for assessing feature importance because it had the highest
classification performance (see Supplementary Table 3 for full
results of MCC and F-Score). It also had a more parsimonious
hyperparameter set (two–kernel gamma and cost) compared to
either decision-tree ensemble model.

To evaluate feature importance, we used absolute SHAP
values averaged across participants. Figure 4 shows SHAP
values for the 10 most important DCM (Figure 4A) and EEG
(Figure 4B) features. By taking the average across each of the
49 classification decisions (participants), we have a relative rank
of feature importance. Overall, the DCM features have higher
mean absolute SHAP values compared to EEG features.

Individual DCM features have higher SHAP values that the
EEG features with the same corresponding rank. For example,
the most important DCM predictor is the rSPL inhibitory
time constant (mean SHAP = 0.22). The most important ERP
predictor is AF7 Latency score in the interference condition
(mean SHAP = 0.17). These results are directly comparable, with
the larger SHAP score reflecting greater feature importance.

We also compared the mean SHAP scores between the two
datasets, with DCM scoring higher than ERP across all ten most
important features (the SHAP value of the top DCM feature
is larger than the corresponding SHAP value for the top ERP
feature; the SHAP value of the second-best DCM feature is larger
than the corresponding SHAP value for the second-best ERP
feature, etc.). We compared the mean absolute SHAP values in
a paired t-test using rank as the pairwise grouping. The 10 top
DCM features had higher SHAP values than the 10 top EEG
features [t = 4.28, p = 0.002, CI = (0.01, 0.03)].

Overall, DCM features appeared equivalent or more
powerful than EEG features (higher SHAP values). They also
captured separate subtypes of depressed participants better.
This may relate to DCM features’ ability to capture variability
between individuals. Figure 5 shows the distributions of the
ten most important DCM and EEG features. Visually, DCM
features show distributions with central tendencies, with areas of
non-overlap between patient and control distributions. This can
be explained by the Laplace approximation used to define the
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FIGURE 3

Cross validation performance. Matthew’s Correlation Coefficient scores across the 10-fold cross-validation. Mean and +/– 1 standard error are
reported for each model architecture. Support vector machines (SVM) classifiers performed the best for both feature sets on average across the
10 folds.

posterior densities of DCM parameters (66). They occupy less
of the available numeric range. ERP features are more uniformly
dispersed over the available range.

Unsupervised clustering

To capture depressive heterogeneity, t-SNE representations
were made from unlabeled data of each of the 10 most
important features for DCM and ERP feature sets. t-SNEs
were generated using a perplexity value of 25 over 2,500
iterations. These embeddings were labeled post hoc to determine
if these features could elucidate differences between patients and
controls. Figure 6 shows the three dimensional representations
of patient embeddings in blue and control embeddings in red.
Supplementary Figure 10 shows the t-SNE results for two
dimensional t-SNE representations. DCM feature embeddings
show clustering tendencies, while EEG feature embeddings were
more dispersed throughout the lower dimensional spaces with
no clear patterns.

Our patient dataset included two depression subtypes,
bipolar, and unspecified depression. We asked whether we could
recover this using the t-SNE spaces obtained using DCM and
EEG biomarkers. We clustered the t-SNE embeddings using
k-means and compared Silhouette scores for all participants and

for the patient cohort only. Figure 7 shows the mean Silhouette
score with ± 1 standard error. Scores for both DCM and EEG
results across 2–12 clusters (k) can be found in Supplementary
Table 4. Silhouette scores decrease monotonically, suggesting
that a two cluster representation is the most parsimonious
solution in this small dataset. The lack of change in Silhouette
scores over increasing values of k for the all-participants dataset
suggests that there is no clear clustering solution that separates,
e.g., controls and two or more patient types. This may reflect
unstructured heterogeneity in the control participants.

The DCM embeddings for the patients only at low k values
had the highest mean Silhouette scores [µ = 0.388, CI = (0.334,
0.441)]. Compared to the second highest Silhouette score, ERP
embeddings for patients only, the DCM embeddings were
significantly higher when compared using a two-sided t-test
(t = 2.17, p = 0.032). Interestingly, DCM Silhouette scores
decreased in a monotonic fashion (blue solid line in Figure 7),
thus confirming the two known clusters in the patient dataset.

Discussion

We demonstrated a proof of concept that transforming
electrophysiological data to underlying biophysical parameters
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FIGURE 4

Feature importance. Shapley additive explanation (SHAP) values for the 10 best performing dynamic causal modeling (DCM) features (A) and
event-related potentials (ERP) features (B). Mean absolute SHAP values are reported with +/– 1 SE.

using DCM may reliably capture variability that correlates with
clinical status. Although our dataset is small and heterogeneous,
DCM features were equivalent to or outperformed raw EEG
features on most classification metrics, and this held true
across multiple classifier algorithms. Our results align with

prior work that has successfully used DCM to identify
differences between unipolar and bipolar depression (22).
We considered participant-specific (first-level) analysis and
group effects (second-level analysis) as two separate steps. An
alternative approach could be to combine these steps into
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FIGURE 5

Feature distribution. Distributions for the 10 best dynamic causal modeling (DCM) input features (A) and (electroencephalogram/event-related
potentials) (EEG/ERP) input features (B). Classification features represented using dots for real observations alongside boxplots and density
curves to show the shape of the distribution. Each is colored by class. Each input feature on the x-axis is shown with raw data points, boxplots,
and density curves. Patients (blue) and controls (red) are shown separately. The EEG/ERP features are shown after min-max scaling to present
latency and interference variables together on a comparable scale.
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FIGURE 6

t-SNE embeddings. Three dimensional t-SNE values for top 10 input features of dynamic causal modeling (DCM) (A) and
electroencephalogram/event-related potentials (EEG/ERP) (B). Post-hoc, data points were colored blue (Patient) and red (Control). Note the
difference in point size reflects the difference in axis scale (–/+ 40 in DCM compared with –/+ 300 in EEG).
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FIGURE 7

K-means clustering. Clustering was performed using varying numbers of k (from 2 to 12) to cluster (1) all participants, (2) only patients. To find
the optimal k, we used Silhouette scores. Silhouette scores quantify the ratio of within over between cluster distance. A positive value signifies
appropriate clustering (74). This figure shows the mean Silhouette scores (vertical axis) for each level of k (shown on the horizontal axis). Red
dots show scores for patients and controls (all), while green dots show scores for patients only. Solid lines and discs depict scores for dynamic
causal modeling (DCM) features, while dashed lines and triangles for electroencephalogram (EEG) features. Error bars show +/– 1 SE.

a single hierarchical model (35, 66). We will consider this
elsewhere. Similarly, we used a Fixed Effects approach that could
be replaced by Mixed-Effects (7, 8).

If our DCM-based approach can be replicated on a larger
dataset, it may provide an intriguing avenue for personalized
medicine. There is a growing set of TMS and similar tools for
manipulating brain connectivity (67, 68). For any individual
patient, the approach we describe permits the identification of
which DCM feature(s) are driving that patient’s vulnerability.
Although this is still a speculative claim, it may be possible to
then target and normalize those specific features. The feasibility
of that approach will depend on whether these features change
as a patient undergoes treatment or remain present even during
euthymia (69, 70).

We found that MSIT-induced variance was explained by
feedforward connectivity from primary sensory and object
discrimination areas to prefrontal cortex, plus changes in
intrinsic, within-region connectivity. This is consistent with
current working models of cognitive control, the construct

tested by MSIT. In those models, information about cognitive
control demands is computed posteriorly, then fed forward to
anterior structures (dlPFC which then influences motor circuits)
(71, 72). Given that we explored a wide range of connectivity
changes, our data-driven recovery of a known phenomenon
provides some confidence that we identified known effects. At
the same time, our analyses were based on prior assumptions
about anatomically plausible connections. In future work, we
will test these assumptions using BMS.

Dynamic causal modeling (DCM) suggested a low
dimensional space of potential biomarkers (we went from
240 EEG-based to 92 biophysical features). This helps fitting
prediction models on limited datasets. As an alternative to
PCA (69, 73), DCM-derived parameters are also directly
interpretable; e.g., DCM synaptic connectivity or intrinsic
excitability can directly map to potential treatments (20).
Another DCM advantage is that its biophysical models provide
ways to test potential explanations of pathophysiology. This
advantage can also be a limitation: for example, some prior
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knowledge about cortical regions and their interactions is
required. Finally, we note that DCM is not simply a biophysical
model. It also involves source reconstruction (i.e., analyses in
source space) while the ERP analyses are in sensor space. This
source attribution adds further explainability, and may explain
why the DCM parameters had higher explanatory power on this
specific dataset.

We here used a small patient dataset, to present a
proof of concept that biophysical biomarkers are a feasible
approach to depression subtyping. That dataset is inherently
limited, and our current results should not be treated as
generalizable. In future work, we will analyze larger patient
datasets, which are increasingly available for secondary analysis
(74). We will address data leakage by using a hold-out
test set of data observations to evaluate classification model
performance. This will allow for better comparisons between
model architectures and depression subtyping using self-
supervised learning algorithms like TABnet (75).

We emphasize that the classification performance of our
models should not be treated as a claim that the current pipeline
carries diagnostic or clinical utility. The sample size is too
small; we and others have pointed out that small-sample-derived
biomarkers frequently do not generalize (14, 76, 77). Although
we did perform some internal cross-validation, this sample size
did not permit us to follow best-practices for preventing data
leakage (78). Specifically, we performed SMOTE up-sampling
on the full dataset, before conducting a training/validation split.
On the other hand, the goal of this work was not to develop a
reliable classifier and report its performance. The classification
approach was used solely to compare the relative performance of
DCM vs. ERP features (similar susceptibility to data leakage and
effect size inflation). Regarding the ERP features themselves, we
only found statistically significant differences in ERP latencies,
not peak amplitudes. We could have used average amplitudes
within an epoch, but this would not change our results, as the
average and peak amplitude were highly correlated (R = 0.98
for the control and R = 0.92 for the interference condition).
Related to this, a significant difference between DCM and the
standard ERP technique is that the ERP focuses on two specific
aspects of the polyphasic ERP response (peak amplitude and
peak latency). By virtue of its model fitting, DCM considers
the full shape/temporal evolution of the ERP. One approach
to addressing this might be to perform a principal component
analysis (PCA) or similar decomposition on the ERPs. One
could then compare, e.g., eigenvalues of the first few PCs against
the DCM derived features. In this proof of concept study, we
focused on alignment with earlier work (5–8). We used the
most common ERP markers, i.e., peak amplitude and latency.
A more detailed exploration of potential ERP features will be
considered elsewhere.

Our feature importance scoring (SHAP) results should also
be interpreted with caution. With this caveat, over half the highly
weighted features from the DCM analysis came from more

caudal regions and included within region features. This aligns
with recent results in a larger dataset, where signals in primary
sensory regions were more able to classify (non)response
to antidepressant treatment than were signals from higher-
order cognitive/associative regions (79). On the other hand,
those response predictors were generally unstable in a cross-
validation analysis (80). In all, we do not make claims that
our specific identified markers/clusters are new generalizable
findings. Rather, they are proof of concept for a larger point:
that DCM parameters can be scored and interpreted, and that
subtypes might be identifiable by clustering. With a larger
dataset, it would become feasible to identify robust DCM
features (78). There are such recent datasets available (81, 82),
particularly in depression (51, 74). In future work we will
consider these new datasets together with additional covariates,
like stressful life events (83), biological sex (6), and others.
These can easily be combined with the DCM pipeline we
have shown here.

Another caveat is that t-SNE does not preserve distances and
global structure in the data. It only preserves local geometry
while constructing the low dimensional embedding (84). Thus
one might wonder whether it is an appropriate tool for
discovering clusters in biomarker data. Indeed, we did not
find unknown clusters that might reflect phenotypic or other
differences. Our only point was that using DCM—not ERP—
biomarkers projected onto t-SNE spaces allowed us to recover
the known patient clusters in our data, bipolar and unspecified
depression. This is similar to the use of the t-SNE algorithm in
bioinformatics (85, 86), where t-SNE has been used to obtain
hierarchical clusters and recover clusters obtained with different
methods, like genetic analyses. t-SNE extensions are also useful
for discovering unknown structure. There are also recent t-SNE
algorithms that can address the above geometry distortion, like
parametric (87) and hierarchical SNE (88). We will consider
them in future work.

In summary, we have demonstrated the first proof of
concept for a novel approach to identifying psychiatric
biomarkers from EEG, based on converting manifest
EEG signals to interpretable biophysical parameters. We
demonstrated the viability of this approach against the same
biomarker pipeline applied to manifest data (in this case, ERPs).
If applied to larger datasets and a more robust variety of data
sources, this DCM-based pipeline can be an important new
approach to dissecting the heterogeneity of depression and
depressive vulnerability.
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